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Abstract—We consider an IoT sensing network with multiple
users, multiple energy harvesting sensors, and a wireless edge
node acting as a gateway between the users and sensors. The
users request for updates about the value of physical processes,
each of which is measured by one sensor. The edge node
has a cache storage that stores the most recently received
measurements from each sensor. Upon receiving a request, the
edge node can either command the corresponding sensor to
send a status update, or use the data in the cache. We aim to
find the best action of the edge node to minimize the average
long-term cost which trade-offs between the age of information
and energy consumption. We propose a practical reinforcement
learning approach that finds an optimal policy without knowing
the exact battery levels of the sensors. Simulation results show
that the proposed method significantly reduces the average cost
compared to several baseline methods.

I. INTRODUCTION

Internet of Things (IoT) is a new technology which uses
minimal human intervention and connects different devices
and applications. IoT enables us to effectively interact with
the physical surrounding environment and empower context-
aware applications like smart cities [1]. A typical IoT sensing
network consists of multiple wireless sensors which measure
a physical quantity and communicate the measurements to
a destination for further processing. Two special features
of these networks are: 1) stringent energy limitations of
battery-powered sensors which may be counteracted by
harvesting energy from environmental sources like sun, heat,
and RF ambient [2], and 2) transient nature of data, i.e.,
the sensors’ measurements become outdated after a while.
Thus, it is crucial to design IoT sensing techniques where the
sensors sample and send minimal number of measurements
to prolong their lifetime while providing the end users highly
fresh data for time-sensitive IoT applications. The freshness
of information from the users’ perspective can be quantified
by the recently emerged metric, the age of information (AoI)
[3]–[5].

We consider an IoT sensing network consisting of mul-
tiple users, multiple energy harvesting IoT sensors, and a
wireless edge node. The users send requests for the physical
processes, each of which is measured by one sensor. The

edge node, which acts as a gateway between the users and
the sensors, has a cache storage which stores the most
recently received measurements of each physical quantity.
Upon receiving a request, the edge node can either command
the corresponding sensor to sample and send a new measure-
ment, or use the available data in the cache. The former leads
to having a fresh measurement, yet at the cost of increased
energy consumption. Since the latter prevents the activation
of the sensors for every single request, the sensors can stay
longer in a sleep mode to save a considerable amount of
energy [6], but the data forwarded to the users becomes
stale. This results in an inherent trade-off between the AoI
of sensing data and sensors’ energy consumption.

Contributions: The main objective of this paper is to find
the best action of the edge node at each time slot, which is
called an optimal policy, to strike a balance between the
AoI and energy consumption in the considered IoT sensing
network. We address a realistic scenario where the edge
node does not know the exact battery level of each energy
harvesting sensor at each time slot, but only the level from
a sensor’s last update. We model the problem of finding
an optimal policy as a Markov decision process (MDP).
We propose a reinforcement learning (RL) based algorithm
to obtain an optimal policy that minimizes a cost function
that trade-offs the AoI and energy consumption. Simulation
results show that the proposed method significantly reduces
the average cost compared to several baseline methods.

Related works: RL is an online machine learning method
which learns an optimal policy through the interactions
between the agent (the edge node in our case) and the
environment. A comprehensive survey of RL based methods
for autonomous IoT networks is presented in [7]. In [8],
[9], the authors used RL to find an optimal caching pol-
icy for non-transient data (e.g., multimedia files). In [10],
deep RL was used to minimize AoI in a real-time multi-
node monitoring system, in which the sensors are powered
through wireless energy transfer by the destination. The
authors in [11] used deep RL to solve a cache replacement
problem with a limited cache size and transient data in an
IoT network. Different from [11], we consider both energy
harvesting and energy limitation of the IoT sensors. The978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



authors in [6] considered a known energy harvesting model
and proposed a threshold adaptation algorithm to maximize
the hit rate in an IoT sensing network. Compared to [6],
we include data freshness/AoI and, by assuming that the
energy harvesting model is unknown, use RL to search for
the optimal policy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider an IoT sensing network consisting of multiple
users (data consumers), a wireless edge node, and a set of K
energy harvesting sensors (data producers), as depicted in
Fig. 1. Sensor k ∈ K = {1, . . . ,K} measures independently
a specific physical quantity fk, e.g., temperature or humidity.
The system operates in a slotted fashion, i.e., time is divided
into slots which are labeled with a discrete index t ∈ N.

