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Abstract—Companies develop cloud-native systems deployed
on public and private clouds. Since private clouds have limited
resources, the systems should run efficiently by keeping perfor-
mance related anomalies under control. The goal of this work
is to understand whether a set of five performance-related KPIs
depends on the metrics collected at runtime by Kafka, Zookeeper,
and other tools (168 different metrics). We considered four
weeks worth of runtime data collected from a system running
in production. We trained eight Machine Learning algorithms
on three weeks worth of data and tested them on one week’s
worth of data to compare their prediction accuracy and their
training and testing time. It is possible to detect performance-
related anomalies with a very high level of accuracy (higher than
95% AUC) and with very limited training time (between 8 and
17 minutes). Machine Learning algorithms can help to identify
runtime anomalies and to detect them efficiently. Future work
will include the identification of a proactive approach to recognize
the root cause of the anomalies and to prevent them as early as
possible.

Index Terms—Anomaly Detection, Kafka metrics, Machine
Learning, Empirical Study

I. INTRODUCTION

In the past years it has become more common for com-
panies to develop large-scale projects using microservices.
This decision is usually driven by their benefits, including
increased maintainability of the systems, development and
deployment independence between teams, and many other
reasons. However, microservice–based systems have many
more moving parts compare to monolithic one. In such a
complex system, runtime failures are unavoidable [1] and must
be kept under control.

Such systems are commonly deployed on public and private
clouds. As private clouds often have limited resources, the
systems should always maintain an optimal level of perfor-
mance. For this specific work, we used Kafka, Zookeeper,
Prometheus and other tools to actively monitoring all the
services composing the systems. The monitoring tools collect
168 different metrics, including performance-related metrics,
hardware failures, and metrics related to the communication
between services, such as throughput and message lags.

Our goal is to understand whether it is possible to predict
anomalies from the different services composing the system
that can degrade their performance, so as to take actions
before it decreases significantly or before the system fails.
An anomaly can be defined as a rare event that occur in
an otherwise normal data, for example an anomalous usage
of the memory resources by some of the components of the
system [2]

In our case, the hardware usage has to be optimized for
our system. Services are usually running very closely to
the maximum hardware capacity, especially when running
on private cloud systems, therefore, predicting performance-
related metrics would enable to spot possible issues early
enough, so that healing mechanisms could be activated.

Different anomaly detection techniques have been proposed
in the literature. Data-driven techniques are based on the anal-
ysis of data collected at runtime [3], allowing researchers to
propose both supervised and unsupervised Machine Learning
(ML) techniques for anomaly detection. Supervised models
train the model under consideration of both normal and failing
execution data [4] [5], while unsupervised are based only on
normal execution time at the price of a reduced accuracy.

Besides accuracy, the time required by ML algorithms to
train must also be addressed [6]. Our system produces a huge
amount of data every day, and training the system on this data
could result in very high costs in terms of time and resources,
requiring to reduce the amount of data collected to the most
informative one [7].

In order to understand which ML technique might be most
suitable for our purpose, we compared eight different ML algo-
rithms that can be applied to our runtime data by training them
continuously (e.g., every week) to correctly predict anomalies
with the lowest training cost (in terms of time) possible. This
work will contribute to the body of knowledge of industrial
experience on anomaly detection, helping companies working
with cloud-native systems based on similar technologies as
well as researchers to understand how the different techniques
perform and to conduct empirical studies in industry.

II. EMPIRICAL STUDY DESIGN

The goal of this work is to analyze eight ML techniques with
respect to their performance-related anomaly detection accu-
racy, training and testing time, in the context of clout-native
systems. For this purpose, the following research questions
were derived:

RQ1. Is there a ML algorithm that can accurately detect
performance-related anomalies in cloud-native systems?

RQ2. Which ML algorithm can accurately detect
performance-related anomalies with the shortest training time?

RQ3. What are the most important metrics to be considered
when detecting performance-related anomalies?

RQ4. How many components are necessary to accurately
detect performance-related anomalies?

