Software Architecture Design of Cloud Platforms in
Automotive Domain: An Online Survey

Ahmad Banijamali*, Philipp Heisig!, Johannes Kristan®, Pasi Kuvaja*, Markku Oivo*
*M3S research unit, ITEE Faculty, University of Oulu, Finland
{IDIAL - University of Applied Sciences and Arts Dortmund, Germany
8Bosch Software Innovations GmbH, Germany

Abstract—Software architectures play an important role in the
success of cloud platforms in automotive domain. To review the
architecture designs in this context, it is necessary to explore
different design decisions such as design styles, quality attributes
(QAs), and evaluation methodologies.

To this end, we aimed to investigate (i) architectural design
styles, (ii) major QAs, and (iii) architecture evaluation methods
that are applied in the cloud platforms in automotive domain.
We conducted an online survey to collect data from participants
in industry and academia. Methodologies, such as descriptive
statistics and grounded theory, were used to analyse the data.

We collected 42 valid responses from participants with dif-
ferent roles, backgrounds, and years of experience. Considering
the survey objectives, (i) event-driven and service-oriented ar-
chitecture (SOA) were the most applied design styles to fulfil
QAs. (ii) Availability, reliability, and security were the major
QAs among other attributes. Finally, (iii) active reviews from
intermediate design (ARID) and the scenario-based architecture
analysis method (SAAM) were mostly applied when evaluating
the architecture of cloud platforms in automotive domain.

The results of our survey show a spectrum of different appli-
cable design styles, QAs, and evaluation methods. For selecting
the set of architectural design decisions, one should consider the
business scenarios and relevant quality requirements that should
be supported by the cloud platforms in automotive domain.

Index Terms—Software architecture design, Cloud computing,
Automotive, Internet of things (IoT)

I. INTRODUCTION

Connecting vehicles to external objects, services, and plat-
forms has enabled more business scenarios [1] for secure data
exchange beyond vehicles [2], remote monitoring, and over-
the-air software maintenance [3]. In achieving reliable solu-
tions, the architectural design of connected vehicles benefits
from advances in cloud platforms, internet of things (IoT),
and communication technologies [4]. As for nearly real-time
services, it is also necessary to bring data processing from the
cloud to the edge of the network and closer to the vehicles and
devices through distributed tiny clouds that is known as fog
computing, which enables new services by the mass adoption
of IoT [5].

Designing architectures of cloud platforms in automotive
domain (ACPs) (Fig.1) includes new challenges compared to
other IoT cloud platforms. For example, architectural decisions

This research was supported by the ITEA3-APPSTACLE research project
and funded by Business Finland.
Corresponding author: Ahmad Banijamali (ahmad.banijamali @oulu.fi)

in ACPs should consider a large number of heterogeneous
vehicles and devices, various communication technologies
that are specific to different providers, longer life cycles of
vehicles, less IT standardisation, less reliable connectivity, a
bigger variety of connectivity hardware, and scalable real-time
services in safety-critical systems [1], [6].

Core Cloud

Identity & access Domain-specific services

Data storage &
management

D eul management
<% i

Device representation Big data analytics
& visualisation

Device-to-cloud
communication

Third-party
services
-

) O

Message\éatej\
TN i

Fog/edge ~.

Fig. 1. Cloud platforms in automotive domain

In this area, software architects’ design decisions is an
important research topic [7] that makes a significant impact
on system qualities [8]. Although previous studies [6], [7]
emphasised the research gap on design decisions such as
QAs and design styles in ACPs, there are scarce studies that
investigate architectural design styles, QAs, and evaluation
methodologies in the context of ACPs.

To this end, we conducted an online survey on software
architecture design in ACPs to investigate (1) architectural
design styles and selection criteria, (2) quality attributes (QAs)
and their evaluation methods, and (3) architecture evaluation
methods and relevant challenges. The scope of this study is
on the software architecture design of core cloud (see Fig.1)
and we excluded from our survey other software knowledge
areas [9], in-vehicle platforms, and communication networks.

The findings of our survey are valuable for industrial prac-
titioners to look for information on design styles in terms of
QAs and architecture evaluation methods in ACPs. In addition,
researchers could gain insight into the design criteria and
challenges behind software architectures in ACPs.

II. BACKGROUND

The first part of this Section provides a brief overview of
emerging trends for ACPs. Next, it explores a few relevant
studies on the architecture design of ACPs.

A. Emerging trends for ACPs

Integration of technologies such as cloud computing, wire-
less and RFID sensor networks, and in-vehicle sensors [6]
has enabled more innovative business scenarios [1] in the
automotive domain. For instance, automotive software has
traditionally been developed and maintained separately by
each car manufacturer in-house [10]. However, this approach
could not meet the long-term challenges of the industry, as the
diverging strategies of car manufacturers could not provide
solutions for the increasing number of connected devices
[11]. Therefore, new international collaborations between large
car manufacturers, tier-1 suppliers, and cloud platform and
solution providers have been formed up (e.g., [12], [13]) to
develop ACPs addressing mass-differentiation in automotive
services.

