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Abstract—In this paper, a novel method is proposed to study
the tradeoff between energy efficiency (EE) of small-cell users and
unmanned aerial vehicles (UAV) users in multi-cell orthogonal
frequency division multiple access (OFDMA)-based networks.
Contrary to the prior works that only maximize the EE of the
UAV network subject to some constraints on transmit power of
UAV users, we formulate a multi-objective optimization problem
(MOOP) that jointly maximize the EE of small-cell and UAV
users while guaranteeing the minimum rate for UAV users
as well as maximum transmit powers for the corresponding
small-cell and UAV BSs. The proposed MOOP is transformed
into a single optimization problem (SOOP) by the weighted
Tchebycheff approach. Then, an iterative technique is used to
optimize alternatively subchannels and transmission powers of
small-cell and UAV networks at each step. Numerical results
show that a substantial performance gain can be obtained over
the existing solutions.

Index Terms: Energy efficiency, heterogeneous network, multi-
objective optimization problem, OFDMA, small-cell, unmanned
aerial vehicles.

I. INTRODUCTION

The historical evolution of unmanned aerial vehicles (UAV)
[1] as a flying base station (BS) has become a novel paradigm
to improve the total coverage and capacity of the terrestrial
networks. They can establish a Line-of-sight (LoS) channel
between the ground users and aerial UAV BS and can be easily
deployed during a system failure. Therefore, the use of aerial
UAV base stations can boost the quality of service (QoS) of
the network in terms of higher data rate, higher reliability, etc.
There are two general categories of UAV deployments, rotary-
wing, and fixed-wing. The fixed-wing UAVs have high speed
and large payloads, while, rotary-wing UAVs have limited
payload and can move to any direction in a stationary manner
[2].

In 5G radio access networks (RAN) ultra-dense deployment
of small-cells (SC) can improve the areal spectral efficiency
of broadband access networks (BAN) [3]. In heterogeneous
RANs, referred to as HetNets, SCs are connected to the core
network through macro base stations (MBSs) in a wireless
backhaul or directly by a gateway such as fiber optics com-
munication. Although the densification technique improves

areal transmission capacity, however, it raises the so-called
backhauling bottleneck especially in MBSs [4]. Therefore,
the UAV base stations can be deployed concurrently together
with SC networks where the SCs are connected to the het-
erogeneous radio access networks (RAN) through a gateway.
In this concept, new challenges are introduced including the
impact of SC users on the performance of UAV users and
vice versa. Hence, investigating the performance of jointly
deployed UAV and SC networks in terms of energy efficiency
(EE) and achievable data rate is of paramount importance.

The work in [5] investigates the fundamental performance
analysis of the UAV communication with underlaid device-to-
device (D2D) communication links where the coverage proba-
bility for D2D and cellular users are derived for two scenarios,
i.e. static and mobile aerial UAV BS. In [6] the role of a UAV-
enabled network is studied in public safety communications
in case of emergencies like an earthquake. The authors in [7]
investigate the performance of heterogeneous RANs where the
UAV base stations act as the relay node between MBSs and
SCs. However, none of the prior works have studied the co-
existence of UAV and SC networks jointly.

In conventional system designs, generally, the most notice-
able performance metric is selected as the optimization ob-
jective and the remaining performance metrics are considered
as the constraints of the optimization problem. Such a single
objective optimization problem (SOOP) approaches may give
unfair and unreasonable adjustments in real applications be-
cause of over-emphasizing the importance of one metric to
the rest. Particularly, in small-cell UAV networks (SUAVN),
the sum rate or the EE of UAV users may be chosen as
optimization objective while small-cell transmit power and
its interference on UAV users are treated as the constraint.
Hence, more realistic optimization should be considered to
simultaneously satisfy multiple objectives. Accordingly, the
multi-objective optimization problem (MOOP) can be adjusted
for solving the problems with more realistic scenarios [8].
Recent works have been studied using MOOP in wireless sys-
tems design [9]–[12]. In [9], a MOOP has been formulated to
optimize simultaneously the data rates and harvested powers in



multi-user multiple-input multiple-output (MIMO) broadcast
networks while designing simultaneous wireless information
and power transfer. A MOOP that jointly maximizes the er-
godic capacity and minimizes the average transmission power
of the secondary users is formulated in [10] and solved by
transferring it into a SOOP by using the ε-constraint method.
Three crucial issues on resource management including power-
efficient improvement, user-fairness guarantee, and non-ideal
channel reciprocity effect mitigation have been addressed
jointly using the framework of MOOP in [11].

