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Abstract—Cognitive Radio (CR) systems utilize spectrum
sensing to decide transmission time in an opportunistic
manner. Spectrum sensing can also be used not only to
determine the instantaneous on/off state of the channel
but also to monitor the statistics of primary user to gain
information on occupancy pattern. This knowledge can be
exploited in many ways to improve CR systems. In this
paper, we propose an analytical model to link the sensing
period with the observed spectrum occupancy. Moreover,
the effect of spectrum sensing periods on the estimated
primary activity pattern is analysed. Simulation results
show that the proposed model captures with reasonable
accuracy the spectrum occupancy observed at the CR.
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nential distribution, primary activity statistics

I. INTRODUCTION

Dynamic spectrum access (DSA)/Cognitive Radio
(CR) networks aim to solve the spectrum scarcity prob-
lem by increasing radio spectrum utilization. This can
be achieved by allowing secondary (unlicensed) users
(SUs) of DSA/CR to access the spectrum of primary
(licensed) users (PUs) in an opportunistic and non-
interfering manner during PU idle times (spectrum holes)
[1, 2]. In essence, a CR is a smart device that is capable
of changing its transmission parameters according to the
surrounding environment. A detailed overview of CR
systems can be found in [3]. Owing to the opportunistic
nature of operation for DSA/CR, the SU behaviour is
affected by the PU transmission pattern. It is important
from theoretical [4] and practical points of view to have
accurate knowledge of the PU activity (busy and idle)
periods distribution. This knowledge can be exploited
to access the spectrum more effectively by selecting
the most appropriate channel for transmission [5] and
enhancing the forecasting of PU occupancy patterns to
minimize the interference [6].

DSA/CR users utilize spectrum sensing decisions to
obtain information on PU channel activity. The PU chan-
nel is sensed periodically by DSA/CR users to decide the
channel state (busy or idle) at every sensing event based
on a signal detection algorithm [7]. These spectrum
decisions can be used to estimate the durations of the
idle and busy periods. Unfortunately, the estimation of
PU activity periods and statistics by means of spectrum

sensing (periodic channel observations) suffers from
practical limitations. These limitations reduce the statis-
tical estimation accuracy of PU parameters at DSA/CR
users. The interest and focus of this work is on analysing
the impact of spectrum sensing period on the accuracy of
the estimated PU activity statistics (in particular, in the
distribution of PU busy/idle periods). Despite being an
elemental problem of crucial importance for CR systems,
this has never been considered or analysed before in
the existing literature. The impact of sensing errors (i.e.,
false alarms and missed detections) is out of the scope
of this work and therefore a high signal-to-noise ratio
(SNR) scenario with no sensing errors is here considered.
The mathematical analysis of the low SNR scenario
with sensing errors requires a significantly more complex
study and will be addressed in future work.

The contribution of this work is threefold:

1) Analytical expressions are derived for both the
probability density function (pdf) and the cumu-
lative distribution function (cdf) observed at the
SU taking into account the effect of the spectrum
sensing period.

2) Analytical expressions are derived for the maximum
error with different distributions taking into account
the effect of the spectrum sensing period.

3) The effect of the spectrum sensing period on the
distribution observed at the SU is studied.

The remainder of this paper is organised as follows.
First, Section II describes the system model and provides
a formal description of the problem of estimating the
PU activity statistics based on spectrum sensing. Section
III provides closed-form expressions for the pdf and cdf
of the periods observed at the SU as a function of the
original distribution at the PU and the sensing period
employed by the SU. Section IV provides a closed form
expression for the maximum observed error as a function
of sensing period and distribution parameters. Section V
validates the proposed pdf/cdf models with simulations
and analyses thoroughly the effects of the sensing period
and distribution parameters on the distribution estima-
tion. Finally, Section VI concludes the paper.
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Fig. 1. Considered model. Ts, T1, T̂1 represent the sensing duration,
original busy period duration and estimated busy period duration,
respectively. Tx

e and T y
e are the errors in period estimation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, an SU is considered to detect a single
PU activity signal using spectrum sensing. The results of
sensing decisions are introduced as a binary alternating
state: busy when the PU signal is present and idle
when the PU signal is absent. Based on the sequence
of busy/idle spectrum sensing decisions, it is possible
to estimate the durations of the idle (T0) and busy
(T1) periods as shown in Fig. 1. The same model was
considered in [8].