Nevertheless, there has been an increased focus from other
companies and research institutes on introducing new so-
lutions for centralised vehicular data analysis and over-the-
air software maintenance. For example, APPSTACLE!' is a
European Union (EU) project that seeks to create an open
software platform to connect vehicles to the Internet and cloud
platforms. The project outcome, which is publicly available
via the Eclipse Kuksa project, interconnects a wide range of
vehicles to an open cloud platform through open in-vehicle and
Internet connection interfaces. CarCoDe? is another example
of a software platform developed for the automotive domain
to enable a new traffic-service domain ecosystem. It created
the opportunity for third-party developers to generate more
innovative automotive applications.

B. Software architecture of ACPs

Architecture design in ACPs is still in the early stages of
research [7]. To address this area, prior studies have applied
various architectural design styles, such as multi-layered [14],
[15] and service-oriented architecture (SOA) [16], [17], to
address quality concerns in ACPs. For example, Serrano
et al. [18] developed a generic data-processing architecture
for real-time traffic-based routing to address scalability and
resiliency in this area. They argued that the proposed software
architecture could serve a wide range of workloads and use
cases with low-latency requirements. Another study [15] pro-
posed a multi-layered context-aware architecture. The authors
explained that vehicular social networks, context-awareness,
and security are essential for opening up emerging services
such as real-time traffic information prediction [15].

Fiosina et al. [19] proposed real-world scenarios of intelli-
gent traffic system applications and demonstrated the need for
next-generation big data analysis and optimisation strategies.

Thttps://itea3.org/project/appstacle.html
Zhttps://itea3.org/project/carcode.html

The proposed architecture supports scalability, service encap-
sulation, dynamic configuration, and on-demand delivery of
big data in the intelligent transportation area.

Due to the technological variety in ACPs, architecture
designs must assure stakeholders [8] that provisional services
will meet the quality requirements at a specific level of cost
and risk [20].

III. RESEARCH METHOD

We adopted survey research methodology for this study. Our
survey collected qualitative and quantitative data to provide a
“snapshot” [21] of the current status of software architecture
design in ACPs. For this study, we applied the survey process
of Ciolkowski et al. [22] and the activities proposed by
Pfleeger and Kitchenham [23]. Fig.2 shows the survey process
in this study that will be described in greater detail below.

/ Survey
1) definition and

protocol

Population, y . |
@ sampling, pilot ~ /) Survey analysis\,
studies, data prep.

/' and synthesis
@ Survey execution

Survey y
reporting /4

Survey
instrument

2

Fig. 2. Survey process

A. Objectives and research questions (survey definition)

Our research aims to investigate software architecture design
in ACPs. Software architecture is a broad topic that addresses
different topics such as design decisions, system representa-
tions, performance quality, re-usability, and business success
[8], [24]. This study focuses on design styles as a collection
of architectural design decisions [25], QAs as the system
capabilities and behaviour to meet end user expectations [8],
and architecture evaluation methods as a means of checking
whether the decisions made were right [26]. The research
questions (RQs) of this study are summarised in Table 1.

TABLE I
RESEARCH QUESTIONS AND THEIR RATIONALES

Rationale
To study major design styles and
selection criteria to satisfy QAs.

Research question
RQ1: What architectural design
styles are used in ACPs to fulfil
quality attributes?

RQ2: What are the important
quality attributes in ACPs?

To explore major quality attributes
and relevant evaluation methods.

RQ3: What architecture evalua-
tion methods are applied in ACPs?

To explore the architecture evalua-
tion methods and challenges.

B. Survey design

1) Form of the survey: To present characteristics of a
population in ACPs, we adopted a descriptive approach [27]. It
reviews which design styles, QAs, and architecture evaluation
methods are applied [28] in the context of ACPs. For this pur-
pose, we used an online questionnaire as a survey instrument

as it allowed for data collection from globally diverse locations
in a time- and cost-effective way [29].

2) Population, sampling method, sample size, and partic-
ipant selection: The survey population included (1) indus-
trial practitioners and (2) academic researchers with practical
experience in software architecture design in the context of
ACPs. The survey instrument included several questions to
identify the roles, years of experience, and working areas of
the participants.

Botta et al. [30] noted that convergence of cloud computing
and the IoT is a recent and promising research trend introduced
after 2010. In the same way, the design of ACPs is a more
recent research topic, so there is a rare opportunity to find
practitioners with more than 10 years of experience in all
topics of this study (cloud computing, IoT, and automotive).

To address the concern about whether the survey responses
can reflect the existing architecture knowledge on ACPs, we
considered the following criteria regarding which respondents
to include:

o To emphasise respondents with a real industrial back-
ground, we excluded all participants who did not have
any practical experience either in general or in software
architecture design.

o All included participants had work experience in at least
two of the following three topics: cloud computing,
IoT, and automotive. Software architecture engineering
experience was considered mandatory.

« Respondents with a “researcher” role could come from
industry and work in, for example, research and develop-
ment departments (R&D).

o Collaboration between industry and academia in
many national or international projects (e.g., ITEA3-
APPSTACLE and ECSEL-AFarCloud) made researchers
and practitioners to work closely together in real
industrial use cases and projects. Thus, we included
academic researchers who met the first two inclusion
criteria.

We applied a non-probabilistic approach to extract a sample
of the whole population [31]. It was not practically possible
for us to conduct probabilistic sampling because there was
no previous knowledge about the entire survey population. In
addition, it was not feasible to conduct systematic sampling
after the survey because the data in the survey were entirely
anonymous. We did not collect company names or any re-
vealing information, which could have damaged the quality of
the data [32], as some of the participants may not have been
allowed to legally disclose organisational data.