We assume that there is no direct link between the users
and the sensors, i.e., the edge node acts as a gateway between
them. Users request for the values of physical quantities so
that at each time slot, there can be multiple requests arriving
at the edge node. We assume that the requests for the value of
physical quantities come at the beginning of each slot and the
edge node sends values to the users at the end of the same
slot. Let rk(t) ∈ {0, 1}, t = 1, 2, . . . , denote the random
process of requesting the value of fk at the beginning of slot
t; rk(t) = 1 if the value of fk is requested and rk(t) = 0,
otherwise.

The edge node is equipped with a cache storage that stores
the most recently received measurement of each physical
quantity. Upon receiving a request for the value of fk at
slot t (i.e., rk(t) = 1), the edge node can either command
sensor k to perform a new measurement and send a status
update, or use the previous measurement in the local cache,
to serve the request. Let ak(t) ∈ {0, 1} denote the command
action of the edge node at slot t; ak(t) = 1 if the edge node
commands sensor k to send a status update and ak(t) = 0
otherwise.

B. Energy Harvesting Model

Sensors rely on the energy harvested from the environ-
ment. Sensor k stores the harvested energy in a battery of
finite size Bk (units of energy). For defining the cost of
transmitting a status update from each sensor to the edge
node, we consider the common assumption (see e.g., [12]–
[16]) that this transmission consumes one unit of energy1.
Let random variable dk(t) ∈ {0, 1} denote the action of
sensor k at slot t; dk(t) = 1 if sensor k sends a status
update to the edge node and dk(t) = 0 otherwise. Note
that dk(t) and ak(t) can be different which is discussed in
Section II-C.

1While simple, this model encompasses the crucial energy cost of low-
power sensors and thus, gives rise to the fundamental trade-off between the
freshness of measurements and energy consumption of the sensors in our
considered status update control problem (see Section II-E). Consideration
of more realistic wireless channels is an interesting future study.
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Fig. 1: IoT sensing network consisting of multiple users (data
consumers), one wireless edge node (i.e., the gateway), and a set
of K energy harvesting wireless IoT sensors (data producers). The
procedure of serving a request by using fresh data is shown by
green lines, and the blue lines show the procedure of serving a
request by using the previous measurements already existing in the
cache.

Let bk(t) denote the battery level of sensor k at the
beginning of slot t. The evolution of the battery level of
sensor k can be expressed as

bk(t+ 1) = min {bk(t) + ek(t)− dk(t), Bk} , (1)

where ek(t) ∈ {0, 1}, t = 1, 2, . . . , is the energy arrival
process of sensor k. We assume that the energy arrival
processes are independent and unknown to the edge node.
Moreover, the energy harvested during slot t can be used
only in a later slot.

C. Status Update with Partial Knowledge of the Battery
Levels

We consider a realistic environment in which the edge
node is informed about the battery levels of the sensors
only via the status update packets. Each status update packet
consists of the value of fk, the generation timestamp, and
the battery level of sensor k. Let variable b̃k(t) denote the
battery level of sensor k at the beginning of that time slot in
which the most recent status update of sensor k was received
by the edge node. Thus, the edge node does not know the
exact battery level of the sensors at each time slot, but it only
has the partial knowledge, i.e., the level from the sensor’s
last update, b̃k(t).

Due to the partial knowledge of the battery levels at the
edge node, it may happen that the edge node commands sen-
sor k to send a status update (i.e., ak(t) = 1), while sensor
k has run out of battery (i.e., bk(t) = 0). Consequently, the
sensor can not send a status update (i.e., dk(t) = 0). In this
case, the edge node does not receive any status update from
the sensor during slot t, and thus, serves the user’s request
using the previous measurement from the local cache.



