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Abstract—Semantics associates meaning with Internet of
Things (IoT) data and facilitates the development of intelligent
IoT applications and services. However, the big volume of the data
generated by IoT devices and resource limitations of these devices
have given rise to challenges for applying semantic technologies.
In this article, we present Cloud and edge based IoT architec-
tures for semantic reasoning. We report three experiments that
demonstrate how edge computing can facilitate IoT systems in
terms of data transfer and semantic reasoning. We also analyze
how distributing reasoning tasks between the Cloud and edge
devices affects system performance.

I. INTRODUCTION

Internet of Things (IoT) connects physical objects with sens-
ing, networking, and processing capabilities to the Internet.
These devices generate large amounts of data that needs to be
represented, stored, searched, organized, and utilized.

Semantics associates meaning with data, thus allowing in-
terpretation of data in context. For IoT, semantic technologies
encode meaning into IoT data to enable computer systems
to possess knowledge and support decision making. Semantic
technologies based on machine-interpretable representations
facilitate sharing and integrating IoT data, modelling and
querying information, and infering new knowledge. For ex-
ample, semantic sensor web [1] enables annotating IoT data
with spatial, temporal, and thematic semantic metadata to
create situation awareness. However, semantic representations
and reasoning techniques require a considerable amount of
resources. The volume of data generated by IoT devices
and resource limitations of these devices have given rise to
challenges for applying semantic technologies in IoT systems.

Processing IoT data requires deploying intelligent functions
at different components of IoT systems in order to support
accurate, comprehensive, and timely decision making and
actions. Moreover, the data should be represented in a way
that heterogeneous and resource-limited IoT devices can un-
derstand and utilize it in a convenient way. Cisco suggests
requirements for IoT systems, including minimization of data
processing latency, conservation of bandwidth consumption,
collecting and securing data across wide geographic areas, and
addressing security, privacy, and system reliability concerns
[2].

Novel IoT architectures are needed for fulfilling these
requirements and providing services with high performance

and quality. Edge computing addresses these challenges with
moving the computation from the central Cloud or server
machines to the edges of IoT networks. The targeted benefits
of edge computing result from its proximity to data sources
and end users: 1) low and predictable latency for end users
and applications; 2) secure and privacy-preserving services and
applications; 3) long battery life and low bandwidth cost; and
4) scalability [3][4]. Edge computing balances the workload
of IoT system components and improves user experience.It
is predicted that 45% of IoT data will be stored, processed,
analyzed, and acted upon close to, or at the edge of the network
by 2019 [5].

This article focuses on semantic reasoning in IoT systems
with edeg devices. We use Resource Description Framework
(RDF) [6] as the semantic data model which thus provides
an approach for heterogeneous machines to understand and
utilize the data. We present an experimental IoT system that
has semantic reasoners both on Cloud and edge devices for
performing reasoning tasks. We design three experiments to
demonstrate how edge computing could facilitate IoT systems
in terms of data transferring and semantic reasoning. We
also analyze how to improve the performance by distributing
reasoning tasks on the Cloud and edge devices.

The main contribution of this article is a comparison and
analysis of semantic reasoning in Cloud and edge computing
based IoT architectures in a smart transportation use case.
In the experimentation, we utilize real data collected from
taxi drivers in Oulu, Finland. The reminder of this article
is organized as follows: Section II presents background and
related work. Section III describes the system design and
scenarios. We introduce two architectures in Section IV and
present experiments and analysis based on these architectures
in Section V. Finally, we conclude the paper with suggesting
future research in Section VI.

II. BACKGROUND AND RELATED WORK

A. Edge and Fog Computing

The edge computing trend starts from Mobile Edge Com-
puting (MEC) [7], which reduces the network workload by
shifting computational efforts from the core network to the
mobile edge. The first real-world MEC platform, called Radio



Applications Cloud Servers [8], was introduced by Nokia in
2014.