The average busy period is E {T1} and the average
idle time is E {T0}. The duty cycle (Ψ) can be estimated
as:

Ψ =
E {T1}

E {T0}+ E {T1}
(1)

As discussed in Section I, we assume a high SNR
scenario with no sensing errors so that the only degrading
effect considered in this study is the impact of the finite
sensing period Ts, which is the aspect of interest in this
work. The PU activity periods Ti (i ∈ {0, 1}, i = 0
for idle periods and i = 1 for busy periods) can be
sensed accurately in case the channel is sensed exactly
at the points of PU state change. In practice the SU is
de-synchronised with the PU channel activity and the
PU channel is sensed at arbitrary time instants every
Ts time units (t.u.). As a result, the estimated periods
T̂i depend not only on the original periods Ti but also
on the employed sensing period Ts. The main objective
of this work is to explore the relation between the
original periods Ti and the estimated periods T̂i as a
function of the sensing period Ts. To this end, closed-
form expressions are developed for the pdf/cdf of T̂i as
a function of the pdf/cdf of Ti and Ts.

III. DISTRIBUTION OF THE ESTIMATED PERIODS

The estimated periods T̂i can be expressed as a func-
tion of the original periods Ti as T̂i = Ti+Te, where Te
is the error component, which according to the model of
Fig. 1 is given by Te = T ye −T xe . As it can be appreciated
from Fig. 1, both T xe and T ye can take any value between
0 and Ts. A ressonable and intuitive assumption is that
both of them follow a uniform distribution (i.e., T xe and
T ye ∼ U(0, Ts)). This assumption can be verified from
Fig. 2, which was obtained by simulating the sensing of
a sufficiently high number of exponentially distributed
periods Ti using a sensing period Ts = 5 t.u., recording
the error components T xe and T ye , and computing their
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Fig. 2. The pdf of the error components: (a) fTx
e

(t), (b) fTy
e

(t).

Fig. 3. The pdf of the combined error component fTe (t).

normalized histograms (i.e., pdfs). As it can be observed,
the assumption of uniform distribution for the T xe and T ye
error components is correct.

Assuming T xe and T ye are independent, the pdf of the
combined error Te (which is the sum of T ye and −T xe )
can be obtained as the convolution of the distributions of
T ye ∼ U(0, Ts) and −T xe ∼ U(−Ts, 0) [9], which leads
to a symmetric triangular distribution with width 2Ts,
Te ∼ ∆(−Ts, Ts). The pdf for the triangular distribution
of Te is:

fTe
(t) =


0 t < − Ts
Ts+t
T 2
s

−Ts ≤ t ≤ 0
Ts−t
T 2
s

0 ≤ t ≤ Ts
0 t > Ts

, (2)

This model can be verified from simulation results as
shown in Fig. 3.

The PU state holding times (T0 and T1) are random
variables assumed to be independent and exponentially
distributed [10]. The exponential distribution is the most
common model used to describe the periods of the on/off
states in the literature [11, 12] even though it is proven
not to be the most accurate since other distributions pro-
vide better fit for real scenarios such as the generalized
Pareto, Gamma or even more complicated distributions
[13]. We use the exponential distribution because it is a
special case of the generalized Pareto distribution with
a simpler mathematical form. The pdf and cdf for the
exponential distribution are given as [14]:



fT̂i
(t) =



0 t < µi − Ts
Ts + t− µi

T 2
s

− 1

λiT 2
s

[
1− 1

λi
fTi

(t+ Ts)

]
µi − Ts ≤ t < µi

Ts − t+ µi
T 2
s

+
1

λiT 2
s

[
1 +

1

λi
fTi

(t+ Ts)−
2

λi
fTi

(t)

]
µi ≤ t ≤ µi + Ts

1

(λiTs)2

[
fTi

(t+ Ts)− 2fTi
(t) + fTi

(t− Ts)
]

t > µi + Ts

(6)