In conclusion, sensor k sends a status update packet only
whenever it is commanded by the edge node and it has at
least one unit of energy in its battery, i.e.,

dk(t) = ak(t)1{bk(t)>0}, (2)

where 1{.} is the indicator function.

D. Age of Information

Age of information (AoI) is a destination-centric metric
that quantifies the freshness of information of a remotely
observed random process [3]–[5]. Formally, AoI is the time
elapsed since the generation of the last received status update
packet. Let ∆k(t) be the age of the value of fk at the edge
node at the beginning of slot t, i.e., the number of slots
elapsed since the generation timestamp of the last received
status update packet from sensor k. More precisely, ∆k(t) =
t − uk(t) where uk(t) represents the most recent time slot
in which the edge node received a status update packet
from sensor k, i.e., uk(t) = max{t′|t′ < t, dk(t′) = 1}.
Accordingly, the evolution of ∆k(t) can be written as

∆k(t+ 1) =

{
∆k(t) + 1, if dk(t) = 0

1, if dk(t) = 1,
(3)

which can be expressed compactly as ∆k(t + 1) =
(1− dk(t)) ∆k(t) + 1.

E. Cost Function and Problem Formulation

We consider a cost function that has two components: one
penalizes the energy consumption (characterized by dk(t))
and the other one penalizes the information staleness. More
precisely, we define the cost of serving a request for the
value of physical quantity fk at slot t (i.e., rk(t) = 1) as

ck(t) = (1− β)dk(t) + βrk(t)gk(∆k(t+ 1)), (4)

where a weighting parameter β ∈ [0, 1] determines the
trade-off between the emphasis on energy consumption and
information staleness, and gk(·) is an increasing function of
AoI (see e.g. [17]–[19]).

We aim to find the best action of the edge node at each
time slot, which is called an optimal policy, that minimizes
the time-average accumulated cost, defined as

C̄ = lim
T→∞

1

T

T∑
t=1

K∑
k=1

ck(t). (5)

The cost in (5) can be equivalently expressed as

C̄ =

K∑
k=1

C̄k, (6)

where C̄k is the time-average accumulated cost associated
with sensor k, defined as

C̄k = lim
T→∞

1

T

T∑
t=1

ck(t), k = 1, . . . ,K. (7)

Remark 1. Focusing on finding ak(t), k ∈ K, that mini-
mizes (5), we conclude that the above problem is separable
across k. Namely, the decisions of the edge node for each
sensor do not affect the decisions for the others, i.e., the
actions ak(t) are independent across k ∈ K.

By Remark 1, minimizing the system-wise cost in (5)
reduces to minimizing the K per-sensor time-average accu-
mulated costs in (7). This will be a key factor for developing
our algorithm in Section III.

Remark 2. Note that in searching for the policy that
minimizes (7), only the selection of those actions ak(t) for
which rk(t) = 1 needs to be optimized. Namely, it is clear
that if rk(t) = 0, the best action is ak(t) = 0; this implies
dk(t) = 0, and consequently, ck(t) = 0.

In the next section, we model the problem of minimizing
the average cost over all sensors in (5) (which is equal to
minimizing K per-sensor average costs in (7)) as a Markov
decision process (MDP) and search for the optimal policy
using reinforcement learning (RL) [20].

III. REINFORCEMENT LEARNING BASED STATUS
UPDATE POLICY

In this section, we model the problem of finding an
optimal policy at the edge node as an MDP and propose
a Q-learning based algorithm to find an optimal policy that
minimizes the expected long-term cost. As a key advantage,
the proposed algorithm is simple with low complexity of
implementation, which is an important point in practice.

