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methods are shown to have comparable performance to
more complex best response (BR) design.

In centralized JP, the fronthaul/backhaul information
can be handled in one of two ways: (i) In data shar-
ing, the remote central processor (RCP) exchanges the
messages with the cooperating BSs explicitly and the
joint beamformers are exchanged over the backhaul
separately from the data [6]. (ii) Using compression,
the messages are precoded beforehand at the RCP and
only the compressed versions of the analog beamformers
are sent over the backhaul [7], thus avoiding the sepa-
rate data exchange. Sparse JP designs are among the
most common approaches for fronthaul/backhaul limited
CoMP [6]. These designs try to limit the JP cluster sizes
and, thus, implicitly reduce the data sharing overhead.
Different aspects and benefits of compression approach
are studied in [7]. Our focus is on decentralized data
sharing JP with low signaling overhead.

Unlike JP CoMP, WSRMax for CB has been ex-
tensively studied for decentralized inter-cell interfer-
ence coordination [2], [3], [8], [9]. Particularly, the
weighted minimum mean-squared error (WMMSE) has
been shown to have a convenient structure for decen-
tralized processing in time division duplex (TDD) [2],
[3]. JP transmission is inherently coupled. Thus, the
CB methods are not directly applicable to this scenario.
In [10] heuristic JP CoMP schemes that make use of
only local CSI are proposed. Without global CSI, these
schemes cannot achieve all available DoF.

Pilot non-orthogonality and contamination have been
widely studied, albeit, not for JP CoMP. Pilot contamina-
tion in TDD based transceiver training for CB has been
considered, e.g., in [11]. In [11], direct least squares (LS)
beamformer estimation from the contaminated uplink
(UL)/downlink (DL) pilots was shown to provide good
performance as opposed to the estimation of the channels
individually. Here, we show that similar conclusions hold
for decentralized JP CoMP.

II. SYSTEM MODEL

We consider a downlink system with B BSs each
equipped with NT transmit antennas. There are, in to-

Abstract—Gradient based downlink beamforming with 
low computational complexity and training overhead is 
proposed for joint processing (JP) coordinated multi-point 
transmission (CoMP). Pilot contamination and estimation 
noise are taken into account in the pilot based transceiver 
training process. The proposed designs enable decentralized 
JP when the backhaul and computational limitations do 
not allow centralized processing. The impact of backhaul 
quantization is also considered. The stochastic gradient 
based designs are shown to be more robust to feedback 
quantization when compared to more complex methods. 
The trade-off between the implementation complexity and 
performance is established for the proposed algorithms. 
The results show that low complexity decentralized JP 
CoMP is feasible even with limited backhaul capacity.

I. INTRODUCTION

The ever increasing need for spectral efficiency, im-
poses the demand for effective interference management 
and transmission coordination. A lot of research efforts 
have been invested in coordinated beamforming (CB) 
for multi-cell systems. However, Multi-cell CB is still 
in the initial stages with respect to the current Long 
Term Evolution Advanced (LTE-A) standard [1]. Much 
of this research has focused on decentralized coordina-
tion strategies [2]–[4]. Joint processing (JP) coordinated 
multi-point transmission (CoMP) allows joint transmis-
sion from cooperating base stations (BSs), which greatly 
increases the available degrees of freedom (DoF) [5]. 
The practical limitations in BS connectivity are still 
hindering implementation of the JP CoMP transmission. 

In this paper, low complexity JP CoMP methods are 
presented for weighted sum rate maximization (WSR-
Max). We focus on a scenario where the limited backhaul 
prevents channel state information (CSI) sharing among 
the cooperating BSs. The limited backhaul connectivity 
only supports centralized data sharing and limited control 
signaling. Furthermore, we assume non-orthogonal and 
noisy pilots, which is expected in dense deployments. 
The transmit beamformers are locally designed in each 
BS. This reduces the overall backhaul load. We pro-
pose gradient descent (GD) and stochastic gradient (SG) 
schemes for decentralized JP CoMP beamforming. These