FT̂i
(t) =



0 t < µi − Ts

t2 − (µi − Ts)2

2T 2
s

−

[
1− λi(Ts − µi)

]
(t+ Ts − µi)

λiT 2
s

+
1

(λiTs)2
FTi

(t+ Ts) µi − Ts ≤ t < µi

µ2
i − t2

2T 2
s

− 2− λiTs
2λiTs

+

[
1 + λi(Ts + µi)

]
(t− µi)

λiT 2
s

+
1

(λiTs)2

[
FTi

(t+ Ts)− 2FTi
(t)

]
µi ≤ t ≤ µi + Ts

1 +
1

(λiTs)2

[
FTi

(t+ Ts)− 2FTi
(t) + FTi

(t− Ts)
]

t > µi + Ts

(8)

fTi(t) =

{
0 t < µi
λie
−λi(t−µi) t ≥ µi

(3)

FTi
(t) =

{
0 t < µi
1− e−λi(t−µi) t ≥ µi

(4)

where λi is the distribution scale parameter and µi is the
distribution location parameter (also the smallest value
for the PU activity period).

Since T̂i = Ti + Te, the pdf of the estimated periods
can be obtained as [9]:

fT̂i
(t) = fTi

(t) ∗ fTe
(t) =

∫ ∞
−∞

fTi
(τ) · fTe

(t− τ)dτ

(5)

where fTi
(t) and fTe

(t) are given by (3) and (2) respec-
tively. The operator ∗ refers to the convolution operation.
The resulting expression for the pdf fT̂i

(t) is shown in
(6) while the cdf FT̂i

(t) can be obtained through the
direct integration of fT̂i

(t) as shown below:

FT̂i
(t) =

∫ t

−∞
fT̂i

(τ)dτ (7)

The final cdf expression can be seen in (8).
Note that the distributions in (6) and (8) have a

continuous domain, while the actual distributions of the
periods observed at a SU are discrete since the periods
estimated from spectrum sensing as shown in Fig. 1 are
integer multiples of the employed sensing period (i.e.,
T̂i = kTs, k = 1, 2, 3 . . .). Such discrete distribution can
be obtained by evaluating (6) and (8) at the right points
of each interval/bin of the pdf and cdf, respectively, as:

gT̂i
(k) = fT̂i

(kTs) (9)

GT̂i
(k) = FT̂i

((k + 1/2)Ts) (10)

The set of obtained expressions provide closed-form
relations between the distributions of the original periods
Ti resulting from the PU transmission (and its parameters
µi, λi), the distribution of the estimated periods T̂i as
observed by the SU based on spectrum sensing decisions,
and the employed sensing period Ts. These mathematical
results are useful to evaluate the impact of the employed
sensing period on the accuracy of the distributions esti-
mated by the SU and can find many practical applications
such as mathematical analysis, simulation or system de-
sign (e.g., determine the maximum value of Ts required
for a given level of estimation accuracy).

IV. ERROR OF THE ESTIMATED DISTRIBUTION

To better understand the sensing period effect on the
observed distribution cdf, we utilize the well-known
Kolmogorov-Smirnov (KS) distance. This is the most
commonly used metric to quantify the error between two
distributions. The KS distance is defined as the largest
absolute error between two continuous cdfs and given as
follows [15]:

DKS = sup
t

∣∣∣FTi(t)− FT̂i
(t)
∣∣∣ (11)

To find the value of t that returns the maximum
distance (DKS), the partial derivative of the absolute
difference in the KS distance is taken and equated to
zero as follows:

∂[FTi
(t)− FT̂i

(t)]

∂t
= 0 (12)

The largest difference occurs at t = µi. Since FTi
(µi)

is zero at t = µi, the final expression of KS distance will
be:

DKS = FT̂i
(µi)

=
1

2
− 1

λiTs
+

1− e−λiTs

(λiTs)2
(13)



Fig. 4. Validation of the pdf of the estimated periods (λ1 = 0.15, µ1 = 10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)
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Fig. 5. Validation of the cdf of the estimated periods (λ1 = 0.15, µ1 = 10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)

Expression (13) provides an easy and accurate tool
to mathematically calculate the KS distance between the
estimated and original cdfs as a function of the employed
sensing period. Moreover, expression (13) can be used
to calculate the Ts required for a given target estimation
error.