In this survey, we adopted the convenience sampling method
[28], [32]. It dictates that “subjects are selected because of
their convenient accessibility to the researcher. This technique
is easy, fast, and usually the least expensive. The criticism of
this technique is that bias is introduced into the sample” [33].
Due to challenges such as the large population of software
engineering participants, it was impossible to access every
individual in the sample. Therefore, most researchers rely on
sampling techniques such as convenience sampling, which is a

widely accepted methodology in software engineering research
[28] and, in our case, was the best feasible choice.

We reached the target population using the following meth-
ods:

o The authors’ contacts (i.e., existing or previous co-
workers and co-authors);

« Automotive software engineering communities, groups,
or projects; for this purpose, three separate approaches
were adopted: (i) automotive software engineering com-
munities (i.e., automotive-grade Linux [AGL]); (ii)
IoT/cloud/automotive participants in social media (i.e.,
LinkedIn groups); and (iii) coordinators and technical
members in relevant EU projects; and

o The academic researchers from prior literature reviews,
conferences, or symposia.

We created a follow-up plan, which involved sending re-
minders to the target population to encourage more people to
participate in the survey.

C. Data preparation and collection

1) Survey instrument: We constructed the survey instru-
ment® with the help of previous literature and surveys on the
software architecture engineering, IoT, and cloud platforms
(e.g., [30], [34], [35], [36]). We did not want to frame the
questions [37] by designing a domain-specific questionnaire,
as our understanding of the domain might have influenced the
answers and increased the research bias. Thus, we decided to
keep the questions generic and let the respondents shape the
architecture knowledge on ACPs, which was the main interest
of paper.

The survey construction was required to adequately cover
the scope of this study while at the same time optimise the
number of questions. The instrument had 19 survey questions
(SQs): 10 questions on demographics and 9 specific questions.
We used the questions on demographics to understand the
participants’ backgrounds and their familiarity with the major
topics in the survey. However, we did not include the demo-
graphic questions in RQs of the paper, yet it was necessary to
have a good understanding of the participants’ backgrounds in
this emerging domain so that we could filter valid responses
according to our inclusion criteria (see Section III-B2).

The questionnaire included a combination of closed ques-
tions (pre-designed answers) and open questions (free text).
We used a five-point Likert scale for closed questions to
score the responses. Multiple-choice questions allowed the
respondents to vote differently for design styles, QAs, or
architecture evaluation methods instead of selecting only one
option. It enabled us to draw a spectrum of different applicable
options.

2) Survey format: The survey opened with a welcome page,
including aim of the survey, the estimated completion time of
the survey, and the confidentiality of the responses. The survey
was hosted on an online survey tool provided by Webropol.*

3https://www.dropbox.com/s/rczzjaq8518eix2/survey.pdf?dl=0
“https://link.webropolsurveys.com/S/7BF39BC80144BFDD

D. Survey execution

The survey was open to the participants for three months,
from April to June 2018. We asked the participants to complete
the survey online. Participation was voluntary and anonymous.
To maximise the outreach of the survey, we sent invitation
emails to various software communities (e.g., IoT, cloud, and
automotive communities). These software communities were
contacted through mailing lists in which it was not possible
to check the number of active recipients in each community.
We applied snowball sampling [38], where the email recipients
were also asked to forward the survey link to other people with
relevant expertise for this survey. Thus, it was not possible for
us to calculate the response rate (i.e., the ratio of the people
who received the invitation to those who filled out the survey)
[39], as there was no information about how many times the
survey link was forwarded.

E. Data analysis

We mapped each SQ to a relevant RQ. SQs 11-13 were used
to answer RQ1, SQs 14-16 for RQ2, and SQs 17-19 addressed
RQ3. We did the data analysis using descriptive statistics for
the closed questions. We applied grounded theory [40] to
the open questions to create different categories out of the
responses received and used the classification by Adolph et al.
[41] to code the data input in the open questions. We used open
coding to generate different concept clusters, while selective
coding helped to identify the core categories to demonstrate
the variation in the data. At least two authors were involved
in the data analysis process.

FE. Protocol review and pilot studies

The survey protocol® in this study was iteratively reviewed
by all the authors. To evaluate the SQs [42], it was not efficient
to use the entire population [39]. Therefore, we conducted
three rounds of pilot studies on the draft sets of the SQs
[42] to simulate the survey execution while reducing author
bias. In total, two industrial practitioners and three experienced
academic researchers participated in the pilot studies. During
the pilot studies, we were able to improve the scope, questions,
and terminologies used in this survey. In addition, we could
estimate the time needed to complete the questionnaire. The
participants in the pilot studies were representative of the
potential respondents of this survey (see the inclusion criteria
in Section III-B2). The first round of the pilot study was
initiated with two experienced academics who were asked to
fill out the survey draft. Next, we improved the questionnaire
based on the feedback and suggestions from the first round.
The same steps were followed with different participants in
the second and third rounds until no further suggestions for
improvement were offered.

IV. SURVEY RESULTS

This section summarises and presents the findings collected
from 42 valid responses.