tal, K user equipments (UEs) each with NR receive
antennas. Each UE k = 1, . . . ,K is coherently served
by |Bk| BSs, where the set Bk defines the JP cluster
(set of phase-coherent serving BSs) for UE k. Similarly,
the set of UE indices served by BS b = 1, . . . , B is
denoted by Cb = {k|b ∈ Bk}. The number of spatial
data streams allocated to UE k = 1, . . . ,K is denoted
by Lk. To simplify the notation, we use the following
set abbreviations: (k, l) , {(k, l)|k = 1, . . . ,K, l =
1, . . . , Lk} and (b, k, l) , {(b, k, l)|k = 1, . . . ,K, l =
1, . . . , Lk, b ∈ Bk}. The downlink transmission within
the JP set is considered to be symbol synchronous
in the sense that the transmitted symbols from each
Bk, k = 1, . . . ,K are coherently combined at each
UE. Each BS b = 1, . . . , B is only aware of the local
channel matrix Hb,k ∈ CNR×NT ∀ k = 1, . . . ,K, while
data sharing is assumed within each serving set Bk.
Furthermore, we assume TDD, which is used to share
the effective UL/DL CSI.

The received signal at UE k = 1, . . . ,K is given as

yk =
K∑
i=1

∑
b∈Bi

Li∑
j=1

Hb,kmb,i,jdi,j + nk, (1)

where mb,i,j ∈ CNT is the beamformer vector for the
jth spatial data stream for UE i from BS b and nk ∼
CN (0, σ2

kI) denotes the receiver noise. The complex data
symbols dk,l ∀ (k, l) are assumed to be independent and
identically distributed (i.i.d.) with E{|dk,l|2} = 1.

The estimated symbol at UE k over stream l, after
applying the receive beamformer uk,l ∈ CNR , is given
as d̂k,l = uH

k,lyk. The resulting signal-to-interference-
plus-noise ratio (SINR) is

Γk,l =

|
∑
b∈Bk

uH
k,lHb,kmb,k,l|2∑

(i,j)6=(k,l)

|
∑
b∈Bi

uH
k,lHb,kmb,i,j |2 + ‖uk,l‖2σ2

k

,

(2)
and the corresponding mean-squared error (MSE) is

εk,l , |
∑
b∈Bk

uH
k,lHb,kmb,k,l − 1|2 + ‖uk,l‖2σ2

k+

K∑
i=1

Li∑
j=1,

(i,j)6=(k,l)

|
∑
b∈Bi

uH
k,lHb,kmb,i,j |2.

(3)
Note that (3) is a convex in terms of the transmit or
receive beamformers but not jointly convex in both.

III. CENTRALIZED WSRMAX SOLUTION

We consider WSRMax subject to BS-specific sum
transmit power constraints. The general problem can be

stated as

max
uk,l,mb,k,l

K∑
k=1

Lk∑
l=1

µk log2 (1 + Γk,l) (4)

s. t.

Lk∑
l=1,
k∈Cb

‖mb,k,l‖2 ≤ Pb, b = 1, . . . , B, (5)

where µk, k = 1, . . . ,K are the user priority weights.
The optimal rate maximizing minimum mean-squared
error (MMSE) receive beamformers are given as

uk,l = K−1k

(∑
b∈Bk

Hb,kmb,k,l

)
, (6)

where Kk =
∑

(i,j)

∑
b∈Bi

Hb,kmb,i,jm
H
b,i,jH

H
b,k+Iσ2

k.
It is well-known that, when the MMSE receivers are

used, there is an inverse relation between the SINR and
the corresponding MSE [2] given by ε−1k,l = 1 + Γk,l.
Now, we can equivalently formulate (4) as

min
uk,l,mb,k,l

K∑
k=1

Lk∑
l=1

µk log2 (εk,l) s. t. (5). (7)

Since (7) is not jointly convex for the transmit and
receive beamformers, we alternate between solving for
the transmit and receive beamformers. This separation
is convenient for TDD processing as the DL/UL are
temporally separated. With fixed transmit beamformers
mb,k,l ∀ (b, k, l), the optimal receive beamformer can be
obtained from (6). As (7) is still non-convex, even for
fixed receive beamformers, we apply an iterative convex
approximation algorithm based on the WMMSE criterion
to determine the transmit beamformers [2].