Fog computing pushes the processing capability further
down to the data sources [2]. Data can be processed and
stored either in fog computing nodes close to the data sources,
in fog aggregation nodes, or in Cloud servers. Cisco Fog
Computing Solutions [2] provide connectivity for a wide range
of IoT devices, considering data security, data processing
priorities, and automatic provision. When compared with edge
computing, fog computing solutions often have less stringent
constraints in terms of hardware and application execution
model.

The most fundamental challenges for edge and fog comput-
ing are how to decompose, distribute, and compose computa-
tional tasks over a set of heterogeneous nodes with limited
communication and computational capabilities [9]. Vögler et
al. [10][11] present LEONORE infrastructure for provisioning
IoT applications on fog computing nodes in large scale IoT
systems. Giang et al. develop IoT applications that span across
Cloud and fog computing nodes. Their distributed dataflow
programming model specifies a generic methodology for dis-
tributing computation over Fog and Cloud computing nodes
[12]. Abdelwahab et al. introduce Long-term Evolution (LTE)-
aware Edge Cloud infrastructure and LTE-optimized memory
optimization protocol for IoT applications [13]. Sharing a
similar vision of utilizing edge and fog computing in IoT
systems, our research focuses on distributing semantic data
analytics on edge nodes of IoT systems.

B. Semantic Technologies

Semantic technologies facilitate data integration, resource
discovery, system interoperability, semantic reasoning, and
knowledge extraction for IoT systems [14]. To achieve
these goals, IoT data needs to be represented in machine-
interpretable formats [14][15]. World Wide Web Consortium
(W3C) has developed a family of Semantic Web standards.
The key technologies utilized in this research include RDF,
RDF Schema (RDFS), Web Ontology Language (OWL), and
semantic reasoners.

RDF is flexible in representing arbitrary structure without a
priori schema. RDF uses a graph-based data model, where a
graph consists of statements with (subject, predicate, object)
structure. This structure can be interpreted as: “object o stands
in relationship p with subject s”. RDF can be represented
in different serialization formats including RDF/XML [16],
JSON for Linked Data (JSON-LD) [17], N-Triples [18], N-
Quads [19], Turtle [20], RDFa [21], Notation 3 (N3)[22] and
Entity Notation (EN) [23][24].

RDFS [25] provides a data modelling vocabulary for con-
cepts, such as class, subclass, domain, and range. It can be
utilized for creating simple ontologies on top of RDF. OWL
[26] extends RDFS with a more comprehensive vocabulary for
modeling complex ontologies.

A semantic reasoner infers logical consequences from a
set of explicitly asserted facts or axioms. Semantic inference
discovers new relationships based on the data and additional

information in the form of a vocabulary, e.g., ontology and a
set of rules. HermiT [27], Owlgres [28], Pellet [29], and Jena
Framework [30] are well-known semantic reasoners. Jena is a
Java framework for building semantic applications with a rule-
based inference engine to perform reasoning based on RDFS
and OWL ontologies.

Semantic reasoning has been proposed for IoT systems.
CoBrA [31][32] and Semantic Space [33] are two early ap-
proaches that utilize semantic technologies to enable context-
awareness in small scale IoT systems. They both have context
brokers built on top of Jena and context ontologies, which
provide common vocabulary to model local IoT systems. More
recent broker-centric approaches for semantic interoperability
in IoT include Smart-M3 [34][35] and INSTANS [36][37].
They combine semantic technologies with publish-subscribe
architectures to provide multi-device, multi-domain, and multi-
vendor interoperability in IoT.
µJena is one of the first tools to manage ontologies and RDF

stored in mobile devices [38]. LOnt implements Jena API for
mobile devices [39]. Gu et al. proposed a mobile framework
for ontology processing and reasoning. The reasoner contains
a forward chaining rule-based inference engine, but it only
supports a subset of OWL ontology inference rules [40]. Sim-
ilarly, µOR [41] reasoner and “MiniOWL and MiniRule” [42]
reasoner reason over a subset of OWL entailments. AndroJena
[43] and Apache Jena on Android [44] provide Android based
mobile devices with semantic reasoning capabilities.