A. MDP Modeling

The MDP model can be defined by the tuple
{S,A,P (s(t+ 1)|s(t), a(t)) , c(t), γ}, where
• S = S1×· · ·×SK is the set of system states, where Sk

is the per-sensor state set. Let s(t) ∈ S denote the state
at slot t, which is equal to s(t) = {s1(t), . . . , sK(t)}.
At each time slot, the per-sensor state sk(t) ∈ Sk is
characterized by 1) partial knowledge about the battery
level of sensor k, i.e., b̃k(t) = bk(uk(t)), and 2) the
AoI of the value of fk in the local cache ∆k(t). Thus,
sk(t) =

{
b̃k(t),∆k(t)

}
. It is important to point out

that the state contains b̃k(t) instead of bk(t), because
the edge node is unaware of the exact battery level of
sensor k at slot t.

• A = A1×· · ·×AK is the action set, where Ak = {0, 1}
is the per-sensor action set. The action selected by the
edge node at slot t is denoted by a(t) ∈ A, which is
defined as a(t) = {a1(t), . . . , aK(t)}, ak(t) ∈ Ak.

• P (s(t+ 1)|s(t), a(t)) is the state transition probability
that maps a state-action pair at time slot t onto a
distribution of states at time slot t+ 1.

• c(t) is the immediate cost function, i.e., the cost of
taking action a(t) in state s(t), which is defined as
c(t) = {c1(t), . . . , cK(t)}.



• γ ∈ (0, 1] is the discount factor used to weight the
immediate cost relative to the future costs. In general,
the factor γ is smaller than one to guarantee that the
cumulative reward is finite, given that the immediate
cost is bounded [20].

The long-term accumulated cost is defined as

C(t) =

K∑
k=1

Ck(t), (8)

where Ck(t) =
∑∞
τ=0 γ

τ ck(τ + t). Formally, policy π =
π(a(t)|s(t)) is defined as a mapping from state s(t) to
a probability of choosing action a(t). Note that π =
{π1, . . . , πK}, where πk = πk(ak(t)|sk(t)), k ∈ K. Our
optimization problem is to find an optimal policy that
minimizes the expected long-term accumulated cost over
all sensors, i.e., π∗ = arg minπ Eπ [C(t) | π]. According to
Remark 1, the optimization problem is separable across k,
and thus, π∗ = {π∗1 , . . . , π∗K} can be found by solving K
sub-problems

π∗k = arg min
πk

Eπk [Ck(t) | πk] , k ∈ K. (9)

The state-value and action-value functions are defined to
evaluate a policy π. The state-value function of a state s
under a policy π, denoted by vπ (s), is the expected return
when starting in state s and following the policy π thereafter,
i.e., vπ (s)

.
= Eπ [C(t)|s(t) = s] ,∀s ∈ S. The action-value

function, denoted by qπ (s, a), is the expected return for
taking an action a in state s and thereafter following the
policy π, i.e., qπ (s, a)

.
= Eπ [C(t)|s(t) = s, a(t) = a] ,∀s ∈

S, a ∈ A.
The optimal action-value function for state s and ac-

tion a is defined as q∗ (s, a)
.
= minπ qπ (s, a). If q∗ (s, a)

is available, the optimal policy π∗ is obtained simply
by choosing the action a that minimizes q∗ (s, a) in
each state. By using Remark 1, we have q∗ (s, a) =∑K
k=1 q

∗
k(sk(t), ak(t)), where q∗k (s, a) = minπk qπk (s, a)

and qπk (s, a) = Eπk [Ck(t)|sk(t) = s, ak(t) = a].
If the state transition probabilities P (s(t+ 1)|s(t), a(t)),

s ∈ S, a ∈ A, are available, the optimal policy can be
found by dynamic programming, e.g., by the model-based
methods such as the value iteration algorithm [20, Ch. 4].
Since P (s(t+ 1)|s(t), a(t)) is unknown in our considered
scenario, we use model-free RL to learn the action-value
functions by experience.