The objective is separable in terms of εk,l ∀ (k, l).
Thus, we can approximate each term individually around
the point ε(n)k,l as log2(εk,l) ≈ (εk,l−ε(n)k,l )/(log(2)ε

(n)
k,l )+

log2(ε
(n)
k,l ). Ignoring the constant terms, the approxi-

mated transmit beamformer design subproblem can be
restated as a WMMSE problem

min
mb,k,l

K∑
k=1

Lk∑
l=1

w
(n)
k,l εk,l s. t. (5), (8)

where w(n)
k,l = µk

log(2)ε
(n)
k,l

∀ (k, l). As shown in [2], the

successive approximation algorithm provides monotonic
convergence of the objective function and convergence
to a local stationary point of the original problem (4).

We now formulate the centralized beamformer design
problem with pilot estimation noise and interference
from non-orthogonal pilot sequences.

Downlink beamformer estimation

Let bk,l ∈ CS denote the UL pilot training sequence
for the lth data stream of UE k = 1, . . . ,K, where S is



the length of the pilot sequence. Then, the composite of
the precoded UL pilot training matrices at BS b is

Rb =
K∑
k=1

Lk∑
l=1

HH
b,kuk,l

√
wk,lb

H
k,l + Nb, (9)

where Nb ∈ CNT×S is the estimation noise matrix for
all pilot symbols. We employ precoded training pilots,
where the weighted receivers serve as pilot precoders.

Assuming only the UL training signal (9) at the BSs,
we can rewrite the WSRMax problem (8) by substitut-
ing the effective channels in (3) by the corresponding
estimates as

min
mb,k,l

∑
(k,l)

(
1− 2Re{

∑
b∈Bk

√
wk,lm

H
b,k,lRbbk,l}+(∑

b∈Bk

mH
b,k,lRb

)(∑
b∈Bk

RH
bmb,k,l

))

s. t.

K∑
k∈Cb

Lk∑
l=1

‖mb,k,l‖2 ≤ Pb, b = 1, . . . , B.

(10)
Problem (10) requires knowledge of the received train-

ing matrices Rb, training sequences bk,l and the weights
wk,l. All of this can be gathered with carefully designed
TDD pilots and feedback for the weights [3]. In the
following section, we will exploit this relation to derive
an efficient decentralized JP beamforming algorithm.

Uplink beamformer estimation

In analogy with the UL, let the received composite
DL pilot training matrix at UE k = 1, . . . ,K be given
as

Tk =
K∑
i=1

Li∑
l=1

(∑
b∈Bi

Hb,kmb,i,l

)
bi,l + Nk. (11)

The rate optimal receive beamformers are the MSE
minimizing receivers, given by

uk,l =
(
TkT

H
k + Iσ2

k

)−1
Tkb

H
k,l. (12)

Note that here we assume that the UL and DL pilots
are the same. This does not have to be case, and the
UL/DL pilots can be separately designed. In the sequel,
we consider decentralized beamforming techniques for
solving (10). MMSE receive beamformer estimation (12)
is readily decentralized and, thus, we will focus on DL
transmit beamformer estimation.

IV. DECENTRALIZED BEAMFORMER DESIGN

In this section, we consider decentralized JP beam-
former design. The beamformer signaling relies crucially
on the channel reciprocity of TDD. For further discus-
sion of precoded pilot signaling see [3]. In [2], [3], it
was shown that, in CB, the WMMSE algorithm is inher-
ently decoupled. As such, it can be easily decentralized

with low signaling overhead. However, the JP transmit
beamformer design in (10) is coupled among the BSs
due to the coherent signal reception, which prevents us
from directly applying the same approach.

A. Gradient Descent

We propose GD for low computational complexity de-
centralized JP CoMP. This method is based on updating
the transmit beamformers in the direction of the ob-
jective gradient, which greatly simplifies the transceiver
processing. The GD methods are known to have slower
rate of convergence than the more advanced algorithms.
However, for practical scenarios with limited number of
iterations, most of the gain is achieved with few first
iterations. The convergence behavior is studied in more
detail in extended technical report [12].

GD algorithm updates the beamformers in the direc-
tion of the last iteration gradient. The gradient of (10)
can be derived in terms of mb,k,l to be

gb,k,l = −2Rb

(
bk,l
√
wk,l −RH

bmb,k,l − c̄b,k,l
)

, (13)

where c̄b,k,l =
∑
j∈Bk\{b}R

H
jmj,k,l. Note that the

gradients (13) are still coupled among the serving BSs.
However, only the local composites mH

b,k,lRb need to
be shared among the cooperating BSs. This gives us the
following beamformer update rule

m
(n+1)
b,k,l = m

(n)
b,k,l − αbgb,k,l, (14)

where αb is the gradient update step-size and gb,k,l
denotes the part of (13) corresponding to BS b. The
outline of the GD algorithm is given in Algorithm 1.

