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Abstract—As a key enabler for massive machine-type com-
munications (mMTC), spatial multiplexing relies on massive
multiple-input multiple-output (mMIMO) technology to serve the
massive number of user equipments (UEs). To exploit spatial
multiplexing, accurate channel estimation through pilot signals
is needed. In mMTC systems, it is impractical to allocate a
unique orthogonal pilot sequence to each UE as it would require
too long pilot sequences, degrading the spectral efficiency. This
work addresses the design of channel features from correlated
fading channels to assist the pilot assignment in multi-sector
mMTC systems under pilot reuse of orthogonal sequences. In
order to reduce pilot collisions and to enable pilot reuse, we
propose to extract features from the channel covariance matrices
that reflect the level of orthogonality between the UEs channels.
Two features are investigated: covariance matrix distance (CMD)
feature and CMD-aided channel charting (CC) feature. In terms
of symbol error rate and achievable rate, the CC-based feature
shows superior performance than the CMD-based feature and
baseline pilot assignment algorithms.

I. INTRODUCTION

Massive machine-type communications (mMTC) is a class
of services planned for 5G and 6G systems to provide access
for enormous numbers of connected devices, possibly on
the order of tens of billions [1]–[3]. Massive multiple-input
multiple-output (mMIMO) technology has been proposed as
a way to improve the spectral and energy efficiency of such
systems by exploiting the spatial multiplexing provided by the
large numbers of antennas [4], [5]. To take advantage of the
boost in spectral and energy efficiency provided by large-scale
antenna systems, channel state information (CSI) is required
at the base station (BS). Uplink CSI is obtained through the
transmission of pilot sequences from the user equipments
(UEs) to the BS, which estimates the channel using the
received signal by employing any estimation technique such as
least squares or minimum mean square error. A time-division
duplexing (TDD) protocol is likely to be implemented in
mMIMO networks in order to minimize signaling overhead
and to avoid downlink channel estimation by exploiting the
reciprocity between the uplink and downlink channels [6].

One of the main challenges of mMTC is the design of access
protocols that support the huge number of MTC devices. Due
to the large number of UEs, resources have to be shared, which
precludes the allocation of orthogonal pilot sequences to all
UEs. Pilot reuse can be used to overcome the lack of resources,
at the cost of leading to interference between UEs sharing the
same pilot sequence, also known as pilot contamination [7].

While legacy systems rely on code and frequency multiplex-
ing, mMTC can exploit spatial multiplexing through mMIMO
to avoid/alleviate pilot contamination [2], [8].

Different approaches to mitigate pilot contamination have
been proposed in the literature. In [9], the authors proposed
a location-aware pilot assignment for multi-cell systems with
Rician fading channels which requires knowledge about the
large-scale fading, angle of arrival (AoA), and the channel
Rician factor. In [6], a pilot assignment scheme was devised
to deal with pilot interference in multi-cell mMIMO based
on the UEs’ large-scale coefficients, which are assumed to
be known in all cells. Their objective is to assign orthogonal
pilot sequences to UEs with poor channel quality. You et
al. [10] proposed a pilot reuse strategy based on the channel
covariance matrices for single-cell mMIMO systems with
correlated channels. They proposed a pilot allocation algorithm
that assigns orthogonal pilot sequences to UEs with similar
channel covariance matrices, measured by the covariance
matrix distance (CMD) metric.

Recently, we proposed a pilot reuse scheme in [11] that
utilizes channel charting (CC) to exploit the spatial informa-
tion existing in CSI, aiming to maximize the AoA distances
between the UEs using the same pilot sequence. CC is a
framework proposed in [12] to estimate the relative position
of devices in an unsupervised manner which maps the infor-
mation obtained from the measured long-term CSI at the BS
into a low-dimensional chart, in which the relative positions
of UEs are preserved. Our results [11] showed that CSI can
be utilized to allocate the pilot sequences, and improve the
channel estimation accuracy and symbol error rate (SER), for
single-cell correlated channels systems.