To the best of our knowledge, there is no reported work
in the literature that directly focuses on the tradeoff between
the EE of the UAV network and the EE of the small-cell
communication links. This motivates us to formulate a MOOP
framework that jointly maximizes the EE of UAV and small-
cell users, enabling us to investigate a tradeoff between the
achievable EEs of SUAVN in downlink orthogonal frequency-
division multiple access (OFDMA) system. Towards solving
the formulated MOOP, we first apply a weighted Tcheby-
cheff method and then propose an iterative approach that
alternatively assigns subchannels to UAV and small-cell users
and allocates power to UAV aerial base stations and small-
cells, respectively. To demonstrate the advantage of MOOP
formulation, we consider a SOOP as a special case of MOOP
where the EE of only small-cell users is maximized subject to
the constraints on the minimum data rate of each UAV user
and the total transmit power of the small-cell base stations.
Numerical results reveal a substantial performance gain of the
MOOP over conventional SOOP where the EE of only small-
cell users is maximized. Thus, MOOP formulation in SUAVNs
can show the whole capability of network resources.

The rest of the paper is organized as follows. Section II
presents the considered system model architecture. In Section
III, we formulate the EE MOOP framework of subchannel
assignment and power control in the UAV-SC network and
propose the sequential quadratic algorithm to solve the pre-
sented non-convex problem. In Section IV, numerical results
are reported to evaluate the proposed algorithm and study
the tradeoff between the two objectives. Finally, the paper is
concluded in Section V.

II. SYSTEM MODEL

Consider the downlink of an OFDMA-based small-cell UAV
network consisting of set C of C cells with one SC BS and
one UAV BS at each cell. mc and kc users are served by
UAV base station (UAV-BS) and SC base station (SC-BS),
respectively. The UAV base station c serves mc UAV users
(U-UEs) and the SC at cell c is associated with kc small-cell
UE (S-UEs). Hence, the total number of U-UEs and S-UEs
in the entire network are M = ∑

C
c=1mc and K = ∑

C
c=1kc,

respectively. The bandwidth of W Hz is divided into N
subchannels such that each subchannel with the bandwidth
of Wc = W /N Hz. The subchannels are modeled as block
flat-fading channels. In subchannel n, time slot t and cell c,
we denote the instantaneous channel power gains for the link
between the cth SBS and the kth SU in that SBS by hnk,c(t)

Cell #

Small-cell user (S-UE)

UAV user (U-UE)

Fig. 1: The network model (the subchannel index n is consid-
ered as an example).

and the link between the cth UAV BS and the mth U-UE as
gnm,c(t). In the cell c, the power allocated to the S-UE k in
the subchannel n is denoted by pnk,c. The power allocated to
the U-UE m by the BS c on the subchannel n is given by
p̂nm,c. The noise power is given by N0. It is also assumed that
a subchannel at each cell is allocated only to one user. Fig. 1,
presents an illustration of the system model.

The instantaneous received signal-to-interference-plus-noise
ratio (SINR) at the S-UE k in BS c on subchannel n can be
written as

Γn,S-UE
k,c =

pnk,ch
n
k,c

N0 +

C

∑

q=1
q≠c

mc

∑

m=1
p̂nm,qg

′n
k,q +

C

∑

i=1
i≠c

ki
∑

j=1
pnj,ih

′n
k,i

, (1)

where g
′n
k,q and h

′n
k,i are the instantaneous channel power gains

of the channels between the other UAV BSs or SCs and
the S-UE k at subchannel n, respectively. In addition, the
instantaneous received SINR at the U-UE m in subchannel
n is given by

Γn,U-UE
m,c =

p̂nm,cg
n
m,c

N0 +

C

∑

j=1
j≠c

kc
∑

k=1
pnk,j ĥ

′n
m,j +

C

∑

i=1
i≠c

mi

∑

q=1
p̂nq,iĝ

′n
m,i

(2)

where ĥ
′n
m,j and ĝ

′n
m,i are the instantaneous power gains of the

channel between the other UAV BSs or SCs and U-UE m in
cell c at subchannel n, respectively.

To model the air to ground channel between UAV and users,
LoS and none-LoS (NLoS) components with probabilities
PLoS and PNLoS, respectively [5] are considered. Moreover,
the impact of small-scale fading can be ignored in this case,
and finally we have

gnm,c =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

∣dm,c∣
−κ, with probability PLoS,

η∣dm,c∣
−κ, with probability PNLoS.