As a first step of applying semantic reasoning in edge com-
puting, Vazquez et al. propose the Smart Objects Awareness
and Adaptation Model (SoaM) but this research focuses on
a very limited set of reasoning capabilities. Ontological and
semantic approaches for recognizing complex human activities
from sensor data on edge devices have been proposed [45][46].
In our early research [4][47][23][49][50], we proposed so-
lutions to enable semantic data encoding and information
sharing with resource-constrained devices in the IoT context.
In this paper, we go beyond the state of the art by extending
semantic reasoning capabilities to edge nodes and analyzing
the performance of data transferring and semantic reasoning
in IoT systems with edge devices.

III. SYSTEM DESIGN

This section describes the requirements, scenarios, rules and
data that guided designing of the edge architecture and the
experiments.

A. Design Requirements
Aiming to fully support semantic reasoning for IoT systems

with edge nodes, we emphasize four requirements in our
experimental IoT system as follows.

Scalability. A big amount of heterogeneous devices are con-
nected to IoT systems. To fulfill the scalability requirement,
the IoT system should be able to process a big amount of
dynamically generated data from IoT devices.

Heterogeneous data processing. As IoT devices work with
different operating systems, employ different semantic anno-
tation methods, and utilize different semantic formats, the IoT



system should cope with various communication mechanisms
and different modules to process semantic data.

Balance of Computation. The computation workload of the
whole IoT system should be balanced to guarantee the quality
of service. For example, some applications require low latency
services. The IoT system should allow enough computing and
communication resources in some IoT nodes to cope with the
heavy workload and latency requirements.

Semantic data processing and knowledge extraction. The
IoT system should support popular RDF syntaxes such as
RDF/XML, JSON-LD, and N3. Moreover, a mechanism is
required to access the ontologies and rule sets from Cloud to
enable mobile devices to preform various reasoning tasks [51].

B. Scenario and data

Our scenario is about a transportation system in a smart
city. The taxi cabs around the city of Oulu are equipped with
GPS and related software. Real taxi trajectories have been
collected with this system. The taxis deliver the information
to our experimental IoT system for decision making.

The raw data is in XML format and stored in SQLite
database. When the GPS sensor of a taxi generates a new
value, we store the data as an individual observation. In our
experiments, we use the following eight properties of the
observations: observation record ID, data timestamp, area ID,
location (longitude and latitude), velocity, driving direction,
and taxi ID.

The original data set contains 65,000 separate taxi trajec-
tories formed by 5,543,348 observations (72,063,524 RDF
statements). To study scalability, we generate from this data
set a new data set of 200 taxis driving in the city during the
same period. Figure 1 presents main concepts of the static
OWL ontology for our smart transportation use case. Other
relations, such as properties, are excluded in this figure. This
lightweight static ontology is loaded on Cloud and edge nodes.
IoT systems often reason from highly dynamic data generated
from heterogeneous devices with static knowledge, because it
is an efficient solution to deduce results and to keep reasoning
sound and complete.

As presented in Table I, we implement 29 semantic rules
to deduce 16 different activities of cars, inducing low and
high speed, traffic jams, speeding, long stops, turning left
and right and making U-turns, accelerating and decelerating
strongly, and areas where taxis stop often for a while. More
complex rules can be formed by combining these basic rules.
The reasoner deduces facts from a sequence of observations by
comparing consecutive values of direction, velocity, timestamp
and location with forward chained rules. Rules are used in an
incremental manner, which enables reasoning of all required
knowledge from a sequence of observations. Incremental rules
enable the distribution of reasoning tasks. For example, a right
turn is assumed to happen after a taxi has driven at a relatively
low speed, say, lower than 25 km/h, and if the direction change
is near 90 degrees [47].

Fig. 1. High level static ontology for semantic reasoning in transportation
system use case.