In this paper, we propose pilot reuse strategies to cope with
the pilot contamination in multi-sector single-cell mMIMO
networks under spatially correlated channels. To exploit the
degree of orthogonality between the UEs’ channels, granted
by the spatial correlation, the pilot reuse is performed based on
two features encompassing the channel correlation, especially
in the angular domain: 1) the CMD metric and 2) the CC
created based on the CMD metric. Utilizing the proposed
features along with the pilot allocation algorithm devised
in [11], the numerical results show that the angular information
can be exploited also for multi-sector systems with spatially
correlated channels, resulting in enhanced achievable rate and
SER compared to baselines.
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Fig. 1: Uplink mMTC scenario with K active (green) and
N −K inactive users (gray). The BS is equipped with S = 3
M -element ULAs.

II. SYSTEM MODEL

We consider an uplink communication scheme with a set
N = {1, . . . , N} of N single-antenna UEs uniformly dis-
tributed within a cell, from which only K < N are randomly
active at any given time. In order to focus on the develop-
ment of pilot assignment strategies to improve the channel
estimation accuracy, and, subsequently, enhance the system
performance in mMTC, we assume that the BS knows the set
of active UEs at each transmission instant1.

The cell is divided into S sectors2 and the transmitted signal
is received through S uniform linear arrays (ULAs), each
having M antenna elements, as shown in Fig. 1. The array
response vector for a ULA is given by

ar(θ) =
[
1, e−j2π∆r cos(θ), . . . , e−j2π(M−1)∆r cos(θ)

]T
(1)

where ∆r is the normalized spacing between the antenna
elements in wavelengths and θ is the AoA, i.e., the incident
angle of the received signal on the ULA [17, Sec. 7.2.1].

We adopt the one-ring channel model [7, p. 236] which as-
sumes that the multi-path components are concentrated around
the UEs while the BS is located in an elevated position lacking
scatterers close to it. Thus, the uplink channel vector for user
n ∈ N associated with the ULA of sector s ∈ S = {1, . . . , S}
is modelled as a superposition of L propagation paths as

hn,s =
1√
L

L∑
l=1

√
βn,s,lαn,s,lar(θn,s,l), (2)

where αn,s,l is the complex gain of the lth path assumed to
be an independent and identically distributed (i.i.d.) complex
Gaussian random variable with zero mean and E{|αn,s,l|2} =
1. In (2), the large-scale propagation effects and the BS
antenna gain in the channel are captured in βn,s,l ∈ R, which

1This assumption can be invoked by the fact that there exists a multitude of
compressed sensing based approaches, e.g., [13]–[15], to solve the UE activity
detection problem. However, this is outside of the scope of this paper and is
left for future work.

2In practical scenarios, the coverage area is usually divided into three or six
sectors of 120◦ or 60◦ [16]. Therefore, we consider S = 3 in the examples.
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Fig. 2: The channel response is time-invariant and frequency-
flat within each coherence block. At the beginning of each
coherence block, τ symbols are sent to estimate the channel.

follows the free space path loss model as described in [18,
Eq. (2.7)], which is defined as

βn,s,l =∆ 10
GA(θn,s,l)

10

(
λ

4πdn

)2

, (3)

where λ is the wavelength and dn is the distance between UE
n and the BS. In (3), GA(θn,s,l) ∈ R represents the antenna
gain through the lth path for user n at the ULA s, and is given
in dB by [16], [19, Table 7.1-1]

GA(θn,s,l) = GAmax
−min

[
12

(
θn,s,l
θ3dB

)2

, Amax

]
, (4)

where GAmax
is the maximum antenna gain, θ3dB is the

half power beamwidth, Amax is the maximum attenuation
in dB at the ULAs, and θn,s,l is the AoA of the lth path
which is modelled as an i.i.d. random variable with uniform
distribution U(θmin

n,s , θ
max
n,s ), with θmin

n,s = θ̄n,s −
√

3σθ and
θmax
n,s = θ̄n,s +

√
3σθ. Here, θ̄n,s ∈ [0, 2π] is the incident

angle between user n and the ULA of sector s, σθ is the
angular standard deviation, which specifies the AoA interval
An,s = [θmin

n,s , θ
max
n,s ] for the incoming multi-path components

arriving from user n at the ULA of sector s.