(3)

where κ shows the path loss exponent and η is an excess
attenuation factor due to the NLoS connection caused by the
shadowing effect and dm,c indicates the distance between UAV
BS at cell c and user m. To evaluate PLoS we use

PLoS =
1

1 + κ2 exp(−κ1(θ − κ2))
, (4)



where κ1 and κ2 depend on the environmental factors [16] and
θ = 180

π
sin−1( h√

h2+r2
), PLoS = 1 − PNLoS. Note that g

′n
k,q and

ĝ
′n
m,i in (1) and (2) follow the same channel model presented

here. In the following section, a MOOP formulation is offered
to present a tradeoff between the EE of U-UEs and S-UEs.

III. MOOP FORMULATION FOR ENERGY EFFICIENCIES

In this section, to obtain a novel tradeoff between the EE
of U-UEs and S-UEs, we formulate a MOOP that jointly
maximizes the EE of S-UEs (ηEES-UE ) and the EE of UAV users
(ηEEU-UE ) as

max
{p,p̂,ϕ,ψ}

ηEES-UE , (5a)

max
{p,p̂,ϕ,ψ}

ηEEU-UE , (5b)

s.t.
kc

∑

k=1

N

∑

n=1
pnk,c ≤ P

SC
max,c ∀c ∈ C, (5c)

mc

∑

m=1

N

∑

n=1
p̂nm,c ≤ P

UAV
max,c ∀c ∈ C, (5d)

N

∑

n=1
ψnm,c ln (1 + Γn,U-UE

m,c ) ≥ Rmin
m,c , (5e)

∀m ∈mc,∀c ∈ C,
kc

∑

k=1
ϕnk,c ≤ 1,∀n, ∀c, ϕnk,c ∈ {0,1}, ∀n, k, c (5f)

mc

∑

m=1
ψnm,c ≤ 1,∀n, ∀c, ψnm,c ∈ {0,1}, ∀n,m, c (5g)

where

ηEES-UE =

C

∑

c=1

kc

∑

k=1

N

∑

n=1
ϕnk,c ln (1 + Γn,S-UE

k,c )

C

∑

c=1

kc

∑

k=1

N

∑

n=1
pnk,c +

C

∑

c=1
pcc

, (6)

ηEEU-UE =

C

∑

c=1

mc

∑

m=1

N

∑

n=1
ψnm,c ln (1 + Γn,U-UE

m,c )

C

∑

c=1

mc

∑

m=1

N

∑

n=1
p̂nm,c +

C

∑

c=1
p̂cc

. (7)

In (5), ϕnk,c is a binary variable for subchannel allocation
in small-cell network such that ϕnk,c = 1 if subchannel n is
allocated to S-UE k at cell c and ϕnk,c = 0, otherwise. Likewise,
ψnm,c is a binary variable for subchannel allocation in UAV net-
work such that ψnm,c = 1 if subchannel n is allocated to U-UE
m at cell c and ψnm,c = 0, otherwise. ϕ ∈ ZK×N and ψ ∈ ZM×N

denote the subchannel assignment variables in small-cell and
UAV networks, respectively. p ∈ RK×N and p̂ ∈ RM×N are the
collections of power allocation variables in small-cell and UAV
networks. P SC

max,c and PUAV
max,c are the maximum total power of

the SC or UAV base station at cell c. Rmin
m,c represents the

minimum data rate for UAU m at cell c. pcc and p̂cc are the
circuitry power consumption for the cth base station (either SC
or UAV). Note that the objective functions (5a) and (5b) are not
convex [17], and therefore, (5) is a non-convex optimization

problem. One possible approach to solve an MOOP is the so-
called weighted Tchebycheff method [13] which introduces an
additional auxiliary optimization variable χ given as follows

min
{p,p̂,ϕ,ψ,χ}

χ, (8a)

s.t. α (EE0,S-UE − ηEES-UE) − χ ≤ 0, (8b)
(1 − α) (EE0,U-UE − ηEEU-UE) − χ ≤ 0, (8c)
(5c)–(5g).

where α and (1 − α) denote the weight coefficients indicat-
ing the importance of the different objectives. EE0,S-UE and
EE0,U-UE are the utopia values for energy efficiency of SC and
UAV links, respectively. In the following, we propose a novel
approach to solve (8) in which sub-channel assignment and
power allocation are iteratively performed by first computing
initial feasible solutions. Specifically, this iterative approach
begins with computing an initial feasible solution for p̂[0],
ψ[0], p[0] and ϕ[0] where we investigate to find them in
the following section.