Shttps://www.dropbox.com/s/un0an796911f6lm/protocol.pdf?dl=0

TABLE II
PARTICIPANTS’ DEMOGRAPHIC CHARACTERISTICS

Educational level

Academic background

Bachelor’s degree 23.8% Computer engineering 35.7%
Master’s degree 57.2% Software engineering 28.6%
Doctoral degree 19.0% Information systems 11.9%
Organisational type Communication & networks 11.9%
Large company 38.1% Electrical engineering 7.1%
University & college 35.7% Other 4.8%
SME 16.7% Organisational role
Research institute 9.5% Software architect 28.6%
Country Researcher (ind. and acad.) 28.6%
Germany 33.3% Software developer 14.3%
India 19.0% Project manager 9.5%
Finland 14.3% Consultant and instructor 7.1%
Italy,France, Turkey,US (2p.) 19.0% Product owner 4.8%
Chile,Colombia,Mexico, 14.3% Senior manager (e.g., CTO) 4.8%
Netherlands,Russia,Spain(1p.) Other 2.3%

A. Demographic data of the respondents

Table II presents the participants’ background information,
including their educational level, academic background, or-
ganisational type, and organisational role. Based on responses
related to educational level, all participants had an academic
degree and more than half of them had a master’s degree.
Computer and software engineering were two main areas of
the participants’ academic education. The survey respondents
mostly worked at large companies, followed by universities
and colleges, small and medium-sized enterprises (SMEs),
and research institutes. The respondents were mostly soft-
ware architects, researchers (coming either from industry or
academia), and software developers. Germany had the most
participants in the survey.

Fig.3 presents the participants’ total work experience and
their experience in the software architecture domain. The re-
sults show that more than half of the respondents (52.4%) had
at least a decade of work experience. In addition, a large share
of participants (66.7%) had more than 4 years of experience in
software architecture. In a separate question, 66.7% of partic-
ipants declared that they had received “professional training”
related to software architecture engineering. We excluded all
participants without architecture design experience from the
survey.

28.6% 28.6%

26.2%

21.4%
16.7%
14.3%
9.5%
71%
48% I 4.8%
2.4
<1 1-3 4-6

o
7-10 11-20 21-30 >30

M Total work experience Software architecture experience

Fig. 3. Total and software architecture engineering work experience (in years)

Fig.4 shows the participants’ experience in the IoT, cloud
computing, and automotive domains. As we noted before, the

participants were more specialised in one area than in the other
two. For example, 68.4% of the participants with less than
one year of automotive experience had more than one year
of experience in the IoT, and 52.6% had more than one year
of experience in cloud computing. The convergence of these
areas is recent, and due to the rapid changes in ACPs, having
respondents with a diverse range of experience was expected.

45.2%

45.2%
38.1%
357%
31.0%

<1

M 10T domain experience

26.2%
16.7%

14.3%
11.9%)
E
48% 4.8%

Cloud computing domain exp L]

%

48%

24%.

>10

ive domain exp

Fig. 4. Years of experience in IoT, cloud computing, and automotive areas

B. RQI. What architectural design styles are used in ACPs to
fulfil quality attributes?

This question attempts to present a wide range of architec-
tural design styles relevant to QAs in ACPs. For this purpose,
we collected a list of design styles from previous literature
(e.g., [34], [43], [44]). A follow-up (free-text) question col-
lected additional relevant styles from the participants.

According to a five-point Likert scale, event-driven was
selected as the most applicable architectural style in terms of
QAs in ACPs. The next applied design styles were service-
oriented architecture (SOA), multi-layered architecture, and
client-server architecture, followed by pipeline and microser-
vice styles. In an open follow-up question, Lambda and mes-
sage bus architecture were suggested by two respondents. Fig.5
presents a spectrum of architectural design styles, through
which hybrid and slightly varied design styles are often
expected to meet various scenario in the ACPs.

B Absolutely applicable Applicable Neutral Inapplicable W Absolutely Inapplicable lam not sure

10% 7%

2%
10%
38% 14%

12%
2%

14y 10%
2%

14%

5%

14%
2%

17%
2%

17%
29%

19% 19%
31%
2%

10%

21%
29% 339
12% 2%

14%

19%

14% 5%

14%

] A 26% 17%
38% 14%

5%
36%

29%

38%

19% 17%

26% a9,

PL//@ €, n
@”Ir

45%

36%

<, “;
@/: ’7'/5@ K Y g g

e, 615
T,
£

o,,s

kS
€
Ve, o .
"
® S
2 (o3 6,

R
G'Bo/
6.

1y, o
% O
%5@

”

o, U % g, &2
ey ooy o Y
ooy K3

o
Fig. 5. The survey results on architectural design styles

1) Selection criteria for design styles: Fig.6 shows that
more than half of the participants selected functional re-
quirements (61.9%) and domain-specific QAs (59.5%) as the

most important criteria when selecting design styles in ACPs.
Although there are distinct QAs and functional requirements
in ACPs, we could not distinguish different preferences for
selection criteria from other IoT cloud platforms.