III. PILOT TRANSMISSION AND CHANNEL ESTIMATION

To exploit the symmetry between downlink and uplink
channels, we consider the TDD protocol, as depicted in Fig. 2.
We assume that during one coherence block, the channels are
time-invariant and flat-fading. At each coherence block, the
set of active users transmit τ known symbols, of equal power
pu, to the BS for channel estimation. Right after transmitting
the pilot symbols, the K active UEs transmit their data to the
BS. Then, the remaining time, within the coherence block, is
used for downlink communication.

We consider that the UEs are assigned with pilot sequences
taken from a pool of τ orthogonal sequences. However, due
to a vast number of UEs in mMIMO networks, we consider
that τ � N , i.e., global pilot reuse is employed in the
cell area. Consequently, in the channel estimation phase,
the same pilot is shared by K/τ UEs on the average. Let
K = {1, . . . ,K} ⊆ N represent the set of active UEs at a
given transmission interval. Let T = {1, . . . , τ} be the set of
indices of available pilot sequences. User k ∈ K transmits a
pilot signal ψk =

√
puφπk , where πk ∈ T is the index of

the pilot sequence assigned to UE k and φπk ∈ Cτ is the



corresponding pilot sequence from the orthogonal pilot book
Φ = [φ1, . . . ,φτ ] ∈ Cτ×τ . We define the set of UEs sharing
the same pilot sequence as UE k, including UE k itself, as
Gk = {j | j ∈ N , πj = πk}.

The received signal for channel estimation at the ULA of
sector s, Ys =

[
y1
s , . . . ,y

τ
s

]
∈ CM×τ , can be written as

Ys = HsΨ̌ + Ns, (5)

where Hs = [h1,s, . . . ,hK,s] ∈ CM×K is the channel matrix
for the active UEs, Ψ̌ = [ψ1, . . . ,ψK ]

T ∈ CK×τ is the pilot
signal matrix, and Ns =

[
n1
s, . . . ,n

τ
s

]
∈ CM×τ is the noise

matrix. We model the noise as an i.i.d. complex Gaussian
random variable ns ∼ CN (0, σ2

n), where σ2
n is the noise power

at each antenna element.
We consider that the linear minimum mean square error

(LMMSE) receiver is deployed at the BS to jointly estimate the
active UEs’ channel vectors across the S sectors. Therefore,
the compound channel hk ∈ CMS between UE k ∈ K and
the BS is given by

hk =

hk,1
...

hk,S

 , (6)

with covariance matrix Rk = E[hkh
H
k ] ∈ CMS×MS . The

received pilot signal, Y =
[
YT

1 , . . . ,Y
T
S

]T ∈ CMS×τ .
We assume that the channel covariance matrices of all UEs

(active and inactive ones) are known at the BS. In order
to be able to retrieve the UEs’ individual signals from the
received compound signal, the BS needs to keep track of
Rn, ∀n ∈ N . In practice, an initial training phase is required
to obtain the first estimate for the covariance matrices. After
this initial phase, the BS can keep updating each Rn based
on the estimated channel.

The LMMSE estimate of the communications channel be-
tween user k and the BS, hk in (6), is given as [10],

ĥk = RkQ
−1
k yp

k. (7)

Here, yp
k represents the processed received signal for UE k

after correlating the received signal with the pilot sequence
assigned to user k, i.e.,

yp
k =

1

puτ
Yψ∗k

= hk +
∑
j ∈Ik

hj︸ ︷︷ ︸
Pilot Interference

+
1

puτ
Nψ∗k, (8)

where Ik = {j|j 6= k, j ∈ Gk ∩ K} is the set of interfering
users to user k, and Qk ∈ CMS×MS in (7) is the covariance
matrix of the received signal, given as

Qk = Rk +
∑
j∈Ik

Rj +
σ2

n

puτ
IMS . (9)

Due to the orthogonality principle of the MMSE esti-
mator [20, Sec. 12.4], the channel estimation error, h̃k ∼
CN (0,Rh̃k

), is independent of ĥk. Therefore, we can de-

compose the channel hk as hk = ĥk + h̃k. Thus, the error
covariance matrix for user k is [12]

Rh̃k
= Rk −RkQ

−1
k Rk. (10)

IV. UPLINK DATA TRANSMISSION

Let x = [x1, . . . , xK ]
T ∈ CK be the transmitted symbol

vector at a given time instant. The corresponding received
signal at the BS, y = [yT

1 , . . . ,y
T
s ]T ∈ CMS , is given by

y = Hx + n, (11)

where H = [h1, . . . ,hK ] ∈ CMS×K is the channel matrix,
and n = [nT

1, . . . ,n
T
s ]

T ∈ CMS is the noise vector at the M×S
receiver antenna elements. We assume that all UEs transmit
with the same power, i.e., pu = |xk|2 is the transmit symbol
power for user k.

