
Regularity or Anomaly? On The Use of Anomaly
Detection for Fine-Grained JIT Defect Prediction

Francesco Lomio,1 Luca Pascarella,2 Fabio Palomba,3 Valentina Lenarduzzi4
1Tampere University — 2Università della Svizzera Italiana — 3University of Salerno — 4University of Oulu

francesco.lomio@tuni.fi; luca.pascarella@usi.ch; fpalomba@unisa.it; valentina.lenarduzzi@oulu.fi

Abstract—Fine-grained just-in-time defect prediction aims at
identifying likely defective files within new commits. Popular
techniques are based on supervised learning, where machine
learning algorithms are fed with historical data. One of the
limitations of these techniques is concerned with the use of
imbalanced data that only contain a few defective samples to
enable a proper learning phase. To overcome this problem, recent
work has shown that anomaly detection can be used as an
alternative. With our study, we aim at assessing how anomaly
detection can be employed for the problem of fine-grained just-in-
time defect prediction. We conduct an empirical investigation on
32 open-source projects, designing and evaluating three anomaly
detection methods for fine-grained just-in-time defect prediction.
Our results do not show significant advantages that justify the
benefit of anomaly detection over machine learning approaches.

Index Terms—Defect Prediction, Anomaly Detection, Empiri-
cal Software Engineering, Software Evolution.

I. INTRODUCTION

Throughout the software lifecycle, developers eventually
introduce defects as a consequence of development activities.
Therefore, researchers have proposed methods to identify
source code showing characteristics indicating the proneness
to be defective, such as static analysis techniques, code smell
detection methods, and more (1). One of the most timely
practices to deal with software defects is called fine-grained
just-in-time defect prediction (2).

In this context, most of the existing work has studied just-in-
time defect prediction under different perspectives: researchers
have indeed worked on (i) the definition of suitable predictors
to use when feeding machine learning algorithms (3), (ii) the
optimization of the training strategies (4), (iii) the correct esti-
mation of the nature of defects (5), and (iv) the configuration
of machine learning algorithms (6). Recently, Pascarella et
al. (2) proposed to lower the granularity of just-in-time defect
prediction so that the recommendations given can indicate the
files within commits that are likely to be defective.

Anomaly detection, a.k.a., outlier detection (7), is the field
of machine learning that concerns with the identification of
rare items that raise suspicions by differing significantly from
the majority of the data. As recently shown (8), anomaly
detection can represent a promising alternative to standard
supervised machine learning models when it comes to defect
prediction, especially because they do not necessarily require
to be trained and, for this reason, do not risk to learn from
imbalanced data sets. Indeed, in such a formulation defects are

seen as rare events that appear during the development, while
the task of defect predictors is to mine time series representing
the evolution of source code properties over time and learn
which of these properties deviate from the normal behavior,
indicating the presence of defective source code.

In this paper, we propose the first investigation to eval-
uate the performance of anomaly detection methods for
fine-grained just-in-time defect prediction. In particular, we
conduct an empirical investigation involving 32 open-source
projects with a total amount of 61,081 commits where the
percentage of defective files is around 34%, overall (9). We
experiment with three anomaly detection techniques for fine-
grained just-in-time defect prediction, i.e., ONE CLASS SVM,
ISOLATION FOREST, and LOCAL OUTLIER FACTOR. We as-
sess these methods and compare them with three baseline fine-
grained just-in-time supervised learning models. We report
a negative result. However, we discover a complementarity
between anomaly detection and machine learning methods,
with the former having higher capabilities on unbalanced
datasets and the latter on more defective projects.

II. RESEARCH METHODOLOGY

The goal of the empirical study was to assess the perfor-
mance of anomaly detection methods when employed for the
task of fine-grained just-in-time defect prediction, with the
purpose of understanding how they compare with traditional
approaches based on machine learning.

Hence, we formulate our RQ: How do anomaly detection
methods compare to existing supervised learning techniques?