Functional requirements I 1o

Quality attributes I 5057
Technological constraints NN 45.2%
Operating constraints 35.7%
Economic constraints 33.3%

Organisational constraints 21.4%

Fig. 6. The survey results on design style selection criteria

C. RQ2. What are the important quality attributes in ACPs?

Fig.7 shows a list of QAs that were collected from previous
literature (e.g., [35]). A follow-up (free-text) question collected
other relevant QAs. Although QAs are a broad topic for
one question, the findings could be valuable for the selection
of design styles and cloud technologies that improve QAs.
Participants rated different QAs according to their importance
(in a range from 1 as the least important to 10 as the most
important) when designing the architecture for ACPs. We used
these rates to calculate the weighted arithmetic mean () for
each QA. The responses where participants selected “I am
not sure” were assigned a weight of zero. According to our
calculation, availability (x 6.7) was the most important
QA, followed by reliability (x 6.5), security (x = 6.3),
scalability (z 6.0), and interoperability (z 6.0). In
the follow-up question, privacy, testability, compatibility, and
flexibility were noted by participants as additional important
QAs. Selecting important QAs does not necessarily mean that
other QAs are redundant.

m10 m9 8 7 6 5 4 3 2 ml H|am not sure
!]])
B B B B & 8B 5 B B B B & QLB ER 10
2.8% 2.4% | 24% 2.4% 24% 24% | 24% 4.8% | 2.4%
- 2.4% 2.4% 24% 24% 8 -
24% W o, 2% g 24% 2.4% -
14.3% 95% 19.0% 95% 4.8% 143% 24% 28% 119% gy
19.0% 2.4% 9.5% 4.8% 4.8%
2.4% 2.4% 14.3%17.9% 12006 7 2.4%
14.3% 2.4% 1 71% 11.9%
9.5% 1B 9.5% .
16.7% 19.0% 9.5% 2.4% 2.4% 14.3%
5 9.5% 4.8% :
11.9% B 11.9%
21.4% 9.5% -
14.3% 9.5% 14.3% 143% 4.8%
19.0% 14.3% 16.7%
11.9% 26.2%
. 109% 21.4%
20.4% 119% 21.4%
167% 286%
2 167% 16.7%
1i 26.2%
11.9% 11.9%
183%
ol 18.3%
2
o 3 1
2|
1
4 1]
Ay Rey, ecy, oy, Re, Sote, M, Mo, Mo, Og Ao, Mo, M,
Uy, i, /%/,/,V Uy, Yoty iy, 0p, ;/ tn, ’% Ditey. "6///,‘, %/% sag, iy Py, b %%n ”fe*, oy %a é// ”61;/,,’ 7

i,

Mesg

«//,

b,/,

Fig. 7. The survey results on distribution frequency of QAs

1) Evaluation of ACPs with respect to QAs: We asked the
participants which methodologies should be used to assess
whether designed architectures meet the QAs in ACPs. A
large share of respondents (42.9%) declared testing as a
suitable approach, as it can be conducted at different levels.

Examples of testing include automated test-benches, stress
tests (for performance-related attributes), hardware-in-the-loop
(HIL) and software-in-the-loop (SIL) testing, controlled and
live test suites, and user acceptance tests. Table III lists other
evaluation methodologies noted by the participants.

TABLE III
EVALUATION METHODS IN ACPS WITH RESPECT TO QAS

Evaluation approach Frequency
Testing and design validation 42.9%
User feedback monitoring 16.7%
Empirical studies (i.e., case studies and experiments) 11.9%
Simulation 9.5%
Evaluation according to functional requirements 7.1%
Statistical and mathematical (formal) methods 7.1%
Expert judgement 4.8%
Using software metrics approaches (e.g., the goal ques- 2.4%

tion metric [GQM])

D. RQ3. What architecture evaluation methods are applied in
ACPs?

We collected a few architecture evaluation methods from the
literature (e.g., [36]) and asked the participants to add other
relevant methodologies in an open follow-up question. Fig.8
shows that among various methods, active reviews from in-
termediate design (ARID) and the scenario-based architecture
analysis method (SAAM) were applied the most in ACPs.

Additionally, we asked the participants about architecture
evaluation challenges, as the availability and quality of archi-
tecture reviewers were reported by them (28.6 %) as major
challenges in ACPs. A few participants (16.7%) reported
that evaluation methodologies are not well-adapted with agile
methodologies and that they are often time-consuming. They
noted that it is challenging to verify that enough information
to make architectural decisions has been collected, thus in-
curring technical debt left in the platforms (e.g., estimating
performance in real scenarios with unknown technologies and
complex analytics models). Finally, difficulties in evaluating
and comparing other architecture design alternatives were
reported by a few participants (7.1%).

m Absolutely appropriate M Appropriate Neutral Inappropriate M Absolutely inappropriate | am not sure

17% 17%
i 28%
3
17% 44% 2%
19% 3%
19%
19% 3% 11%
11%
17%
56%
o 39%
56%
42%

Active reviews from Scenario-based
intermediate design architecture analysis
method (SAAM)

Simple analysis by the Architecture tradeoff Cost-benefit analysis
architecture analysis method method (CBAM)
designer(s) (ATAM)

Fig. 8. The survey results on software architecture evaluation methods

V. DISCUSSION

1) Participants’ demographic information: The results re-
flect a wide range of academic background and experience

from participants. It shows that the software architecture of
ACPs is an attractive topic for researchers from different
educational or working backgrounds. We excluded participants
without architecture design experience to create a viable
snapshot of ACPs architecture knowledge. The good bal-
ance achieved between industrial practitioners (54.8%) and
academic researchers (45.2%) meant that both scientific and
practical knowledge were included in our findings.