Given the estimated channel Ĥ = [ĥ1, . . . , ĥK ] ∈ CMS×K ,
we use the LMMSE receiver, wk ∈ CMS , derived in [10],

wk =

(
ĤĤH +

K∑
k=1

Rh̃k
+
σ2

n

pu
IMS

)−1

ĥk, (12)

which takes into account the error covariance matrix Rh̃k
.

Therefore, the received symbol vector r̂ ∈ CMS , after
employing the LMMSE receiver W ∈ CMS×K , is given by

r̂ = WHy. (13)

Given the communication model depicted in Fig. 2, the
uplink spectral efficiency is lower bounded by [7, Th. 4.1]

Rup
k =

(
1− τ

Tc

)
Rach,up
k , (14)

where Tc is the coherence time and the corresponding achiev-
able uplink rate for user k, Rach,up

k , is expressed as

Rach,up
k = E

{
log2

(
1 + γup

k

)}
, (15)

where the expectation is taken over the channel realizations,
and γup

k is the instantaneous uplink signal-to-interference-and-
noise ratio (SINR), given as

γup
k =

|wH
k ĥk|2

wH
k

(∑
j 6=k ĥjĥH

j +
∑K
n=1 Rh̃n

+
σ2
n

pu
IMS

)
wk

. (16)

V. PILOT REUSE ALGORITHM

The coordination of pilot assignment is crucial for mMTC.
Due to the massive amount of UEs in such systems, the reuse
of the orthogonal pilot sequences in the same cell becomes
inevitable. As highlighted by Björnson in [7, p. 246], the
strongest interference usually originates from UEs in the same
cell. Therefore, a proper assignment of the pilots is essential
to mitigate the pilot contamination.

Next, we tackle the pilot contamination problem by propos-
ing pilot reuse strategies that exploit the spatial information
present in CSI through the second-order statistics of the
radio environment. In particular, we propose two features
encompassing the channel correlation, especially in the angular
domain, for the pilot reuse: 1) the CMD metric and 2) the CC



created based on the CMD metric. These features are fed to
a modified version of our greedy pilot allocation algorithm
proposed in [11] (Algorithm 1 detailed in Sec. V-C), which
completes the pilot assignment, aiming at minimizing the pilot
interference between the users sharing the same pilot.

The goal is to assign orthogonal pilot sequences to users
with overlapping AoA intervals to avoid pilot contamination.
To capture the spatial information embedded in the second-
order statistics and reveal the angular domain relationship
among the UEs, we use the CMD [21] metric. Thus, we
compute a dissimilarity matrix D ∈ RN×N and define the
dissimilarity measure associated with UE n and j as

dn,j = 1−
tr
(
RH
nRj

)
‖Rn‖F‖Rj‖F

. (17)

Next, we elaborate on two different features that utilize the
CMD metric in (17) as a basis. The features will serve as input
to our Nearest Neighbor Pilot Assignment Algorithm 1.

A. CMD-aided Pilot Assignment

Since the dissimilarity matrix D = [d1, . . . ,dN ] carries
the spatial information needed to allocate the pilot sequences,
we propose to directly utilize the distance vectors, dn =
[dn,1, . . . , dn,N ]T ∈ RN , as input features, fn ∈ RN , to the
proposed pilot allocation algorithm as detailed in V-C. Thus,
we form fn by setting fn = dn. After getting fn we apply the
Algorithm 1 to allocate the pilots.

B. CC-aided Pilot Assignment

CC is as a framework developed in [12] to generate unsu-
pervised radio environment mappings utilizing the CSI. The
idea behind CC is to find a suitable feature from CSI and then
apply a dimensionality reduction (DR) technique to get a lower
dimensional embedding, which preserves the relative position
of the UEs. Given the CMD distance in (17), we propose to
utilize it as an input to CC framework. The target is to obtain
a feature that well characterizes the angular domain structures
in the multi-sector multi-user scenario, in order to feed the
pilot allocation Algorithm 1.