Context of the Study. We exploited the Technical Debt
Dataset (10), which is a set of data coming from 32 Java
projects mostly pertaining to the APACHE SOFTWARE FOUN-
DATION project. The projects summed up to 64,320 commits.
Nevertheless, we observed that some of them were unreason-
ably large, e.g., up to 4,715 files modified within a single
commit. As reported by Hattori and Lanza (11), this is a typical
situation in open source, where some commits pervasively
modify the status of the repository as a consequence of
changes connected to licenses (12) or code style (e.g., space
versus tabular indentation of the code) (13). As pointed out
by previous work (14), those commits might negatively bias
the interpretability of automated methods. Therefore, we only
retained the commits that appeared in the 95-percentile of the
distribution of files in all commits—the threshold was selected
based on the recommendations given by Alabi et al. (14). This



filtering procedure removed 3,239 commits and, therefore, our
analyses were based on a total amount of 61,081 code changes.

Collecting Fine-Grained Information on Software De-
fects. We employed a similar methodology as done by Pas-
carella et al. (2). We first identified the so-called defect-fixing
commits by looking at the information available on the JIRA
issue tracker of the projects. and by mining commits whose
messages explicitly report a fix operation. The union of the
commits identified using the two procedures represented our
final set of defect-fixing commits and contained the full list
of files that we needed to trace back to the point in time
in which they were made defective. As done in the reference
work (2), we considered defect-inducing only those files which
modified lines are the actual source of defects and discarded
the remaining files whose changes are not involved in fixes. We
are aware of the criticisms made with respect to the accuracy
of SZZ (5). To limit the amount of false positives given by
the algorithm, we have applied some adjustments. In the first
place, we (i) ignored non-source code files belonging to defect-
fixing commits, (ii) filtered out the defect-inducing commits
that appeared as merge commits, and (iii) carefully considered
the literature on the adoption of SZZ and decided not to opt
for variants of the algorithms that take into account specific
conditions (e.g., appearance of refactoring operations (15)).

Collecting Fine-Grained Software Metrics. We consid-
ered the same metrics as the baseline fine-grained model
proposed by Pascarella et al. (2). This choice allowed us to (i)
rely on an established set of independent variables previously
validated in the context of fine-grained just-in-time defect
prediction and (ii) have a fair comparison between the results
achieved through anomaly detection methods and those of
machine learning models. For the sake of space limitations,
we report those metrics in our online appendix (9). Although
Pascarella et al.(2) provided a publicly accessible appendix
containing the scripts used to compute the metrics, we needed
to slightly adjust them to fix a runtime issue caused by
an outdated API. The revised tool systematically collected
the metrics for each file of each commit belonging to the
considered projects. In so doing, the tool (1) started collecting
new metrics as soon as a new file Fi was added to a repository,
(2) updated the metrics of Fi whenever a commit modified it,
(3) kept track of possible file renaming by relying on the GIT
internal rename heuristic and subsequently updating the name
of Fi, and (4) removed Fi in the case it was deleted.

Setting the Anomaly Detection Models. In the context of
our study, we focused on three models such as OneClassSVM,
IsolationForest, and LocalOutlierFactor. The reason behind
the selection of these methods was twofold. On the one hand,
each of them is based on a different class of algorithms, hence
allowing us to provide a wider overview of how anomaly
detection can be applied to the problem of fine-grained just-
in-time defect prediction. On the other hand, these methods
are among the most stable and reliable ones (7), other than
being commonly used in multiple environments (16), including
software maintenance and evolution (17).

Data Analysis. We opted for a Leave One Group Out

(LOGO) validation strategy that trains n models, with n the
number of groups (projects in our case) in the data. For each
fold, n − 1 groups are used for training, and 1 for testing.
For this work, we used 31 projects at the time as training
set and 1 project as test set. This process was repeated 32
times, so that all the projects in the dataset were in the
test set exactly once. It is important to highlight that doing
this, the commit of a project cannot be split between train
and test set. This constraint avoided possible bias due to
the time-sensitive nature of code commits. With respect to
other strategies (e.g., Out-of-sample bootstrap validation), it
is among the easiest to interpret (18), hence perfectly fitting
the goal of our exploratory analysis. Moreover, the LOGO
validation represents a good compromise between the bias and
variance of estimates of defect prediction models (19), thus
further strengthening its suitability for our case.