2) Architectural design decisions vs. scenarios in ACPs:
The results of this survey support the extensible architecture
design decisions in ACPs to accommodate changes based
on different scenarios. As shown in Section IV, we have a
spectrum of different styles, QAs, and evaluation methods.
This result indicates that we cannot select an optimum combi-
nation of design decision alternatives in ACPs and architects
should apply different design styles with respect to QAs
and functional requirements in ACP scenarios (see Fig.6). In
addition, design decision alternatives dynamically change to
reflect the new quality requirements that evolve in ACPs. A
study [45] noted that we can rely on the feedback from the
architecture evaluation to prioritise and create a new list of
design decisions.

3) Inter-dependencies among design decisions: The sur-
vey results show inter-dependencies among different design
decisions in ACPs. Loosely-coupled and distributed software
components and services in ACPs can justify the selection of
event-driven (as the first style selected) and client-server (as
the fourth style selected). Event-driven architectures enable
event processing between highly distributed services [46] in
the cloud and vehicles. In addition, the survey results indicate
that the first five major QAs selected in ACPs include avail-
ability, reliability, security, scalability, and interoperability.
Previous studies [20], [47] emphasised the relation between
these QAs and design styles such as SOA, multi-layered, and
microservices. This justifies the participants’ selection of SOA
as the second, multi-layered as the third, and microservices as
the sixth design styles to address major QAs in ACPs context.

ARID and the SAAM were the most applied architecture
evaluation methods among the participants. The survey partic-
ipants mentioned that ARID is used to review the viability of
the design strategies. They also declared that the ACPs is a
recent and emerging topic and when using the SAAM, often,
only a few scenarios are described in detail; thus, concerns
remain about whether the architecture is representative of all
sort of expected or unexpected scenarios.

4) Emerging new QAs in ACPs: Previous research [30]
discussed emerging QAs in ACPs compared to other [oT cloud
platforms. For example, security concerns such as spoofing
user identity, tampering, and repudiation are a recent topic and
are addressed through architectures of ACPs to avoid security
issues that lead to safety and privacy issues. The relation
between security and design styles such as multi-layered,
client-server, and microservices was noted before [48], [49].
Our survey results also emphasised the importance of security
(as the third QA selected) in ACPs and its relevant design
styles (the third, fourth, and sixth styles selected).

Scalability is a challenge in ACPs when handling a dy-
namically changing number of vehicles and devices caused
by various traffic situations. Availability and reliability are
other QAs highlighted in our survey results for the critical
scenarios such as when vehicles leave the network coverage.
Design styles often provide helps on how to solve most of the
quality challenges but can be incomplete or ambiguous [50].

5) Future studies: The large number and variety of QAs
and design styles in the context of ACPs is an interesting
observation from our survey. Researchers could explore other
aspects of architecture design in ACPs, such as architectural
activities and notation languages. It would also be interesting
to conduct an in-depth analysis of how to apply design styles
in terms of QAs in ACPs. Real-time architecture evaluation
methods for reliability and performance of the ACPs have to
be further investigated.

A. Threats to validity

There are potential threats to the validity of this research
that could bias the results [51]. This section elaborates on
the strategies used to minimise the impacts of those threats
according to the guidelines presented by Wohlin et al. [52].

1) Internal validity: There was no causal relationship be-
tween the variables and outcome of the survey, and the internal
validity threats were not discussed.

2) Construct validity: Second category of threat concerns
whether the survey constructs were designed correctly. In
order to construct the survey instrument, the authors conducted
multiple rounds of pilot studies to explore how different
participants interpreted the questions and terms used in the
survey. The feedback from the pilot studies were implemented
to improve and adapt the survey according to the terms that
were understandable in both industry and academia.

We provided several examples and guides (as web links)
for the questions in the survey instrument. The intention was
to help the respondents to better understand the questions and
reduce the discrepancy between the authors’ and respondents’
mind-sets.

The survey protocol was reviewed by all authors and
discussed in joint meetings. This reduced the conflicts of
understanding between the authors and mitigated the risk of
an unclear survey design and irrelevant questions.

Another concern about surveys is that the questions may not
be truthfully answered by the respondents. There are reasons
for this phenomenon, such as closed questions that reduce
the participants’ liberty in making responses. To mitigate this
threat, each closed question was followed by either an open
follow-up question or an “other” option where respondents
could add extra inputs. We also made the responses anony-
mous and assured the respondents about the confidentiality
of the survey by informing them about the use of a trusted
survey hosting service. The survey clarified that individual
results would not be published.

3) External validity: This survey adopted a convenience
sampling method, which may have increased the risk that the
sample did not reflect the whole population. Therefore, we

did not limit the survey participants to our personal contacts.
Instead, the authors shared the link in different IoT, cloud,
and automotive software communities, at software engineering
conferences, and with relevant EU projects. In addition, we
defined criteria to only include valid responses into the survey
results. This ensured that the final pool was randomly selected
and comprised relevant backgrounds in the context of ACPs.

4) Reliability: A potential threat to the validity of the
research results was related to the researchers’ bias in the
extraction and interpretation of the survey data. To minimise
the effects of this threat, a data extraction form was created
in Microsoft Excel to generate valid categories from the
responses to the open questions. The form was reviewed and
analysed by two authors.

The survey results are based on 42 valid responses that
were selected based on our inclusion criteria. Our experience
from similar surveys (i.e., [53], [54]) indicated that the current
number of participants was sufficient for the reliability of the
results and generalisability of the conclusion. Nevertheless,
future studies could improve the credibility of the results
with other complementing methodologies, such as expert
interviews.

