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Abstract—Phased arrays used in millimeter-wave sys-
tems challenge the concept of power amplifier (PA) lin-
earization by digital predistortion (DPD). This is due
to the shared digital path and inaccuracies in analog
beamforming and other component variations. However,
the group behavior of multiple parallel nonlinear branches
can be expected to be more predictable due to averaging
effect compared to a single branch behavior. In this paper,
we use a power adaptive nonlinear model to mimic the
average behavior of a single PA and utilize the probability
distribution of the input power of each individual PA
to approximate the expected nonlinear behavior of the
array over-the-air. The approximated array response is
used for the DPD training. The simulation results indicate
that the proposed approach provides good linearization
performance for large arrays that have varying amplitude
and phase weights.

I. INTRODUCTION

The high data rate demand of the next generation
communication systems require efficient utilization of
higher frequency bands up to millimeter-wave (mmW)
frequencies and even higher. The physical size of a
single antenna element is small at such frequencies thus
allowing to pack multiple antenna elements in a compact
form factor. Multiple antennas are often implemented as
phased arrays that are used to compensate for the high
path loss of a mmW signal [1].

In order to deliver a decent transmission power for
the antennas with a good power efficiency and low
routing loss, practical array implementations have often
an individual transmit power amplifier (PA) driving
each antenna element. The power efficiency is desired
not only for reducing the power consumption of the
transmitter but also for reducing the thermal problems
that are often severe due to the densely packed PAs
used in mmW systems [2]. Hence, high-efficiency PAs
are needed in mmW phased arrays to reduce the power
consumption and to improve the reliability of the devices
to increase their life-time. However, PA efficiency is
usually at maximum when it is operating close to its
peak power where the behavior of the PA is nonlinear.
The nonlinearity of the PA results to in-band distortion
(which degrades bit error rate) and out-of-band emissions
(which causes interference to other users in adjacent
frequency bands) [3].

Digital predistortion (DPD) can be used to compensate
for the PA nonlinearity. However, analog beamforming

arrays with multiple parallel PAs each having differ-
ent phase and amplitude weights challenges the DPD
concept. This is due to the fact that the parallel PAs
have only one shared digital input and hence a single
DPD has to be shared by multiple PAs. The nonlinear
characteristics of the PAs are not identical due to several
reasons. First, the PAs of the array can be different due
to the implementation tolerances, temperature gradient
and process variations. Second, in circulator-free array
implementations [4], the PAs sees a load which varies
over the steering angle due to the finite antenna coupling
[5]. Even if the PAs are identical, their input powers may
differ due to the implementation of the mmW power
division network with phase shifters. The input powers
over the branches may vary also with the steering angle
due to the phase shifter control-word dependent gains
[6], [7]. In addition, the input power per PAs can be
purposely changed in order to shape the beam with
variable gain amplifiers (VGAs) at each antenna branch
e.g. in the case of amplitude tapering or zero forcing
beamforming.

Several techniques for learning the nonlinear behavior
of an array have been reported in the recent literature.
In [8], DPD for fully digital beamforming system having
PAs with different characteristics is presented. However,
the input power per PA is assumed to be constant. In [9]-
[11] the behavior of each individual PA is learned by
switching the PAs to a single feedback path at different
time instants. The learned PA or DPD models can be
used to perform DPD over the PAs as in [11] or the array
can be modelled in the far-field as in [9]. However, this
process is time consuming and is not possible for real
time operation especially if the number of PAs is large.
In [7] and [12], the PA outputs are summed in analog
domain to mimic the array behavior in the intended trans-
mission direction. The used feedback receiver is called as
phased feedback [7] or anti-beamforming network [12]
and it enables continuous update of the DPD without the
knowledge of the individual PA behaviors. However, the
array feedback is complex to implement and the finite
accuracy of the analog weighting is expected to have
major impact on the DPD performance.

Due to the large number of antenna elements in mmW
phased arrays, the array is able to average some of
the variations out [7]. Hence, even if the parallel PA



branches have varying nonlinear behavior, the group
response of the PAs can be predicted by using the
statistics of the variations over the parallel branches. This
may even simplify the DPD procedure due to the fact
that the DPD process can be made independent on the
beamforming. In this paper, we (i) extend the power-
adaptive model of [13] to mimic the average behavior
of a single PA, (ii) utilize the probability distribution
of the input powers to approximate the statistics of
the nonlinear behavior of the PAs and (iii) combine
the statistical models in order to mimic the statistical
behavior of the array. In (iii), the concept of virtual
array is used to create the array model. By using the
presented approach the array DPD can be performed in
statistical sense and hence it is not required to be updated
continuously.