III. RESULTS AND FURTHER ANALYSES

Figures 1 depicts box plots reporting the distribution of
AUC-ROC obtained value. The first three box plots refer
to the machine learning approaches, while the last three to
the anomaly detection ones. Note that for the sake of space
limitation, we only report the AUC-ROC, while the full results
are included in our replication package (9). Looking at the
results, we could first observe that the anomaly detection
methods, i.e., IF, OSCVM, and LOF have a similar AUC-
ROC, with values around 0.5. This indicates an overall low
ability of these methods to distinguish between defective
and non-defective files. The machine learning models, i.e.,
EXTRATREES, SVM, and KNN, were instead generally more
performing. This is particularly true when considering EX-
TRATREES: this is the classifier that reached the best AUC-
ROC values (median=0.71). The only exception concerned the
performance of SVM, which were notably lower with respect
to all other experimented methods.

On the one hand, our findings confirm that the choice
of classifiers can significantly influence the performance of
defect prediction models: with respect to previous work, we
show that this is true also in the case of fine-grained just-
in-time defect prediction. On the other hand, the relatively
low values achieved by the experimented anomaly detection
methods seem to highlight a negative result: these are not
only unable to provide benefits in terms of AUC-ROC, but
also have significantly lower performance with respect to
traditional machine learning models. This was confirmed by
the statistical tests we performed. In particular, we run the
Mann-Whitney and Cliff’s d tests to compare the mean of the
distributions of AUC-ROC values and discovered that all the
anomaly detection methods perform statistically worse than
EXTRATREES and KNN, with large effect sizes. Results could
not confirm the promising preliminary results achieved by
researchers that applied anomaly detection to higher-level de-
fect prediction problems. Nonetheless, this might be explained
by the peculiarities of the dataset considered as well as the
variability in terms of defects.



Discussion. Our results do not really come as a surprise:
in a real-case scenario, there exist projects having different
levels of defectiveness and, thus, it is reasonable to believe that
anomaly detection methods might work well when considering
projects with a low defectiveness, suffering instead in the
opposite case. Our empirical study depicts a typical scenario
observable in the wild: some projects reach up to 49% of
defective files during their change history, others have instead
a notably lower defectiveness, i.e., 15%.

To investigate the above mentioned conjecture and fur-
ther understand the capabilities of anomaly detection for
fine-grained just-in-time defect prediction, we conducted
an additional analysis aiming at assessing its performance
when considering datasets of various levels of defective-
ness. Specifically, we re-executed the methodology, but this
time on two smaller datasets: (1) the first composed of
the three projects having the lowest percentage of defective
files, i.e., COMMONDS-DBUTILS, COMMONS-DAEMON, and
COMMONS-BCEL; (2) the second composed of the three
projects with the highest amount of defective files, i.e., AU-
RORA, ACCUMULO, and ATLAS. In this way, we could actually
consider two extreme cases and verify if the performance of
anomaly detection are higher than the baselines in the first
case and lower in the second.

In both cases, the LOGO validation was performed so
that two projects formed the training set and the remaining
one the test set—as previously done, the validation was
repeated three times to have each project in the test set
exactly once. Figures 2 depicts the results: to ease their
interpretability, the figure reports the box plots of the AUC-
ROC values related to the performance of anomaly detection
methods and machine learning models on (1) the dataset
only composed of projects with low defectiveness; (2) the
dataset only composed of projects with high defectiveness;
and (3) the full dataset, i.e., the results presented in Sec-
tion III. The additional analysis confirmed our intuition. The
anomaly detection methods experimented, and in particular
LOF, overcome the baseline machine learning models when
considering the low-defectiveness dataset. In terms of F-
Measure, the differences are pretty evident (up to 23%) as
also confirmed by the statistical tests that reported them to be
statistically significant with a large effect size. Interestingly,
also the performance of the EXTRATREES learner—which was
the best on the full dataset—decreased significantly, showing
its limitations when dealing with unbalanced data. To make
a more practical sense to the discussion, we also computed
the cumulative number of absolute defects identified by the
various techniques over the two smaller datasets—the full
results are available in our online appendix. We could observe
that the number of actual defects identified by the anomaly
detection techniques increases with the hardness of finding
those defects, i.e., with the decrease of the total number of
defects. For instance, LOF was able to identify 521 defects
more than EXTRATREES on the low-defectiveness dataset. On
the contrary, the machine learning models are confirmed to
be generally better on the high-defectiveness dataset. This is