VI. CONCLUSION

ACPs have received increasing attention from research
and industrial communities. To capture existing architectural
design knowledge and experience in ACPs, we distributed
an online survey on design styles, QAs, and architecture
evaluation methods for ACPs. We collected 42 valid responses
that were further analysed.

Our findings showed that the participants consider major
QAs in the context of ACPs such as high availability, reliabil-
ity, scalability, and interoperability to apply the relevant design
styles (i.e., event-driven and SOA). ARID is applied before a
comprehensive architecture evaluation, while the SAAM is to
review the sets of QAs in the form of scenarios in ACPs.

The survey results are valuable for both ACP’s researchers
and practitioners as the investigation of design styles in terms
of QAs is also concerned about specific design contexts.

REFERENCES

[1] S. K. Datta, M. 1. Khan, L. Codeca, B. Denis, J. Hirri, and C. Bonnet,
“Iot and microservices based testbed for connected car services,” in 2018
IEEE 19th Int. Symp. on” A World of Wireless, Mobile and Multimedia
Networks”(WoWMoM). 1EEE, 2018, pp. 14-19.

[2] B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma, “Cloud
computing for internet of things & sensing based applications,” in
Sensing Technology (ICST), 2012 6th Int. Conf. on. IEEE, 2012, pp.
374-380.

[3] S. K. Datta, R. P. F. Da Costa, J. Hérri, and C. Bonnet, “Integrating
connected vehicles in internet of things ecosystems: Challenges and
solutions,” in World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2016 IEEE 17th Int. Symp. on. IEEE, 2016, pp. 1-6.

[4] S. K. Datta, J. Haerri, C. Bonnet, and R. F. Da Costa, “Vehicles as
connected resources: Opportunities and challenges for the future,” IEEE
Veh. Technology Mag., vol. 12, no. 2, pp. 26-35, 2017.

[5] M.S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls,
O. Keils, and F. Schreiner, “A service orchestration architecture for fog-
enabled infrastructures,” in 2017 Second International Conference on
Fog and Mobile Edge Computing (FMEC). 1EEE, 2017, pp. 127-132.

[6]

[7]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services
in the iot environment,” IEEE Trans. on Ind. Informatics, vol. 10, no. 2,
pp. 1587-1595, 2014.

S. Frey, L. Charissis, and J. Nahm, “How software architects drive
connected vehicles,” IEEE Software, vol. 33, no. 6, pp. 41-47, 2016.
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Pearson Education, 2013.

P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. 1EEE Computer Society
Press, 2014.

A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software
engineering for automotive systems: A roadmap,” in 2007 Future of
Software Eng. FOSE "07. Washington, DC, USA: IEEE Comput. Soc.,
2007, pp. 55-71.

J. Contreras, S. Zeadally, and J. A. Guerrero-Ibanez, “Internet of
vehicles: Architecture, protocols, and security,” IEEE Internet of Things
Journal, 2017.

“Bmw and ibm team up for cloud-connected cardata network,”
Available: https://www.ibm.com/blogs/cloud-computing/2017/06/16/
bmw-ibm-cloud-cardata/.

F. Svahn, L. Mathiassen, and R. Lindgren, “Embracing digital innovation
in incumbent firms: How volvo cars managed competing concerns.” Mis
Quarterly, vol. 41, no. 1, 2017.

J. Wang, J. Cho, S. Lee, and T. Ma, “Real time services for future cloud
computing enabled vehicle networks,” in Wireless Comm. and Signal
Processing (WCSP), 2011 Int. Conf. on. IEEE, 2011, pp. 1-5.

J. Wan, D. Zhang, S. Zhao, L. Yang, and J. Lloret, “Context-aware vehic-
ular cyber-physical systems with cloud support: Architecture, challenges,
and solutions,” IEEE Comm. Mag., vol. 52, no. 8, pp. 106113, 2014.
R. Mietzner, F. Leymann, and T. Unger, “Horizontal and vertical
combination of multi-tenancy patterns in service-oriented applications,”
Enterprise Inform. Syst., vol. 5, no. 1, pp. 59-77, 2011.

M. Yang, M. Mahmood, X. Zhou, S. Shafaq, and L. Zahid, “Design and
implementation of cloud platform for intelligent logistics in the trend of
intellectualization,” China Comm., vol. 14, no. 10, pp. 180-191, 2017.
D. Serrano, T. Baldassarre, and E. Stroulia, ‘“Real-time traffic-based
routing, based on open data and open-source software,” in Internet of
Things (WF-10oT), 2016 IEEE 3rd World Forum on. IEEE, 2016, pp.
661-665.

J. Fiosina, M. Fiosins, and J. P. Miiller, “Big data processing and mining
for next generation intelligent transportation systems,” Jurnal Teknologi,
vol. 63, no. 3, pp. 23-38, 2013.

L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-
oriented architectures,” in Proc. of the Int. Workshop on Systems
Development in SOA Environments. 1EEE Comput. Soc., 2007, p. 3.
C. Wohlin, M. Host, and K. Henningsson, “Empirical research methods
in software engineering,” in Empirical Methods and Studies in Software
eng. Springer, 2003, pp. 7-23.