A. Initial Power Allocation and Subchannel Assignment
To give the initial point for p̂[0], we use the following

optimization for each cell c ∈ C as

max
p̂[0],ψ[0]

∑
mc

m=1∑
N
n=1 ln (1 +

p̂nm,c[0]g
n
m,c

N0
)

∑
mc

m=1∑
N
n=1 p̂

n
m,c[0] + p̂cc

, (9a)

s.t.
mc

∑

m=1

N

∑

n=1
p̂nm,c[0] ≤ P

UAV
max,c (9b)

N

∑

n=1
ln(1 +

p̂nm,c[0]g
n
m,c

N0
) ≥ Rmin

m,c, ∀m. (9c)

We convert the optimization problem in (9) into an equiva-
lent optimization problem using the concept of fractional pro-
gramming [14]. In fractional programming where the objective
function appears in the form of a ratio of two functions, the
non-convex objective function is transformed to an equivalent
convex function using the Dinkelback approach. So, from (9)
we define a new objective function as
mc

∑

m=1

N

∑

n=1
ln(1 +

p̂nm,c[0]g
n
m,c

N0
) − b(

mc

∑

m=1

N

∑

n=1
p̂nm,c[0] + p̂cc) ,

(10)
where b is a non-negative and auxiliary variable that is being
updated at each iteration as the ratio of the nominator to
the denominator of objective function. As shown in [14], the
optimal power allocation of optimization problem (10) subject
to (9b) and (9), i.e., p̂n

∗

m,c[0](b) at a certain value of the
parameter b, denoted as b∗ is also the optimal solution to (9),
i.e., p̂n

∗

m,c[0]. By applying Lagrangian approach, we have

p̂nm,c[0] = [

1 + ςm,c

ηc + b
−

N0

gnm,c
]

+

, (11)

where [.]
+ denotes max{., 0}. ηc and ςm,c can be chosen such

that
mc

∑

m=1

N

∑

n=1
p̂nm,c[0] = P

UAV
max,c, (12)



Algorithm 1 EE MOOP

Input: P SC
max,c, P

UAV
max,c, PLoS, η and channel responses

Output: p̂,p,ϕ,ψ
Initialize :p̂[0], ψ[0], p[0] and ϕ[0].

1: while Convergence do
2: Find the optimal values of ϕ,ψ by using (14).
3: Update p̂ and p, by employing the SQP method in

Section III-C,
4: end while
5: return The optimal values of p̂,p,ψ and ϕ.

and

N

∑

n=1
ln(1 +

p̂nm,c[0]g
n
m,c

N0
) = Rmin

m,c, (13)

for each m ∈ mc and c ∈ C. The optimal power allocation in
(11) is obtained from the water-filling approach which can
be selected as the feasible solution for transmit power of
UAV base stations in each subchannel. The initial subchannel
assignment for UAU m, ψ[0], is determined with the highest
channel-to-noise ratio on that subchannel. Applying similar
approach, the initial values for p[0] and ϕ[0] are derived.

B. Subchannel Assignment for a Given Power

For a given power in previous iteration, the optimal sub-
channel assignment for U-UE m in cell c over subchannel n
in current iteration τ is

ψnm,c[τ] =

⎧
⎪⎪
⎨
⎪⎪
⎩

1, if m = arg max
m∈mc

rn,U-UE
m,c [τ − 1]

0, otherwise,
(14)

where rn,U-UE
m,c [τ − 1] = ln (1 + Γn,U-UE

m,c [τ − 1]). Similarly, the
optimal subchannel assignment for S-UE k, ϕnk,c, can be
obtained.

C. Power Allocation for a Given Subchannel

After subchannel assignment at each iteration, to deal with
power allocation we employ a technique known as sequen-
tial quadratic programming (SQP) which is recognized as a
nonlinear programming algorithm for nonconvex constrained
optimization problems. In terms of accuracy and efficiency,
this method gives a better solution compared to the other
nonlinear programming methods over a large number of test
problems. At each iteration, a quadratic programming (QP)
subproblem is generated by an approximation of the Hessian
of the Lagrangian function. The solution of this QP provides
a search direction for a line search procedure [15, Chapter

18]. In SQP technique, we should first form the Lagrangian
function for (8), which yields

L(p, p̂, λ, µ,γ,%,ξ) =

χ + µ (α (EE0,S-UE − ηEES-UE) − χ)