The beamformer update (14) is not sufficient for
accurate beam coordination with JP as it does not take
into account the power constraint. That is, (14) may
lead to a solution, where the available power budget (5)
is exceeded. To address this problem, we propose dual
decomposition based power control to steer the beam-
former updates (14) towards the feasible set. First, the
augmented Lagrangian for (10) has the form

min
mb,k,l

∑
(k,l)

(
1− 2Re{

∑
b∈Bk

√
wk,lm

H
b,k,lRbbk,l}+(∑

b∈Bk

mH
b,k,lRb

)(∑
b∈Bk

RH
bmb,k,l

))
+

B∑
b=1

νb

(
K∑

k∈Cb

Lk∑
l=1

‖mb,k,l‖2 − Pb

)
.

(15)
where νb, b = 1, . . . , B are the dual variables corre-
sponding to the power constraints. Taking the gradient
of (15), we get

ḡ
(n)
b,k,l = g

(n)
b,k,l + νbmb,k,l, (16)

Now, the GD beamformer update becomes

m
(n+1)
b,k,l = m

(n)
b,k,l − αḡ

(n)
b,k,l. (17)



The beamformers are steered towards feasible power
levels, after each update (17), by updating the duals as

ν
(n+1)
b = max(0, ν

(n)
b + β(Pb −

K∑
k∈Cb

Lk∑
l=1

‖m(n)
b,k,l‖

2)),

(18)
where β is a sufficiently small step-size.

As the GD is based solely on the currently available
gradient, these updates can be, in some cases, overly
aggressive. Step-size normalization α̃k,l = α/‖g(n)

k,l ‖,
where g

(n)
k,l the full gradient vector for (k, l) can be used

to regularize the updates.
Another way to regularize the GD updates, is to make

the gradient update more dependent on the previous
update direction. In other words, this adds momentum
for the general update direction. The momentum is
adaptively updated as

m̃
(n+1)
b,k,l = gb,k,l + ωm̃

(n)
b,k,l, (19)

where ω ≥ 0 denotes the momentum magnitude. Finally,
the beamformer update becomes

m
(n+1)
b,k,l = m

(n)
b,k,l − αm̃

(n+1)
b,k,l . (20)

The regularized update routines are particularly helpful
in fading channels, where the gradient of the instanta-
neous channel realization may not fully represent the
overall fading conditions. The computational complexity
of the GD design is significantly lower than the central-
ized second order cone program (SOCP) formulation [3].

The signaling requirements are apparent from (13).
Each BS b requires the knowledge of cj,k,l = RH

jmj,k,l

from the cooperating BSs j ∈ Bk for each stream (k, l).
This accumulates into

∑
k∈Cb LkS complex terms per

BS. Note that vector cj,k,l has length S and, thus, there is
a tradeoff between signaling overhead and performance.
Note also that the signaling overhead does not depend
on the number of transmit antennas.

Algorithm 1 GD algorithm.
1: Initialize feasible mb,k,l ∀ (b, k, l) and n = 1.
2: repeat
3: Solve the MMSE receivers uk,l ∀ (k, l) from (6).
4: Compute the MSE ε(n)k,l and w(n)

k,l ∀ (k, l) from (3).
5: Update the precoders mb,k,l ∀ (b, k, l) from (17).
6: Update the duals from (18)
7: until Desired level of convergence has been reached.

B. Stochastic Gradient

Instead of trying to estimate the complete gradient and
update the beamformers only once per pilot sequence,
they can be updated on each received pilot symbol.
Since (13) is a linear relation, the complete training
matrices Rb do not need to be available at the BSs before

the backhaul signaling can start. That is, (13) can be split
into symbol level updates

gb,k,l(i) = −2Rb(i)
(
bk,l(i)

√
wk,l −Rb(i)

Hmb,k,l(i)
)

+2Rb(i)c̄b,k,l(i) + νbmb,k,l(i),
(21)

where Rj(i) denotes the ith column vector of Rj ,
bk,l(i) is the ith element of vector bk,l and c̄j,k,l(i) =
[Rj(i)]

Hmj,k,l(i). Per each training sample (symbol),
the beamformers are updated as

m
(n)
b,k,l(i+ 1) = m

(n)
b,k,l(i)− αg

(n)
b,k,l(i). (22)

This, along with the reduced computational complexity
(no matrix inversion required), can be used to reduce
the signaling delays even with limited computational
resources.