M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, “Practical
experiences in the design and conduct of surveys in empirical soft-
ware engineering,” in Empirical Methods and Studies in Software eng.
Springer, 2003, pp. 104-128.

S. L. Pfleeger and B. A. Kitchenham, “Principles of survey research,
part 1: Turning lemons into lemonade,” ACM SIGSOFT Software Eng.
Notes, vol. 26, no. 6, pp. 16-18, 2001.

ISO/IEC:42010, “Systems and software engineering - recommended
practice for architectural description of software-intensive systems,”
ISO/IEC Standard, 2011.

N. Medvidovic and R. N. Taylor, “Software architecture: Foundations,
theory, and practice,” in Software Eng., 2010 ACM/IEEE 32nd Int. Conf.
on, vol. 2. 1EEE, 2010, pp. 471-472.

N. Rozanski and E. Woods, Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives. Addison-Wesley,
2011.

D. E. Gray, Doing Research in the Real World. Sage, 2013.

B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in
Guide to advanced empirical software eng. Springer, 2008, pp. 63-92.
T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engi-
neers: Data collection techniques for software field studies,” Empirical
Software Eng., vol. 10, no. 3, pp. 311-341, 2005.

A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: A survey,” Future Generation
Comput. Systems, vol. 56, pp. 684-700, 2016.

(32]

[33]

[34]

[35]

[36]

[37]
[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-line
surveys in software engineering,” in Proc. of the 2003 Int. Symp. on
Empirical Software Eng. (ISESE 2003). 1EEE, 2003, pp. 80-88.

R. M. Groves, F. J. Fowler Jr, M. P. Couper, J. M. Lepkowski, E. Singer,
and R. Tourangeau, Survey methodology. John Wiley & Sons, 2011,
vol. 561.

T. R. Lunsford and B. R. Lunsford, “The research sample, part i:
Sampling,” JPO, vol. 7, no. 3, p. 17A, 1995.

E. Cavalcante, J. Pereira, M. P. Alves, P. Maia, R. Moura, T. Batista,
F. C. Delicato, and P. F. Pires, “On the interplay of internet of things
and cloud computing: A systematic mapping study,” Comput. Comm.,
vol. 89, pp. 17-33, 2016.

ISO/IEC:25010, “Systems and software engineering-systems and soft-
ware quality requirements and evaluation (square)-system and software
quality models,” ISO/IEC Standard, 2011.

L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Trans. on software Eng., vol. 28, no. 7, pp. 638-653,
2002.

B. C. Choi and A. W. Pak, “Peer reviewed: a catalog of biases in
questionnaires,” Preventing chronic disease, vol. 2, no. 1, 2005.

L. A. Goodman, “Snowball sampling,” The annals of mathematical
statistics, pp. 148-170, 1961.

B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research,
part 2: Designing a survey,” Software Eng. Notes, vol. 27, no. 1, pp.
18-20, 2002.

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software en-
gineering research: a critical review and guidelines,” in 2016 IEEE/ACM
38th Int. Conf. on Software Eng. (ICSE). 1EEE, 2016, pp. 120-131.
S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study
the experience of software development,” Empirical Software Eng.,
vol. 16, no. 4, pp. 487-513, 2011.

B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research,
part 3: Constructing a survey instrument,” ACM SIGSOFT Software Eng.
Notes, vol. 27, no. 2, pp. 20-24, 2002.

E. Croes and J.-H. Hoepman, “Software architectural styles in the
internet of things,” Radboud University Nijmegen, 2015.

E. Majidi, M. Alemi, and H. Rashidi, “Software architecture: A survey
and classification,” in 2010 2nd Int. Conf. on Comm. Software and
Networks. 1EEE, 2010, pp. 454—460.

A. Koziolek, “Research preview: Prioritizing quality requirements based
on software architecture evaluation feedback,” in Int. Working Conf. on
Requirements Eng.: Foundation for Software Quality. Springer, 2012,
pp. 52-58.

B. M. Michelson, “Event-driven architecture overview,” Patricia Seybold
Group, vol. 2, no. 12, pp. 10-1571, 2006.

L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

T. Bi, P. Liang, and A. Tang, “Architecture patterns, quality attributes,
and design contexts: How developers design with them?” in Proceedings
of the 25th Asia-Pacific Software Engineering Conference (APSEC),
Nara, Japan, 2018, pp. 49-58.

Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for
microservices-based cloud applications,” in 2015 IEEE 7th Int. Conf.
on Cloud Computing Technology and Sci. (CloudCom). 1EEE, 2015,
pp- 50-57.

T. Héberle, L. Charissis, C. Fehling, J. Nahm, and F. Leymann, “The
connected car in the cloud: a platform for prototyping telematics
services,” IEEE Software, vol. 32, no. 6, pp. 11-17, 2015.

B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research,
part 6: Data analysis,” ACM SIGSOFT Software Eng. Notes, vol. 28,
no. 2, pp. 24-27, 2003.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science & Business Media, 2012.

D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “A survey on quality
attributes in service-based systems,” Software quality journal, vol. 24,
no. 2, pp. 271-299, 2016.

Z. Durdik and R. Reussner, “On the appropriate rationale for using
design patterns and pattern documentation,” in Proc. of the 9th Int. ACM
Sigsoft conf. on Quality of software architectures. ~ACM, 2013, pp.
107-116.