As shown in [11], for single-cell scenarios, CC can be used
to coordinate the pilot assignment under pilot reuse regimes, to
achieve better network performance than other methods from
the literature. In [11], we have utilized CC to retrieve the
angular relationship between the UEs by applying the discrete
Fourier transform on the channel covariance matrices and then
taking the absolute value. Here, we differently propose to use
the CMD dissimilarity matrix D in (17) as an input to the DR
technique, to construct the CC. Thus, we apply a function C
that generates CC by mapping these high-dimensional features
dn ∈ RN to a low-dimensional domain, i.e.,

C : dn 7→ fn, n ∈ N , (18)

where fn ∈ RC is the point in the C-dimensional CC corre-
sponding to dn, where typically C = 2 or C = 3.

Several unsupervised DR techniques have been proposed to
map the extracted features into a lower dimension embedding
[12], [22]–[24]. We propose the use of Laplacian Eigenmaps

Algorithm 1: Nearest neighbor pilot assignment
Input : 1) The set of UEs N = {1, . . . , N}, 2) the

index set of orthogonal pilots T = {1, . . . , τ},
and 3) the suitable features fn, n ∈ N .

Output: A pilot assignment Ψ = [ψ1, . . . ,ψN ]
T.

1 Initialize the set of unassigned UEs N un = N , and the
set of unassigned pilots T un = T .

2 Select a random UE n and initialize the auxiliary
variable n′ with it, i.e., n′ = n.

3 Assign φ1 to user n and update the set of unassigned
UEs and pilots, i.e., N un ← N un \ {n} and
T un ← T un \ {1}.

4 Initialize the auxiliary variable: p = 2.
5 while N un 6= ∅ do
6 if T un = ∅ then
7 Reinitialize: T un = T and p = 1.
8 end
9 Assign pilot φp to user n, i.e., ψn = φp, that

satisfies n = arg min
n∈Nun

‖fn − fn′‖2.

10 Update the set of unassigned UEs,
N un ← N un \ {n}, and the set of unassigned
pilots, T un ← T un \ {p}.

11 Update n′ = n and p = p+ 1.
12 end

(LE) as a DR technique as it aims to preserve the local
structure of the high-dimensional embedding by minimizing
the distances between data points and its ν nearest neighbors,
where ν is a design parameter. Note that the CC method is
not limited to utilize LE, and different DR techniques could
be used as well. Clearly, as the low-dimensional embedding is
not unique, they may lead to different pilot assignments, thus
different network performance.

C. Nearest Neighbor Pilot Assignment Algorithm

After extracting the CMD and CMD + CC features, we
apply a modified version of the low-complexity pilot algorithm
proposed in [11] to account for the different input features and
incorporate the inactive users as well, as shown in Algorithm 1.
The main premise of the algorithm is that the features preserve
the angular relationship among UEs. Thus, the greedy algo-
rithm allocates the orthogonal pilot sequences in an ordered
way φ1,φ2, . . . ,φτ ,φ1,φ2, . . . by finding the unassigned UE
with the small Euclidean distance between the features, aiming
at maximizing the distances between the same pilot sequences.

The first step of Algorithm 1 is to allocate the first pilot
sequence, φ1, to one of the users. Then, it greedily allocates
the next orthogonal pilot sequence, φ2, to the unassigned UE
with the smallest distance to the previously allocated user n′,
i.e., it finds n that minimizes ‖fn − fn′‖2. Then, it repeats
this process until all orthogonal pilot sequences have been
allocated. Once the last orthogonal pilot sequence φτ has been
allocated, after τ iterations, it starts to reuse pilot sequences
by allocating the first sequence φ1 to the closest unassigned



(a) SER as a function of SNR.

(b) SER as a function of the number of antennas per ULA M .

Fig. 3: Symbol error rate (SER) for a fixed pilot length of
τ = 64. (a) shows the effect of the SNR and (b) the effect of
the number of antennas for a fixed SNR=0 dB.

UE from the precedent allocated user. It repeats this process
until all UEs have been assigned pilot sequences.