IV. ARCHITECTURES

We design and evaluate two architectures. In both architec-
tures, the smart systems of taxi cabs, i.e. IoT nodes, receive
data from hardware and transform it into RDF. The nodes
deliver the data, depending on the architecture, either to the
Cloud or to the edge devices.

The first architecture, “Cloud Reasoning Architecture”
(CRA), places a semantic reasoner on the Cloud (Figure 2).
The IoT nodes encode the raw data into four alternative
syntaxes of RDF model: RDF/XML, JSON-LD, N3, and short
EN format [23]. Short EN format [23] compresses the data
size by replacing constant information with templates and
prefixes and we add one extra step to transform short EN
to Turtle. IoT nodes send the RDF data to Cloud through
TCP/IP protocol. A semantic reasoner, an ontology respository,
a knowledge base and a MQTT [48] server are located in
the Cloud. The semantic reasoner receives the RDF data and
performs rule-based reasoning tasks. Reasoning results, which
include the individual RDF data with new properties, are
stored in the knowledge base. MQTT server realizes publish-
subscribe communications. This architecture simply connects
IoT devices to the Cloud, where the knowledge base and
all semantic reasoning tasks are located. This is a typical
architecture in most current IoT systems.

We introduce edge nodes in the second architecture, ”Edge
Reasoning Architecture” (ERA) (Figure 3). The edge nodes
are devices physically near IoT nodes and they have reasoning
capability. The edge devices support encoding and decoding of
all four RDF syntaxes. Because of their resource limitations,
we only deploy lightweight reasoning tasks in edge nodes. The
selected rules and a lightweight ontology are designed and an
Android Jena [43] reasoner is implemented in the edge nodes.
The edge nodes communicate with the Cloud utilizing MQTT
and with IoT nodes utilizing socket.



TABLE I
SEMANTIC RULE SET (SLIGHTLY MODIFIED FROM[47])

Fact Triggering rule
Low speed Observation hasVelocity<25km/h → ns:LowSpeed

Jam LowSpeed hasDuration>90s ∧ LowSpeed hasAverageSpeed<20km/h → ns:Jam
Long stop LowSpeed hasVelocity<3km/h → Stop ∧ Stop hasDuration>3min → ns:LongStop
High speed Observation hasVelocity>80km/h → ns:HighSpeed
Speeding HighSpeed hasVelocity>100km/h → ns:Speeding
Left turn LowSpeed[1] hasDirection(a) ∧ LowSpeed[2] hasDirection(b) ∧ a=b-90deg ∨ a=b+270deg → ns:LeftTurn

Right turn LowSpeed[1] hasDirection(a) ∧ LowSpeed[2] hasDirection(b) ∧ a=b+90deg ∨ b=a-270deg → ns:RightTurn
U-Turn LowSpeed[1] hasDirection(a) ∧ LowSpeed[2] hasDirection(b) ∧ a=b-180deg ∨ b=a+180deg → ns:U-Turn

High acceleration Observation[2] hasVelocity(v2) hasTmeStamp(t2) and (v2-v1)/(t2-t1)>2.5m/s2 → ns:HighAcc
High deceleration Observation[2] hasVelocity(v2) hasTmeStamp(t2) and (v1-v2)/(t2-t1)>2.5m/s2 → ns:HighDeacc

Crossing Zone LeftTurn hasLocation(x) ∧ RightTurn hasLocation(x) → ns:CrossingZone
Stopping Zone LongStop[1] hasLocation(x) ∧ LongStop[2] hasLocation(x) ∧ LongStop[3] hasLocation(x) → ns:StoppingZone

Jam Zone Jam[1] hasLocation(x) ∧ Jam[2] hasLocation(x) ∧ Jam[3] hasLocation(x) → ns:JamZone
Pollution Zone HighAcc[1] hasLocation(x) ∧ HighAcc[2] hasLocation(x) ∧ HighAcc[3] hasLocation(x) → ns:PollutionZone
Attention Zone HighDeacc[1] hasLocation(x) ∧ HighDeacc[2] hasLocation(x) ∧ HighDeacc[3] hasLocation(x) → ns:GoSlowZone
U-Turn Zone U-Turn[1] hasLocation(x) ∧ U-Turn[2] hasLocation(x) ∧ U-Turn[3] hasLocation(x) → ns:U-TurnArea

Fig. 2. An architecture for performing semantic reasoning on the Cloud.