particularly relevant when it turns to the assessment of the
AUC-ROC, where the EXTRATREES model is significantly
better than all other baselines. These findings allow us to report
a complementarity between anomaly detection and machine
learning approaches that would be worth investigating further
in the future. We believe that improvements in the field of
fine-grained just-in-time defect prediction might be reached
by means of combinations of multiple approaches: while some
previous work focused on ensemble machine learning (20), our
findings suggest that additional, potential enhancements may
revolve around the definition of context-dependent ensembles
of supervised and unsupervised learning mechanisms like
machine learning and anomaly detection.

ExtraTrees SVM KNN IF OCSVM LOF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
median
mean

ExtraTrees
SVM

KNN
IF

OCSVM
LOF

Fig. 1. AUC-ROC comparison comparison among anomaly detection and
supervised learning models for the filtered dataset

20% Defect 50% Defect Full dataset
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
median
mean

ExtraTrees
SVM

KNN
IF

OCSVM
LOF

Fig. 2. AUC-ROC comparison among anomaly detection and supervised
learning models on the filtered datasets.

IV. RELATED WORK

Although software defect prediction is one of the most
active research areas in software engineering, due to space
constraints, we focus only on works relevant to our subject
while for a full overview of defect prediction research, we
point to a recent literature review (1). Just-in-time defect
prediction refers to a class of techniques that can anticipate
the identification of defects at commit-time (21), rather than
predicting defects using a long-term approach that, instead,
shows prediction results at release-time (22). In the recent
past, researchers pushed for a shorter-term analysis of defects



since this better fits the developers’ needs (23): indeed, these
models allow developers to promptly react when changes
are still fresh in their minds (24). For example, Mockus
and Weiss (25) experimented with a preliminary model able
to predict failure probabilities at commit-level: taking the
properties of the change done by a developer as input, the
model reported prompt feedback that made developers more
able to operate on the code (25). Later on, Madeyski and
Kawalerowicz (26) elaborated on continuous defect prediction,
developing a public dataset containing tools for experimenting
with defect prediction techniques. Only two papers approached
defects as anomalies, applying anomaly detection techniques
as univariate and multivariate Gaussian distribution (27) or
supervised anomaly detection (28).

V. CONCLUSION

We proposed an investigation into the capabilities of
anomaly detection methods for fine-grained just-in-time defect
prediction. While the results achieved showed that anomaly
detection performed similarly to machine learning models,
we observed that the level of defectiveness of projects might
influence the capabilities of anomaly detection methods. After
a deeper investigation, we found a complementarity between
anomaly detection and machine learning techniques that might
be further exploited to create context-dependent predictors.

REFERENCES

[1] N. Li, M. Shepperd, and Y. Guo, “A systematic review
of unsupervised learning techniques for software defect
prediction,” Information and Software Tech., 2020.

[2] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-
grained just-in-time defect prediction,” Journal of Sys-
tems and Software, vol. 150, pp. 22–36, 2019.

[3] D. Di Nucci and et al., “A developer centered bug
prediction model,” IEEE Trans. on Software Eng., 2017.

[4] F. Pecorelli and D. Di Nucci, “Adaptive selection of
classifiers for bug prediction: A large-scale empirical
analysis of its performances and a benchmark study,”
Science of Computer Programming, vol. 205, 2021.