B. Online Q-learning Algorithm

Q-learning is an online model-free RL algorithm that finds
the optimal policy iteratively. In the Q-learning method,
the learned action-value function for sensor k, denoted as
Qk, k ∈ K, directly approximates the optimal action-value
function q∗k(s, a), ∀s ∈ Sk, a ∈ Ak [20, Sect. 6.5]. The
convergence Qk → q∗k requires that all state-action pairs
continue to be updated. To satisfy this condition, a typical
approach is to use the ”exploration-exploitation” technique

Algorithm 1 Status update control algorithm via Q-learning

1: Initialize Qk(s, a) = 0, ∀s ∈ Sk, a ∈ Ak, k ∈ K
2: for each slot t = 1, 2, 3, . . . do
3: for k = 1, . . . ,K do
4: if rk(t) = 0 then
5: ak(t) = 0
6: else
7: ak(t) is chosen according to the following prob-

ability

ak(t) =

{
arg mina∈Ak

Q(sk(t), a),w.p.1− ε(t)
a random action a ∈ Ak,w.p. ε(t)

8: if ak(t) = 1 then
9: Command sensor k to send a status update

packet
10: if bk(t) > 0 then
11: dk(t) = 1
12: else
13: dk(t) = 0
14: end if
15: else
16: dk(t) = 0
17: end if
18: end if
19: Update AoI according to (3) and calculate ck(t)
20: end for
21: Wait for the next requests and compute s(t+ 1)
22: for each sensor k = 1, . . . ,K do {Update Q-tables}
23:

Qk (sk(t), ak(t))← (1− α(t))Qk (sk(t), ak(t))
+α(t) (ck(t) + γmina∈Ak

Qk (sk(t+ 1), a))
24: end for
25: end for

in the action selection. The ε-greedy algorithm is one such
method that trade-offs exploration and exploitation [20,
Sect. 6.5].

Our proposed Q-learning algorithm is presented in Algo-
rithm 1. To allow exploration-exploitation, the edge node
takes either a random or greedy action at slot t; the
probability of taking a random action is denoted by ε(t),
and thus, the probability of exploiting the greedy action
ak(t) = arg mina∈Ak

Qk(sk(t), a) is 1 − ε(t). Generally,
during initial iterations, it is better to set ε(t) high in
order to learn the underlying dynamics, i.e., to allow more
exploration. On the other hand, in stationary settings and
once enough observations are made, small values of ε(t)
become preferable to increase tendency to exploitation.

IV. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the benefits of the proposed Q-learning method sum-
marized in Algorithm 1.

A. Simulation Setup

The simulation scenario consists of K = 3 energy
harvesting sensors, i.e., K = {1, 2, 3}. Each sensor has a
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Fig. 2: Convergence behavior of the proposed algorithm and
baseline methods for weighting parameter β = 0.6.

battery of finite capacity B = 10 units of energy. At each
time slot the probability that the value of fk is requested
(i.e., rk(t) = 1) is denoted by pk, i.e., Pr{rk(t) = 1} = pk.
We set pk = 0.1.

We model the underlying energy harvesting process of
sensor k as a two-state Markov chain with state space
{Vk,1, Vk,2}. For example, the states can represent ”good”
and ”bad” energy harvesting states [16]. Let Vk(t) denote
the state of the environment at slot t for sensor k. At slot
t, if Vk(t) = Vk,1, sensor k harvests one unit of energy
(i.e., ek(t) = 1) with probability λk,1, i.e., Pr(ek(t) =
1|Vk(t) = Vk,1) = λk,1. Similarly, if Vk(t) = Vk,2, sensor k
harvests one unit of energy with probability λk,2. We denote
the transition probability from state Vk,i to state Vk,j by
pk,ij = Pr(Vk(t) = Vk,i|Vk(t−1) = Vk,j), i, j ∈ {1, 2}. We
set λk,1 = 0.04, λk,2 = 0.0004, pk,11 = 0.7, pk,12 = 0.3,
pk,21 = 0.6, and pk,22 = 0.4, k ∈ K2.