V. EXPERIMENT AND ANALYSIS

A. Experiment Setup

To ease the system performance study, we separate reason-
ing into measurable independent steps.

1) IoT Node: IoT nodes have three simple functions: data
collection, data encoding to RDF syntax, and data delivery.
A PC computer replays the real data collected from taxi cabs
(HP Desktop PC Elite Desk, Intel Core i5 4590 with 3.30
GHz CPU, 8GB memory). With this approach, we are able to
evaluate two architectures with the same data set. IoT nodes
simulate the software components of taxi cabs. 20-150 IoT
nodes are executed simultaneously in the PC using threads. As
IoT nodes generate data at a high frequency, they use cache
to first store a certain amount of data (50 individual RDF
statements) and then to deliver it as one message.

2) Edge Node: We utilize Android phones as edge nodes
(LG Nexus 5X, Android OS 6.0.1, 4 Quad-core 1.44 GHz
Cortex-A53 processors and 2 dual-core 1.82 GHz Cortex-A57
processors, Qualcomm MSM8992 Snapdragon 808 chip-set,

Fig. 3. An architecture for performing semantic reasoning on the edge nodes
and Cloud.

2GB RAM, 32GB storage). We utilize at maximum ten edge
nodes; each deployed on an Android mobile phone.

The edge nodes receive data from the IoT nodes, perform
local semantic reasoning tasks, and send the resulting data to
the Cloud. In a basic mode, the edge nodes store an ontology
locally, execute semantic reasoning, and send the data to the
Cloud server simultaneously. In a second mode, the edge nodes
fetch an ontology from a remote ontology repository server
[51]. RDF data is stored with Android Jena framework and a
rule-based hybrid rule engine is developed with Android Jena.

3) Cloud Server: The Cloud Server is deployed on Amazon
EC2 Cloud platform (Amazon M4 Deca Extra Large Cloud,
160 GB memory, 124.5 EC2 compute units). One Amazon
EC2 compute unit provides the equivalent CPU capability to



TABLE II
SEMANTIC REASONING EXPERIMENT TEST CASE FOR CRA

Group No. IoT nodes
Number

RDF
per node Total RDF data

A 1 20 400 8000
2 40 400 16000
3 60 400 24000
4 80 400 32000
5 100 400 40000

B 6 40 800 32000
7 60 533 32000
8 80 400 32000
9 100 320 32000

C 10 60 533 32000
11 90 355 32000
12 120 266 32000
13 150 213 32000

D 14 60 200 12000
15 60 400 24000
16 60 600 36000
17 60 800 48000

TABLE III
SEMANTIC REASONING EXPERIMENT TEST CASES FOR ERA

Group No. Edge node
Number

nodes per
Edge node

RDF
per node

Total
RDF Data

A 1 2 10 400 8000
2 4 10 400 16000
3 6 10 400 24000
4 8 10 400 32000
5 10 10 400 40000

B 6 4 10 800 32000
7 6 10 533 32000
8 8 10 400 32000
9 10 10 320 32000

C 10 6 10 533 32000
11 6 15 355 32000
12 6 20 266 32000
13 6 25 213 32000

D 14 6 10 200 12000
15 6 10 400 24000
16 6 10 600 36000
17 6 10 800 48000

1.0-1.2 GHz 2007 Xeon processor. This 64-bit system has
maximum bandwidth of 4000 Mbps. The server is physically
located in Frankfurt, Germany. We implement Jena semantic
reasoner and MQTT server for receiving data from edge nodes
and IoT nodes in the Cloud.