The total signaling requirements are somewhat in-
creased when compared to the GD design. For each
pilot symbol, the cb,k,l(i) terms need to be exchanged
among the BSs. To reduce the signaling overhead, (21)
can be exploited by averaging over multiple iterations i
and signaling over the averaged values, thus, not sharing
all S symbols, but an averaged subset

∑b
i=a

cb,k,l(i)
b−a for

some interval [a, b].

V. FEEDBACK QUANTIZATION

The feedback signaling information has to be quan-
tized before it is exchanged over a feedback channel or
the backhaul. This is equivalent to separately quantizing
the I/Q branches of the cb,k,l terms for the proposed
methods. Thus, robustness to the quantization errors
is crucial for any, in practise, realizable design. In
addition, quantization reduces the backhaul utilization.
In Section VI, we study the performance of the proposed
beamformer design algorithms with q-bit quantization of
the feedback information.

VI. NUMERICAL EXAMPLES

The simulations are carried in a 7-cell wrap around
model (B = 7). The are NT = 4 transmit and NR = 2
receive antennas. Each cell has Kb = 3 cell edge users.
In total, there are K = BKb = 21 users. We assume
full cooperation, i.e., all users are coherently served by
every BS in the system. In practice, constraints such as
pilot interference will limit the number of active users
per-BS. The number of active spatial streams per users is
limited to one. The cell edge signal-to-noise ratio (SNR)
from the closest BS is fixed to 15dB. The pilot training
sequences are random binary sequences with 10dB pilot
power gain over the SNR. This reflects a worse-case
scenario, where none of the pilot resources are made
orthogonal. As a reference scenario, we use a computa-
tionally more complex BR design [12]. In the BR design,
the beamformers are solved locally, while assuming that
the cooperating BSs use fixed transmitters. Since the
BSs rely only on the previous iteration information, the
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Fig. 1. Comparison of the proposed decentralized methods with
varying training sequence lengths with constant channels.

beamforming is decoupled. In the figures, SSE (ideal)
presents the performance upper bound with orthogonal
pilots and no estimation noise. The default α for the
BR design is 0.25. The GD and SG beamformers are
generated using ω = 0.25 momentum, β = 0.005 dual
step-size and α = 0.25 beamformer step-size.

The impact of the pilot sequence length is shown in
Fig. 1. The GD methods do not achieve the orthogonal
stream specific estimation (SSE) rate even at very large
sequence lengths. This is due to constant step-size,
which make the algorithm oscillate around a stationary
point. On the other hand, the SG approaches the BR
performance as the training sequence length grows. The
SG approach has more fine grained beamformer updates,
i.e., once per sample, which provides better convergence
properties for fixed step-size. Since the pilot training vec-
tor power is fixed, there is a gap between the estimation
techniques and ideal case due to the estimation noise.

Fig. 2 shows the impact of feedback quantization. In
this case, the pilot training sequence length is fixed to
41. The I/Q branches of each backhaul data symbol
in cb,k,l ∀ (b, k, l) are separately quantized with q-
bit quantization as discussed in Section V. Symbol-by-

symbol beamformer iteration of the SG method provides
significant gain at lower quantization levels. From here,
we can also observe that from q = 4 bit quantization
already achieves maximum performance. Note that the
upper bound is the BR performance with the same pilot
training sequences and no quantization.

VII. CONCLUSIONS

We have proposed low complexity gradient based
decentralized transceiver designs for JP CoMP WSR-
Max in the presence of non-orthogonal pilot resources
and pilot estimation noise. GD and SG based transmit
beamformer designs were proposed as low complexity
alternatives to more complex BR design. The imple-
mentation complexity and performance trade-off was
studied by numerical evaluation. The numerical results
indicated that the SG based design is more robust to
feedback quantization than the GD and BR designs with
comparable performance.
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