VI. NUMERICAL AND SIMULATION RESULTS

We consider N = 512 UEs uniformly distributed in a cell
with K = 64 active UEs at any given time, and a BS equipped
with S = 3 M -element ULAs, with M = 64 critically spaced,
∆r = 0.5, elements. The propagation channel between each
user and the BS consists of L = 200 paths with a fixed angular
standard deviation σθ = 15◦. For the antenna parameters
in (4), we set the maximum antenna gain as GAmax = 0 dB,
the maximum attenuation as Amax = 30 dB, and the half-
power beamwidth as θ3dB = 65◦ [19]. We use binary phase
shift keying (BPSK) for the channel estimation and quadrature
phase shift keying (QPSK) for the data transmission.

We consider three baseline pilot assignment methods: 1) A
random pilot assignment scheme; 2) A real position method,
which relies on the exact UEs’ positions to compute the angu-
lar separation between the UEs, and then deploys Algorithm 1.

(a) CDF.

(b) Achievable sum rate.

Fig. 4: Achievable sum rate at 10 dB SNR. (a) CDF of users’
uplink achievable rate for τ = 64. (b) Achievable sum rate vs.
pilot length.

Note that this baseline acts as a lower bound to the CC-
based method, since it uses the real position instead of the
relative position estimated via CC; 3) The statistical greedy
pilot scheduling (SGPS) developed in [10] that, similarly to
our method, relies on the knowledge of the channel covariance
matrices. Differently from [10], we extract designed features
from the channel covariance matrices and then apply Al-
gorithm 1; this also obviates the need to store the channel
covariance matrices at the BS.

Fig. 3 shows how SER of the different pilot assignment
strategies changes with the SNR and the number of antennas
M . A fixed pilot length of τ = 64 is considered, which gives
a pilot reuse factor of N/τ = 8, meaning that each pilot
sequence is reused 8 times across all the UEs connected to
the BS. For benchmark, we also show the lower bound for
SER, which is achieved with perfect CSI knowledge. From
Fig. 3(a) we see that the performance of the CC-based pilot
allocation approaches the real position method, beating all the



other baseline methods. The CMD-based approach, although
implementing the same pilot allocation algorithm, shows poor
performance as compared to CC-based, which highlights the
importance of choosing a good feature to the pilot allocation
Algorithm 1. Fig. 3(b) presents the effect of changing the
number of ULA elements M for SNR=0 dB. By increasing
the number of antennas, the performance increases because
the UEs’ channels become more orthogonal.

We also evaluate the performance of the proposed features
in terms of the uplink achievable rate. The cumulative distri-
bution function (CDF) for the average uplink rate per UE is
depicted in Fig. 4(a) for a fixed pilot length of τ = 64, at
10 dB SNR. It can be seen that, on average, at least 90 % of
the UEs using the CMD-based pilot allocation strategy have
a higher uplink achievable rate than the UE with the highest
rate employing the random pilot allocation. On the other hand,
this percentage grows to 100 % when the UEs are employing
CC-based or SGPS schemes.

Fig. 4(b) plots the uplink sum rate against the pilot length.
One can notice that the CC-based method performs very well,
approaching the real position based pilot allocation. However,
it slightly degrades its performance for τ > 100 symbols, i.e.,
when the pilot reuse factor N/τ decreases below 5. Yet, in this
regime, the SGPS method performs as well as the real position
one. Although the CMD-based method greatly improves the
performance as compared to the random pilot allocation, it
underperforms when compared to the other methods.

VII. CONCLUSIONS

This paper investigated the reuse of orthogonal pilot se-
quences in a single-cell multi-sector network for mMIMO
systems. In these systems, the transmission rate performance
is interference limited due to pilot contamination. We pro-
posed to apply new features capturing the angular information
present in CSI in the algorithm developed in [11] to accommo-
date the multi-sector framework and to improve the average
uplink rate for the UEs. The CC-based feature was shown to
approach the real position method, outperforming the other
baselines in terms of SER and achievable uplink rate. The
CMD-based feature performs close to SGPS and CC-based
pilot allocation, whilst having lower complexity. The proposed
features showed to fit well into the multi-sector framework by
presenting a competitive performance for SER and achievable
rate as compared to existing pilot allocation schemes.
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