+ λ ((1 − α) (EE0,U-UE − ηEEU-UE) − χ)+

C

∑

c=1
[γc(

kc

∑

k=1

N

∑

n=1
pnk,c − P

SC
max,c) + %c(

mc

∑

m=1

N

∑

n=1
p̂nm,c − P

UAV
max,c)]

+

C

∑

c=1

mc

∑

m=1
ξm,c (R

min
m,c −

N

∑

n=1
ln (1 + Γn,U-UE

m,c )) , (15)

where µ, λ, γ = [γc]c∈C , % = [%c]c∈C and ξ = [ξm,c]m∈mc,c∈C
are the non-negative Lagrangian multipliers. The solution
(p, p̂, λ, µ,γ,%,ξ) can be updated as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pl+1

p̂l+1

λl+1

µl+1

γl+1

%l+1

ξl+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pl + slνl

p̂l + ŝlν̂l

λl + slλν
l
λ

µl + slµν
l
µ

γl + slγν
l
γ

%l + sl%ν
l
%

ξl + slξν
l
ξ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

where sl, ŝl, slλ, s
l
µ, s

l
γ , s

l
% and slξ are nonnegative step sizes

at the lth iteration to construct the new estimates. The vec-
tor ν= [ ν ν̂ νλ νµ νγ ν% νξ ]

T
can be given by

solving the following quadratic programming problem

ν = − [
H(p, p̂, λ, µ,γ,%,ξ) JT (p, p̂)

J(p, p̂) 0
]

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

gL
ĝL
B

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(17)

where gL and ĝL denote the gradient of the Lagrangian
function (15) with respect to pnk,c and p̂nm,c, respectively.
Furthermore, matrices B,J(p, p̂) and H(p, p̂, λ, µ,γ,%,ξ)
are defined as follows. The matrix B is denoted as

B = [a(p, p̂) b(p, p̂) c(p, p̂) d(p, p̂) e(p, p̂)]T , (18)

with the following elements

a (p, p̂) = α (EE0,S-UE − ηEES-UE) − χ, (19)
b (p, p̂) = (1 − α) (EE0,U-UE − ηEEU-UE) − χ, (20)

c (p, p̂) =
kc

∑

k=1

N

∑

n=1
pnk,c − P

SC
max,c, (21)

d (p, p̂) =
mc

∑

m=1

N

∑

n=1
p̂nm,c − P

UAV
max,c, (22)

e (p, p̂) = Rmin
m,c −

N

∑

n=1
ln (1 + Γn,U-UE

m,c ) . (23)

Jacobian matrix of B, denoted by matrix J, consists of the
partial derivatives of (19)–(23) with respect to pnk,c and p̂nm,c



according to

J (p, p̂) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂a (p, p̂)

∂p

∂a (p, p̂)

∂p̂
∂b (p, p̂)

∂p

∂b (p, p̂)

∂p̂
∂c (p, p̂)

∂p

∂c (p, p̂)

∂p̂
∂d (p, p̂)

∂p

∂d (p, p̂)

∂p̂
∂e (p, p̂)

∂p

∂e (p, p̂)

∂p̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

H(p, p̂, λ, µ,γ,%,ξ) represents the Hessian matrix of La-
grangian function (15) which is

H(p, p̂, λ, µ,γ,%,ξ)=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2L

∂p2

∂2L

∂p∂p̂
∂L

∂p̂∂p

∂L

∂p̂2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In SQP method, a merit function is employed to de-
cide whether an iteration can be accepted or not. Several
merit functions have been used in SQP methods, how-
ever, augmented Lagrangians and non-smooth penalty func-
tions [15] are the most popular merit functions. By choos-
ing ω(p, p̂) as a merit function and a value for sl =

[ sl ŝl slλ slµ slγ sl% slξ ]
T

, we know that when
ω(pl + slνl, p̂l + sν) ≤ ω(p, p̂), the current iteration results
will be accepted as well. The overall procedure to solve (5) is
summarized in Algorithm 1.

D. Complexity Analysis

In this section, we briefly investigate the computational
complexity of SQP method. The SQP method is implemented
in a variety of simulation programs where the objective
function is twice differentiable. Taking a look at (15), we
conclude that the computational complexity of Lagrangian
function is O(C × {max

c
mc} ×N) +O(C × {max

c
kc} ×N).

Furthermore, to evaluate (17), we need to compute the inner
matrices H, J and B in which the complexity grows with
O(C × {max

c
mc} ×N) +O(C × {max

c
kc} ×N).