II. STATISTICAL DPD ARCHITECTURE FOR PHASED
ARRAY

A. Overview of the Array DPD Setup

The block diagram of a phased array with a com-
mon DPD is presented in Fig. 1. The array has MA

parallel antennas and PAs. In the simulations, we use
a memoryless look-up table (LUT) PA model extracted
from amplitude to amplitude modulation (AMAM) and
amplitude to phase modulation (AMPM) measurements
of a 13 GHz, 45-nm, 4-stack complementary metal oxide
semiconductor (CMOS) silicon on insulator (SOI) PA
[14]. The PA simulation model is presented in Fig. 2(a).
The antennas are assumed to be identical λ/2 spaced
patch elements aligned as uniform linear array (ULA)
in horizontal plane. Throughout the paper, we use 100
MHz, 64-quadrature amplitude modulated (QAM) signal
with root-raised-cosine pulse shaping (0.35 roll-off).

For the PA behavior training, we use a power adaptive
model presented in Section II-B. The model is trained
offline by switching at least one of the PA outputs to the
feedback at a time. Throughout this paper we assume
that the PAs are identical, but their inputs have randomly
varying root mean square (RMS) power depending on
the beamforming angle. The virtual array concept is
used to create the statistical array model and is shown
in Section II-C, and the DPD coefficient calculation is
revised in Section II-D.

B. Power Adaptive PA Modelling

The power differences over the parallel branches
change the input power of the PAs. Hence, the nonlinear
behavior of each parallel branch is different. The PA
modelling is often done by using polynomial models
which are valid only close to the corresponding op-
erational point to which it is trained. Hence, a power
adaptive model for the PA is required which is valid at
different input power levels. In [13] a power adaptive
model for DPD is used due to the rapid variation of PA
input power in systems where adaptive transmitter power
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Fig. 1. Block diagram of the statistical array DPD system using virtual
array and power adaptive PA model.
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Fig. 2. (a) AMAM and AMPM responses of the PA simulation model
and (b) example distribution with 16 virtual elements.

control is used. Here we extract the power adaptive
PA model for large input power variation over the PA.
Note that equation (4) is different from the mentioned
reference due to the fact that we use the power adaptive
model to model the PA and not the DPD.

The power adaptive model is created as follows. First,
the PA input power range is divided into L points, Pl,
l ∈ {1, 2, ..., L}, as shown in Fig 3. The powers are
arranged in a descending order as P1 > P2 > ... > PL.
In [13], the model is used to directly update the DPD
coefficients based on the instantaneous RMS power. We
use the same model to learn the nonlinear behavior of
the PAs of the array. The PA coefficients C(l) with given
input power Pl can be updated as a function of power
backoff from the P1 as

C(l) = Ĉ + ∆C(l), (1)

where

∆C(l) =


α
(l)
lin∆Clin

α
(l)
n−lin∆Cn−lin

, (2)

α
(l)
lin = Gl −G1 , α(l)

n−lin = γl − γ1, (3)

and

γl =

√√√√∑N
n=1 |y(n)(l) −Gl x(n)(l)|2∑N

n=1 |y(n)(l)|2
. (4)
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Fig. 3. Normalized average square error in power adaptive PA
modelling.

In (1), Ĉ denotes the coefficient vector of the PA at
reference power level P1 and ∆C(l) is the change in
the PA coefficients at power level Pl with respect to the
reference power level P1. In (2), ∆Clin and ∆Cn−lin

represent the linear and nonlinear coefficients of the PA,
αlin and αn−lin are the scaling factors for linear and
nonlinear part of the coefficient vector, respectively. In
(3), Gl is the gain of the PA at Pl and G1 is the gain
of the PA at power level P1. In (4), γl is the measure
of nonlinearity (MoN) of the PA at Pl, γ1 is the MoN
of the PA at P1, y(n) and x(n) are the output and input
signal of the PA with sampling index n and N is the
number of time domain samples.