In order to answer our Q1 and Q2, we first needed to
identify a set of metrics that are symptoms of performance



anomalies. For this purpose, we identified five KPIs that we
consider fundamental in our system and whose thresholds
should never be exceeded.The five KPIs are reported in
Prometheus with a delay that ranges between two and five
seconds, corroborating the need to identify a prediction model
to detect possible performance-related metrics earlier than
when the metrics are shown in the system. The thresholds
used are the one proposed by Prometheus

Accuracy. To assess the detection accuracy of the different
ML algorithms, we performed a 10-fold cross-validation,
dividing the data into ten parts; i.e., we trained the models
ten times, always using 1/10 of the data as a testing fold.
As accuracy metrics, we first calculated precision and recall.
However, as suggested by [8], these two measures present
some biases as they are mainly focused on positive examples
and predictions and do not capture any information about the
rates and kinds of errors made. The contingency matrix and
the related f-measure help to overcome this issue. Moreover,
as recommended by Powers [8], the Matthews Correlation
Coefficient (MCC) should also be considered to understand
any potential disagreement between the actual values and the
predictions, as it involves all four quadrants of the contin-
gency matrix. Finally, we calculated the Receiver Operating
Characteristics (ROC) and the related Area Under the Receiver
Operating Characteristic Curve (AUC).

Training and Testing Time. Regarding this aspect, we
collected and compared the training and testing time (in
seconds) for each algorithm. The goal is to be able to select
one algorithm that can be trained with the shortest training
and with a high level of accuracy.

Context. Our system is composed of several microservices
running on top of Kubernetes and communicating using a
lightweight message bus (Apache Kafka1). The size of our
system requires multiple Kafka brokers and therefore the use
of Zookeeper to coordinate the different Kafka instances. We
collect different metrics from Kafka, Zookeeper, and from
other tools we installed to monitor our system.

Data Collection and Preparation. The monitoring systems
collect data every 60 seconds and store it in Prometheus. We
downloaded the data for four weeks, querying Prometheus
weekly from its APIs. The result is a csv file reporting the
different measures collected from the different instances of
the services with their related time stamps.

We labeled the data considering anomaly values for the
five metrics exceeding the default thresholds (Table ??). We
labeled the anomalies with a boolean value, where 1 represents
the data exceeding the threshold. Table ?? lists the five KPIs
we considered as variables in this analysis, together with their
respective thresholds, while the green points are normal values,
instead the red points are anomalous values.

The result of the data collection are five csv files, which we
used to train and test our ML algorithms.

Data Analysis. We applied the eight algorithms to ver-
ify whether there are dependencies between each dependent

1Apache Kafka https://kafka.apache.org. Accessed: June 2019.

variables based on the independent ones. Then we compared
their accuracy by means of the accuracy measures, (RQ1)
as well as their training and test time (RQ2). Moreover, in
order to understand which metric contributes more to anomaly
detection (RQ3), we also performed a Principal Component
Analysis (PCA) and applied the drop-column algorithm. Prin-
cipal component analysis is a statistical algorithm that reduces
data dimension while retaining most of the information by cre-
ating new components that summarize the data. Drop-column
mechanism2 is a simplified alternative of the exhaustive search
technique [9], which iteratively tests every subset of variables
for their classification performance.

III. RESULTS AND DISCUSSION

RQ1. All the accuracy measures adopted reported consistent
results. We adopted the Receiver Operating Characteristics
(ROC) and the related Area Under the Receiver Operating
Characteristic Curve (AUC) for comparing the accuracy of
the different models. For reasons of space, we only report
results for AUC. Only three variables can be predicted with
an accuracy (AUC) higher than 90%, while two variables can
be predicted with an accuracy (AUC) higher than 80%. The
AUCs for each model and variable are reported in Table I.
The comparison of the accuracy of the different ML models
revealed that XGBoost is the most accurate model for four out
of five KPIs, while in one case, ExtraTrees performed better
than the others.

RQ2. The training time of all the techniques except Logistic
Regression was very short. After one week of training time, we
stopped the execution of Logistic Regression, considering it
too expensive to be applied in this context. For the other tech-
niques, in some cases, some sub-optimal technique required a
shorter training time than the optimal technique. For example,
the testing time of Random Forest was much shorter than the
one spent for training XGBoost. However, the difference is in
the range of a few minutes. Since we are planning to train the
systems once a week, we can consider the time differences as
negligible. The comparison of the training time, testing time,
and AUC is reported in the online appendix.

RQ3. The two methods adopted, Principal Component
Analysis and drop-column mechanism (Table II), reported
different results. This can be expected due to their different
approaches. Below, the first ten most important metrics are
reported for both the techniques. The blue lines represent the
importance of each feature for the prediction of the respective
KPI. The PCA reported the metric ”zookeeper-ElectionType”
as the most important predictor for all the five KPIs. Instead
the drop-column algorithm reported that ”Server replica man-
ager - underminisr partition count” is the best predictor for
% of network processor idling time, ”manual leader balance
rate and time” for max message lag, ”% of network processor
idling time” for min fetch rate, ”Request Queue Time” for
Avg request latency, and ”Number of Configuration Reload
Failures” for request queue size.