V. NUMERICAL RESULTS

In this section, first we will assess the accuracy of
the proposed model for both pdf and cdf, then the effect
of the sensing period on the distribution estimation. For
all the considered cases the sensing period is lower
than the minimum PU activity time (Ts < µi). This
is required to ensure that no activity periods are missed
in the sensing process (the shortest detectable period is
Ts), which would otherwise lead to significant estimation
errors. Notice that this consideration implicitly assumes
that the minimum PU activity time µi is known to the
SU so that the value of Ts can be configured not to
exceed µi. This assumption is realistic since the value
of µi is available for some well-known standardised
radio technologies (e.g., the time-slot duration of GSM
or LTE) or can be obtained with other methods such
as blind recognition/estimation [16] or from PU beacon
signals [17].

Fig. 4 shows the busy periods pdfs fT̂i
(t) obtained

from simulation and analytical expression versus the
original distribution fTi(t) for multiple values of sensing
periods (Ts = 1, 3 and 5 t.u.). The discrete expression
gT̂i

(k) has not been included for clarity but its corre-
sponding values can be easily obtained as the values
of the analytical expression fT̂i

(t) at kTs. It can be

appreciated that the closed form analysis provides an
excellent fit with the simulation results for all the con-
sidered scenarios, which verifies the validity of of the
mathematical expression obtained for the pdf. Moreover,
Fig. 4 shows the effect of sensing period Ts on the
discrete estimated pdf gT̂i

(k). High sensing periods give
higher estimation errors and vice versa.

Fig. 5 shows the busy periods cdfs obtained from
simulation GT̂i

(t) (discrete) and analytical expression
FT̂i

(t) versus the original distribution FTi
(t) for multiple

values of sensing periods (Ts = 1, 3 and 5 t.u.). The
closed form analysis provides an excellent fit with the
simulation results for all the considered scenarios, which
verifies the validity of the mathematical expression ob-
tained for the cdf. The stair shape of the observed cdf
GT̂i

(t) represents the effect of the spectrum sensing
operation and the resulting discrete observed periods.

Fig. 6 shows the KS distance for the simulated and
analytical cdf with respect to the original distribution.
The x-axis represents the duration of sensing period in
time units and the y-axis represents the KS distance.
Since the sensed cdf is a discrete distribution GT̂i

(t), it
is to be transformed to a continuous form for comparison
purposes. To this end, we utilize the cdf frequency poly-
gons [18], where mid points of the discrete cdf are joined
together and extended to include the zero frequency
cases from left of the normalised histogram and hence
obtain the continuous form of the cdf. As it can be
appreciated from Fig. 6, the analytical expression (13)
gives an excellent prediction of the estimation error. High
Ts values will result in larger errors in the estimation of
the PU activity pattern, however the resulting estimation
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Fig. 6. KS distance for the observed and analytical model cdfs.
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Fig. 7. KS distance for the observed and analytical model cdfs.

error can be reduced by decreasing Ts.
Fig. 7 analyses the impact of different λi values

(λi = 0.15, 0.25, 0.35 and 0.45) on the KS distance
based on (13). Fig. 7 implies that not only the value of Ts
has an impact on the estimated error (KS distance) but
also the value of λi (distribution scale). The KS distance
increases with higher values of λi. The analytical result
in (13) can be used as shown in Fig. 7 to determine
the maximum value of Ts required for a given level of
estimation accuracy of the distribution.

VI. CONCLUSION

CR utilizes spectrum sensing to periodically monitor
PU channel activity states (idle/busy). A CR bene-
fits from this knowledge to improve the general sys-
tem/device performance. However spectrum sensing uses
a finite sensing period which imposes limitations on the
measured durations of busy/idle periods and hence the
resulting distribution for PU activity. This work focuses
on the analytical perspective of how this limitation
affects the estimation of PU distribution. Closed form
expressions are derived to show the relationship between
the employed sensing period and the resulting estimated
distribution under finite sensing periods, as well as
the corresponding estimation error in terms of the KS
distance. The analytical results showed a good agreement

with simulation results and can be used in the design and
analysis of CR systems.
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