The performance of the power adaptive model of [13]
can be improved for large input power range, by dividing
the input power range into regions, with logarithmic
spacing of 4 dB and use an individual power adaptive
model of (1) – (4) at each of these regions. To demon-
strate the performance of the extended power adaptive
model, MATLAB simulation with the models presented
in Section II-A is performed. The model is trained over
1024 samples with the modulated signal. The normalized
average square error (NASE) of the output calculated
as the difference between power adaptive model with
respect to the PA LUT simulation model and is shown
in Fig. 3.

C. Statistical PA Array Model Training

The proposed array DPD approach was shown in Fig.
1. The amplitude distribution (βA = {β1, β2, ..., βMA}),
causing the change in the input power of the PAs is
assumed to be a set of independent and identically
distributed Gaussian random variables in logarithmic
scale with mean 0 and standard deviation σA. The virtual
array under the dashed box is used to predict the array
behavior and consist of three blocks. In the first block,
the probability distribution function (PDF) of the ampli-
tude distribution (βV ) is sampled MV times as shown
in Fig 2(b). We assume that the number of distribution
samples equals to the number of array elements, i.e. MV

= MA. In the second block, the power adaptive PA model
given in Section II-B is used to provide PA coefficients
at each sample of (βV ) in addition to the RMS power of
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Fig. 4. Mean value of normalized average square error in array
response prediction.

the common input. The PA coefficients are then scaled
according to scaling factor

S(βm) =
p(βm)∑MV

m=1 p(βm)
MV , (5)

where p(βm) is the probability of input amplitude βm
in the virtual array. Hence, the expected value of the kth
order array coefficient can be written as

Ck =

MV∑
m=1

C
(l)
m,kS(βm), (6)

where Cm,k denotes the mth sample of kth coefficient. l
denotes the RMS power of input signal + sample of βV .
Finally, the predicted array far-field response is given by

F̂A(n) =
1

GA

K∑
k=1

Ckx(n)|x(n)|k−1, (7)

where GA is the gain of the array and K is the order of
the polynomial used in the power adaptive model.

The performance of the virtual array model is sim-
ulated with different numbers of antenna elements in
ULA. The simulations are performed over 500 Monte
Carlo (MC) rounds by using the same PA model and
waveform parameters as those in Section II-A. Fig. 4
shows the mean value of NASE in predicting the average
array response with the presented virtual array approach.
The simulation is run with different standard deviation of
the input amplitude. The result shows that the modelling
accuracy decreases as the standard deviation of the
input amplitudes increase. However, the modelling error
decreases linearly 3dB every time when the number of
antennas is doubled. Hence, more parallel PA branches
we have, the better the statistical model performs.

D. DPD Coefficient Extraction

The expected array model derived in the previous
sections is finally used to train the DPD. The predistorter
model is an envelope power series with four coefficients.
By using the predicted array response of (7), the predis-
torter input signal x(n) can be written as

x(n) =

K∑
k=1

dkF̂A(n)|F̂A(n)|2(k−1), (8)



where d = [d1, d2, ..., dK ], d ∈ CK denotes the DPD
coefficient vector, K is the number of DPD coefficients,
and F̂A(n) is the array response predicted by (7). The
problem can be written into matrix form and solved by
least squares (LS) estimation as

d = (FH
A FA)−1 FH

A x, (9)

where FA ∈ CN x K, and include all the product terms
of FA(n)|FA(n)|2(K−1) of (8), x ∈ CN is the common
input signal, N is the number of time domain samples
and (.)H denotes the hermitian transpose.

III. STATISTICAL DPD PERFORMANCE ANALYSIS

A. Simulation Setup

The performance of the proposed DPD approach is
simulated for different sizes of ULAs. The used simula-
tion model was presented in Section II-A and the DPD
model is presented in Sections II-B-II-D. The average
input power per PA is chosen to be -1 dBm. This
corresponds to PA output power of 14.5 dBm as shown
in Fig. 2(a). The RMS input amplitudes of the PAs are
assumed to follow a Gaussian distribution in logarithmic
scale with mean 0 and standard deviation σA. The
simulations are performed for σA = {0, 1, 2, 3} dB and
the number of antenna elements in the array is varied as
MA = {1, 2, 4, 8, 16, 32, 64, 128}. 500 MC rounds with
random steering angle θs ∈ U(−40o, 40o), where U
denotes the Uniform distribution, are simulated for each
scenario. The used performance metrics are the adjacent
channel power ratios (ACPR), the total radiated adjacent
channel power ratio (TRACPR) and the error vector
magnitude (EVM). The ACPRmax and TRACPRmax are
presented as maximum of lower and upper adjacent
channel powers. The ACPRmax and EVM are measured
at the steering angle while the TRACPRmax is integrated
over the space as proposed in [7].