For determining the cost function in (4), we define the
function gk(∆k(t+ 1)) as

gk(∆k(t+ 1)) =

(
∆k(t+ 1)

ζk

)µ
, (10)

where ζk is the tolerance of using aged measurements of fk,
and µ ≥ 1 is a parameter that adjusts how aggressively we
penalize when the AoI has a higher value than the tolerance
of fk, i.e., when ∆k(t+ 1) > ζk. The function in (10) is
a scaled version of a non-linear AoI; different functions for
non-linear AoI have been investigated in [17]–[19]. Note that
with µ = 1 and ζk = 1, ∀k ∈ K, (10) is purely characterized
by the AoI, i.e., g(∆k(t+1)) = ∆k(t+1). We set µ = 2 and
select ζk uniformly random from the interval [3 15]. Note
that other functions are also applicable, e.g., g(∆k(t+1)) =
log(1 + ∆k(t+ 1)) [17].

2In general, one can consider different energy harvesting models among
the sensors for the proposed method, i.e., different values for pk,ij , λk,1,
and λk,2 for each k ∈ K.
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Fig. 3: Performance of our Q-learning algorithm and other baseline
methods as a function of weighting parameter β in terms of (a)
average cost and (b) normalized average cost.

In Algorithm 1, we set ε(t) = 0.02+0.98e−εdt with decay
parameter εd = 0.01, and the discount factor as γ = 0.99.
The learning rate α(t) is set to α(t) = 0.5 during the first
1/εd = 100 iterations and after that α(t) = 0.1.

We evaluate the performance of the proposed algorithm in
terms of average cost defined in (5). Three baseline policies
are considered: greedy, threshold, and random. In the greedy
policy, whenever the value of fk is requested (i.e., rk(t) =
1), the edge node commands sensor k to send a status update
(i.e., ak(t) = 1); sensor k sends a status update if the battery
is non-empty, bk(t) > 0. In the threshold policy, whenever
the value of fk is requested (i.e., rk(t) = 1) and ∆k(t) +
1 > ζk, the edge node commands sensor k to send a status
update. In the random policy, a random action ak(t) ∈ {0, 1}
is selected at each time slot. For the benchmarking, we also
consider a genie-aided Q-learning method that knows the
exact battery level of all sensors at each time slot. This policy
serves clearly as a lower bound to the proposed Q-learning
algorithm.



B. Results

Fig. 2 depicts the learning curves of each algorithm
for weighting parameter β = 0.6. The proposed Q-learning
algorithm significantly outperforms other baseline meth-
ods; the decrease of the average cost is roughly threefold
compared to the threshold algorithm, which has the best
performance among the baseline policies here. Interestingly,
the gap between the proposed Q-learning algorithm and the
genie-aided Q-learning algorithm is small. This demonstrates
that the proposed algorithm has high performance even it
only has the partial knowledge about the battery levels of
the sensors at each time slot, which is the case in practice.

Next, we focus on the average cost obtained by averaging
each algorithm over 5 episodes where each episode takes
3×107 iterations. Fig. 3(a) illustrates the average cost of each
algorithm for different values of weighting parameter β. For
better visualization, Fig. 3(b) depicts a normalized average
cost of each algorithm, defined as the ratio of the average
cost of each algorithm to the average cost of the random
policy. As illustrated in Fig. 3 the greedy and random
algorithms approximately coincide, i.e., the greedy is as
bad as the random in the considered simulation scenario.
As shown in Fig. 3(a), when β increases, the average cost
increases for all algorithms, because the second term of (4)
is squared (µ = 2) (see (10)). As shown in Fig. 3(b), for
all values of β, the proposed Q-learning algorithm, which
does not know the exact battery levels, performs close to
the genie-aided Q-learning algorithm. Furthermore, the Q-
learning algorithm reduces the average cost approximately
by a factor of 3 compared to the threshold algorithm.

V. CONCLUSIONS

We investigated a status update control problem in an
IoT sensing network consisting of multiple users, multiple
energy harvesting sensors, and a wireless edge node. We
modeled the problem as an MDP and proposed an RL based
algorithm that finds an optimal status update control policy
that minimizes the average long-term cost which strikes
a balance between the AoI and energy consumption. The
proposed scheme does not need any information about the
energy harvesting model and the exact battery level of the
sensors. Simulation results showed the advantage of the
proposed Q-learning algorithm.
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