2https://explained.ai/rf-importance/



TABLE I
ACCURACY AND TRAINING AND TESTING TIME COMPARISON FOR THE DIFFERENT MODEL USED AND FOR EACH KPI ANALYZED. THE AUC IS SHOWN

IN TERMS OF MEAN AND STANDARD DEVIATION OF THE 10 FOLDS VALIDATION. THE TRAIN AND TEST TIME ARE SHOWN IN SECONDS.

KPI Metric XGBoost AdaBoost Log. Regr. Rand. Forest Grad. Boost Dec.Tree ExtraTree MLP
Min Fetch Rate AUC 0.96± 0.08 0.87± 0.17 0.72± 0.19 0.79± 0.24 0.67± 0.19 0.55± 0.13 0.65± 0.24 0.50± 0.02

Training Time 645.71 1250.90 14574.06 45.22 1432.71 240.92 535.28 22712.68
Testing Time 1.21 16.91 0.05 0.50 1.31 0.15 4.15 3.01

% Network Processor
Idling Time

AUC 0.98± 0.04 0.86± 0.14 0.66± 0.25 0.83± 0.19 0.67± 0.18 0.61± 0.13 0.73± 0.25 0.51± 0.06

Training Time 1552.42 2920.80 26550.41 54.20 3629.73 220.89 494.55 17911.42
Testing Time 2.52 36.11 0.07 1.43 3.72 0.24 6.73 helmi.64

Request Queue Size AUC 0.62± 0.18 0.58± 0.17 0.59± 0.19 0.86± 0.16 0.60± 0.14 0.67± 0.13 0.87± 0.15 0.48± 0.03
Training Time 404.94 837.57 12612.92 33.57 1385.42 141.06 281.66 7766.97
Testing Time 0.71 10.41 0.05 0.50 1.14 0.11 2.73 2.28

Avg Request Latency AUC 0.84± 0.24 0.80± 0.25 0.60± 0.24 0.52± 0.28 0.75± 0.27 0.55± 0.17 0.59± 0.25 0.54± 0.09
Training Time 1079.31 2096.02 24025.74 55.43 2992.22 267.68 571.29 14314.08
Testing Time 2.12 24.61 0.06 1.52 3.06 0.23 7.35 4.17

Max Message Lag AUC 0.96± 0.06 0.75± 0.22 0.69± 0.16 0.68± 0.25 0.62± 0.21 0.57± 0.14 0.50± 0.27 0.46± 0.05
Training Time 779.93 1541.25 18015.86 109.86 3313.20 665.73 1192.65 22073.61
Testing Time 1.56 17.31 0.05 1.33 3.14 0.30 7.55 3.54

RQ4. By performing the Principal Component Analysis
for dimensional reduction on the data, it was possible to see
how many components are necessary and how many can be
removed for the prediction of the five KPIs. Since the five
charts produced are exactly identical, only one of them is
reported in Figure ??. PCA generates new components that
summarize the data. Often a part of the total components
generated, are enough to describe the original data (more
important). Out of a total of 168 components, 100 of them
are enough to represent 95% of the original data. It is also
possible to see that to have 100% of original data represented,
we need 120 components. All the 120 metrics are reported in
Prometheus in less than 200 milliseconds.

Discussion. ML techniques showed important dependencies
between performance-related KPIs and the metrics collected in
the system. The most important outcome is that performance-
related anomalies can be detected by monitoring a limited
number of metrics collected at runtime. Some techniques re-
quire excessive training time (Logistic Regression). However,
other techniques, such as XGBoost, provide a very high level
of accuracy in four out of five cases with a brief training
time. In the case of the Request Queue Size KPI, ExtraTrees
algorithm performed better than the others. The final result
is that the number of components used for the training can
be easily reduced to 120 preserving the same amount of
information for the prediction of the anomalies. This result is
important because by reducing the number of features, training
and testing performances will improve. The result of this study
could help companies to understand how to monitor cloud-
native systems and especially how to detect whether some
KPIs they consider relevant are dependent on other metrics
they can collect.

IV. THREATS TO VALIDITY

We adopted the measures provided by Kafka, Zookeeper and
Prometheus, since our goal was to understand dependencies
between them instead of specifying existing metrics. Some
metrics were duplicated, reporting the same value for the same
service twice. We are aware of this issues and to reduce
this threat, we considered only once duplicated data. We
are also aware that we cannot claim a direct cause-effect
relationship between the different metrics, also in case of

positive correlations. Moreover, we are also aware that metrics
with different roles can be more frequent. We are aware that
different different systems might behave differently, neverth-
less we studied commonly used tools and metrics to allow for
better generalization. We do not exclude the possibility that
other statistical or ML approaches, such as Deep Learning,
might have yielded similar or even better accuracy than our
modeling approach.