As a reference scenario for the proposed DPD
approach we use ideal phased feedback or anti-
beamforming network presented in [7], [12] which is
used to continuously measure the array response and
update the DPD coefficients for every MC run. Hence,
in the reference scenario, the array response is assumed
to be known at each time instant.

B. Simulation Results

Fig. 5, shows the mean value of the EVM for standard
deviation of input amplitude σA = {0, 1, 3} dB for
different numbers of antenna elements in the array.
The phased feedback DPD approach is presented by
red (solid and dashed) lines in the figure and is the
reference DPD against the proposed virtual array-DPD.
From the figure it can be seen that up to 1 dB of
standard deviation of input amplitude variations, the
virtual array-DPD performs the same as that of the
phased feedback DPD. When the standard deviation
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of the amplitude variation increases up to 3 dB, the
performance of the virtual array-DPD deteriorates for
small numbers of antenna elements in the array (MA).
This is due to the fact that in small arrays, the array
response is more random due to less averaging effect
and thus the array nonlinearity strongly depend on the
individual branch input amplitudes. However, in large
antenna arrays, e.g. MA ≥ 16 , the array behaviour is
more predictable because the high number of elements
averages the model towards the expected one due to
the law of large numbers. Hence, the sampling mean
converges to the expected mean and the virtual array-
DPD predicts the average array response with a good
accuracy. Fig. 6 presents the ACPRmax measured at the
steering angle. The directed ACPRmax behaves similarly
as EVM.

From Figs. 5 and 6 it can be seen that in the



presence of large amplitude differences the performance
of both DPD (phased feedback and virtual array-DPD)
is improved in terms of ACPRmax and EVM. This is
due to the fact that some of the PAs are driven hard
into compression while other PAs are relatively linear
[9]. If the array is modelled or measured correctly, the
hard driven PAs are compensated for by the low driven
PAs over-the-air. Hence, the in-band distortion creates
a notch in the beamforming direction, thus improving
ACPRmax and EVM in the beamforming direction as
proposed in [7]. However, the out-of-band distortion
power is increased in other directions, thus affecting
to the TRACPRmax integrated over the space. Hence,
the TRACPRmax increases in the presence of larger
variations as seen in Fig. 7.

The simulation results indicate that larger arrays can
benefit from the differences over the nonlinearities even
if the instantaneous RMS input powers are not known
and the DPD is not trained for every beamforming angle.
Moreover, the DPD process can be made independent on
the beamforming as the larger arrays have less variance
in the nonlinear behavior. In principle, this means that
even relatively simple DPD schemes where a power
adaptive model is trained offline or even extracted from
simulations or factory measurements can achieve decent
DPD performance that satisfies the specifications. As a
reference, the current total radiated ACP specification
in 3GPP/NR standard is 28 dBc for 28 GHz frequency
band. The ultimate solution would hence be that the
feedback is not necessary or is required only for updating
the power adaptive base model.

IV. CONCLUSION

We utilize the statistical behavior of the PA array
for training the DPD. The idea was to make DPD
independent on beamforming such that it is not required
to be updated continuously. We use a power adaptive
nonlinear model to mimic the average behavior of a
single PA, and utilize the probability distribution of
the input powers to approximate the expected nonlinear
behavior of the array over-the-air. The simulation results
indicate that the statistical model can predict the array
behavior with a good accuracy and it can be used to
train the DPD for large arrays. On the contrary, smaller
arrays require continuous feedback due to high variation
in the nonlinear behavior of individual array branch.
Similar concepts can be used for different beamformer
distributions, component variations etc. The presented
approach can be implemented as a slow process and the
actual DPD of large arrays (16 elements or more), do
not necessarily require constant update to fulfill the quite
relaxed 3GPP NR ACPR requirements. In principle, this
means that even a relatively simple DPD scheme, where
a power adaptive model is trained offline, may produce
decent results. The model can be even extracted from
simulations or factory measurements.
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