[5] G. Rosa and et al., “Evaluating szz implementations
through a developer-informed oracle,” in Int.Conference
on Software Engineering, 2021.

[6] C. Tantithamthavorn and et al., “The impact of automated
parameter optimization on defect prediction models,”
IEEE Trans. on Software Eng., vol. 45, 2018.

[7] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection: A survey,” ACM computing surveys, 2009.

[8] P. Afric, L. Sikic, A. S. Kurdija, and M. Silic, “Repd:
Source code defect prediction as anomaly detection,”
Journal of Systems and Software, vol. 168, 2020.

[9] “https://figshare.com/s/1459e02ef92c01d1a6b1.”
[10] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “The technical

debt dataset,” in Conference on PREdictive Models and
data analycs In Software Engineering, 2019, pp. 2 – 11.

[11] L. P. Hattori and M. Lanza, “On the nature of commits,”
in Int.Conference on Automated Software Engineering-
Workshops, 2008, pp. 63–71.

[12] J. Colazo and Y. Fang, “Impact of license choice on
open source software development activity,” Journal of
the American Society for Information Science and Tech-
nology, vol. 60, no. 5, pp. 997–1011, 2009.

[13] J. Bauer and et al., “Indentation: simply a matter of
style or support for program comprehension?” in Int.
Conference on Program Comprehension, 2019.

[14] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typi-
cal commit? a characterization of open source software
repositories,” in Int.conference on program comprehen-
sion, 2008, pp. 182–191.

[15] E. C. Neto, D. A. da Costa, and U. Kulesza, “Revisiting
and improving szz implementations,” in Symposium on
Empirical Software Engineering and Measurement, 2019.

[16] S. Agrawal and J. Agrawal, “Survey on anomaly detec-
tion using data mining techniques,” Procedia Computer
Science, vol. 60, 2015.

[17] S. D. Palma and et al., “Singling the odd ones out: a nov-
elty detection approach to find defects in infrastructure as
code,” in Int.Workshop on Machine-Learning Techniques
for Software-Quality Evaluation, 2020, pp. 31–36.

[18] B. Letham and et al., “Interpretable classifiers using rules
and bayesian analysis: Building a better stroke prediction
model,” Annals of Applied Statistics, vol. 9, 2015.

[19] C. Tantithamthavorn and et al., “An empirical comparison
of model validation techniques for defect prediction
models,” IEEE Trans. on Software Eng., 2016.

[20] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia,
“Dynamic selection of classifiers in bug prediction: An
adaptive method,” Transactions on Emerging Topics in
Computational Intelligence, 2017.

[21] Y. Fan and et al., “The impact of changes mislabeled by
szz on just-in-time defect prediction,” IEEE Trans. on
Software Eng., 2019.

[22] R. S. Wahono, “A systematic literature review of software
defect prediction,” Journal of Software Eng., 2015.

[23] L. Pascarella and et al., “Information needs in contem-
porary code review,” ACM on Human-Computer Interac-
tion, vol. 2, no. CSCW, pp. 1–27, 2018.

[24] Y. Yang and et al., “Effort-aware just-in-time defect pre-
diction: simple unsupervised models could be better than
supervised models,” in Int.symposium on foundations of
software engineering, 2016, pp. 157–168.

[25] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,” Bell Labs Technical Journal, vol. 5, 2000.

[26] L. Madeyski and M. Kawalerowicz, “Continuous de-
fect prediction: the idea and a related dataset,” in
Int.Conference on Mining Software Repositories, 2017,
pp. 515–518.

[27] K. N. Neela and et al., “Modeling software defects as
anomalies: A case study on promise repository.” JSW,
2017.

[28] P. Afric and et al., “Repd: Source code defect prediction
as anomaly detection,” Journal of Systems and Software,
vol. 168, 2020.

https://figshare.com/s/1459e02ef92c01d1a6b1

	Introduction
	Research Methodology
	Results and Further Analyses
	Related Work
	Conclusion