V. RELATED WORK

Anomaly detection has been investigated in several domains
in recent years by applying probabilistic [10] and statisti-
cal [11] approaches. Statistical models [12] [13] [14], perform
well in identification of anomalies and they do not require
a big amount of data for training models. Despite this, the
main obstacle of these techniques is the production of biased
results in case of inaccurate hypothesis on the data. This leads
to many false positives and makes statistical approaches not
suitable for real applications.

On the other hand, ML approaches are capable of inferring
distribution of normal and anomalous behaviors, and deter-
mine anomalies by using supervised [15], semi-supervised,
unsupervised [16] [17] [18], or deep learning techniques [19].
Lakhina et al. [20] presented an anomaly detection approach
based on the division of the high-dimensional space repre-
sented by a set of metrics into disjoint subspaces correspond-
ing to normal and anomalous behaviors.

Ibidunmoye et al. proposed two methods, PAD [21] and
BAD [22], based on statistical analysis and kernel density
estimation (KDE) applied to unbalanced data. Thill et al. [23]
proposed SORAD, a simple anomaly detection approach
based on regression techniques. This was applied on Yahoo
Webscope S5 benchmark, showing remarkably good result,
although being a simple algorithm compared to others. It
achieved on F1 score between 0.64 and 0.99 on the four
dataset tested. Ahmad et al. [24] presented a real-time anomaly
detection algorithm based on Hierarchical Temporal Memory
(HTM) and suitable for spatial and temporal anomaly detection
in predictable and noisy environments.

Gulenko et al. [25] proposed an event-based approach
to real-time anomaly detection in cloud-based systems with
a specific focus on the deployment of virtualized network



TABLE II
MOST IMPORTANT METRICS EVALUATED BY THE DROP-COLUMN MECHANISM AND BY THE PRINCIPAL COMPONENT ANALYSIS. FOR THE FIRST IT IS
SHOWN THE DROP IN OVERALL ACCURACY (IN PERCENTAGE). FOR THE LATTER IT IS INDICATED THE SCORE OF THE FIRST COMPONENT OF THE PCA

KPI Technique Best Feature Importance
(Score)

Min Fetch Rate Drop-column KAFKA NETWORKSOCKETSERVER NETWORKPROCESSORAVGIDLEPERCET 0.53%
PCA ZOOKEEPER ELECTIONTYPE 0.1905

% Network Processor Idling Time Drop-column KAFKA SERVER REPLICAMANAGER UNDERMINISRPARTITIONCOUNT 0.94%
PCA ZOOKEEPER ELECTIONTYPE 0.1892

Request Queue Size KPI Drop-column JMX CONFIG RELOAD FAILURE TOTAL 1.11%
PCA ZOOKEEPER ELECTIONTYPE 0.1871

Avg Request Latency Drop-column KAFKA NETWORK REQUESTMETRICS REQUESTQUEUETIMEMS 2.09%
PCA ZOOKEEPER ELECTIONTYPE 0.1871

Max Message Lag Drop-column KAFKA CONTROLLER CONTROLLERSTATS MANUALLEADERBALANCERATEANDTIMEMS 1.80%
PCA ZOOKEEPER ELECTIONTYPE 0.1871

functions. They applied both supervised and non-supervised
classification algorithms, obtaining good results in the identifi-
cation of anomalies, which were identified in 95% of the cases.
Monni et al. [6] proposed an energy-based anomaly detection

tool (EmBeD) for the cloud domain. The results obtained show
that their methods can achieve a f1-score ∼ 95% to ∼ 98%

VI. CONCLUSION

The application of the eight ML techniques on the data
we collected at runtime from our cloud-native system showed
important dependencies between performance-related KPIs
and the metrics collected in the system. The most important
outcome is that it is possible to detect performance-related
anomalies by monitoring a limited number of metrics collected
at runtime. Some techniques require too much training time
(Logistic Regression). However, other techniques such as XG-
Boost provide a very high level of accuracy in four out of five
cases with a very short training time. Future work will include
the application of different techniques, such as time series
analysis so as to understand how early it is possible to predict
anomalies, and which is the algorithm that can be effectively
used in this context. Moreover, we are planning to investigate
suitable techniques for predicting the fault-proneness of the
different metrics so as to be able to react on time, before the
anomaly happens.
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