IV. NUMERICAL RESULTS

In this section, we present the numerical results for a
tradeoff analysis between the achievable EE of UAV and SC
networks in the OFDMA-based small-cell and UAV network.
The users and base stations’ locations are generated in 2D
plane according to Poisson point process (PPP) distribution.
For simplicity, we assume that the UAV base stations are in a
fixed position during the signal transmission. The simulation
parameters are given in Table. I.

Fig. 2 shows the optimization of the EE of UAV and SC
networks in terms of the weight coefficient (α) with pcc =

p̂cc = −7 dB. The results reveal a tradeoff between the EEs of
these two networks. As we observe, by increasing α, the EE
of S-UEs increases until some saturation value is reached, on
the other hand, the EE of UAV links decreases as well.

TABLE I: Simulation parameters

Parameter Value
Number of U-UEs (M ) 4
Number of S-UEs (K) 4
Number of subbands (N ) 4
Minimum data rate (Rmin

m,c) 0.3 nat/s/Hz
Maximum power of SC (P SC

max,c), normalized 10 dB
Maximum power of UAV (PUAV

max,c), normalized 15 dB
UAV channel excess attenuation (η) -20 dB
UAV channel parameter (κ1) 0.136
UAV channel parameter (κ2) 11.95
Noise variance (N0) 1
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Fig. 2: Maximum EE of UAV and SC networks vs. α.

To demonstrate the advantage of MOOP in (5), we here
formulate the following SOOP where the EE of only the S-UEs
is maximized subject to the same constraints, i.e., the objective
(5b) is removed from MOOP in (5), simplifying MOOP into
a SOOP as

max
{p,p̂,ϕ}

ηEES-UE (24)

s.t. (5c), (5e) and (5f).

We take the results of solving SOOP in (24) as a bench-
mark and compare them with the results of MOOP in Fig.
3 where the total EE of both S-UEs and U-UEs (i.e.,

Total rate of S-UEs and U-UEs
Total power of BSs+Circuitry power consumption ) versus α for MOOP in
(5) and SOOP in (24) is illustrated. Fig. 3 reveals that the
EE of both S-UEs and U-UEs in MOOP is more than EE
of both S-UEs and U-UEs in SOOP. We can conclude that
solving MOOP results in higher EE in the network particularly
when we consider both objective functions with the same
weight coefficients α = 0.5. As it is inferred, the maximum
value for EE is obtained EEtotal

opt = 1.4 nat/Joule/Hz at about
α ≈ 0.5 while as we compare it with the intersection point in
which the two EE curves in Fig. 2 have the same value of
EEopt = EESC

opt + EEUAV
opt = 1.8 nat/Joule/Hz at α ≈ 0.45, we see

that the total EE of the network is reached at about the same
weight coefficient of maximizing two individual EEs of UAVs
and SCs.
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Fig. 3: Comparing MOOP with SOOP.
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Fig. 4: The iterative minimization of Tchebyshev variable for
solving MOOP by using SQP method.

Next, in order to illustrate the convergence speed of the
Tchebyshev algorithm, we demonstrate the speed of decreas-
ing χ in terms of the number of iterations in Fig. 4. As
we see, the algorithm converges quickly at 5–6 iterations for
χ ≈ 0.04. We conclude this section by computing the order of
convergence using the results given in Fig. 4. In order to do
that, we note that

q ≈
log(∣χk+1−χk

χk−χk−1
∣)

log(∣ χk−χk−1

χk−1−χk−2
∣)

, (25)

hence, evaluating the order of convergence from the Fig. 4
yields q ≈ 2 which confirms quadratic convergence of SQP
method.

V. CONCLUSION

In this paper, we considered a downlink multi-cell OFDMA-
based small-cell UAV network where the UAV-BSs are trans-
mitting along with SCs in the same frequency band. First, we
have formulated a MOOP to jointly maximize the EE of S-
UEs and U-UEs where a minimum data rate constraint for
UAV users is also considered to preserve the UAV-UEs’ QoS.
In contrast to the most prior papers that only maximize the
EE of SCs, we introduced a novel tradeoff between the EE of

UAV and SC networks by formulating the MOOP. Then, to
solve the proposed optimization problems, we have employed
a general mathematical method know as SQP that is widely
used to solve non-convex problems. In numerical results, we
have shown that there is a fundamental tradeoff between the
EE of SC and UAV networks and the evaluations indicate the
superiority of proposed MOOP over SOOP in terms of total EE
of the network. We have also observed that the SQP algorithm
converges quickly and it is best suitable to solve the presented
MOOP.
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