4) Test cases: We design 17 semantic reasoning test cases
on CRA (Table II) and ERA (Table III). For CRA, the variable
“IoT node number” defines the total number of IoT nodes
and “RDF per node” the amount of RDF statements which
are delivered from one IoT node. For ERA, the variables
“Edge node number” defines the number of the edge nodes
and “nodes per edge node” the amount of IoT nodes which
connect to an edge node. For example, in test case No.1 on
ERA, we have two edge nodes and 20 IoT nodes; both edge
nodes connect to ten IoT nodes. Each IoT node sends 400
observation RDF statements and there are 8000 observation
RDF statements in total.

B. Experiments
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Fig. 4. Scalability results for group A (left:transferring, right:reasoning).
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Fig. 5. Scalability results for group B (left:transferring, right:reasoning).
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Fig. 6. Scalability results for group C (left:transferring, right:reasoning).
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Fig. 7. Scalability results for group D (left:transferring, right:reasoning).

1) Scalability: Four RDF formats are compared in CRA:
RDF/XML, Turtle, JSON-LD, and short EN. Data transferring
latency from IoT nodes to Cloud server is measured. Reason-
ing latency is calculated at the Cloud server. As IoT nodes
generate real time data, we ignore the data generating time
and only focus on the total data transferring and reasoning
time. The measured transferring time starts from building the
MQTT client to set up the connection and ends with receiving
the response. We use a response message to confirm that the
information is delivered successfully to the Cloud. At the
Cloud server, we measure the time of performing semantic
reasoning tasks and storing data to the RDF database storage.
The measurement starts from building a Jena model and ends
with finishing the storage of the inferred facts in RDF.

The left figures in Figure 4, Figure 5, Figure 6, and Figure
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Fig. 8. Reasoning performance comparison between two architectures with
RDF/XML.

7 present the data transferring times of group A, B, C, and
D. The figures on the right present the reasoning times. The
X-axis represents the number of IoT nodes and the number
of RDF statements per node. Total data size is calculated
from the number of IoT nodes and the number of RDF
statements per node. For example, “NN:20 RN:400” means
20 IoT nodes collect data and each IoT node sends 400
individual observation as RDF statements. In this case, the
total number of RDF statements is 8000. The Y-axis represents
time in milliseconds. The data transferring time increases
with the total RDF data size. From the data formats, short
EN format consumes the shortest time, The JSON-LD is the
second shortest, and the Turtle format is the longest one. For
example, in the test case of 24000 RDF statements (No.3 in
Group A), the transferring times of JSON-LD, RDF/XML,
and Turtle are on the average 4.7, 10.7, and 21.2 times of that
of EN, respectively. Examining all 17 sets of data in all four
groups produces very similar results. The transferring times
of JSON-LD, RDF/XML, and Turtle are on the average 4.6,
10.4, and 21.0 times of that of EN, respectively. Jena reasoning
includes building Jena models and performing reasoning tasks.
Regarding to reasoning time comparison, data with different
formats shows a comparable performance for the same amount
of data. The total reasoning time presents linear growth when
the data size increases.

2) Comparison of CRA and ERA: In the second experiment,
we compare CRA and ERA by measuring the latency of the
complete data delivery and reasoning processes. We measure
data transferring times from the IoT nodes, reasoning times
at Cloud server, reasoning times at the edge nodes, and the
data transferring time from the edge nodes to Cloud. The
edge nodes only perform semantic reasoning with two selected
rules, i.e. “High Acceleration” and “High De-acceleration”.
Other semantic rules are performed only on the Cloud. We
utilize the same four RDF formats.

Figure 8, Figure 9, Figure 10, and Figure 11 present the
results. We present results in each test case in three columns:
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Fig. 9. Reasoning performance comparison between two architectures with
JSON-LD.
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Fig. 10. Reasoning performance comparison between two architectures with
Turtle.
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the left column (C) represents the total reasoning time of the
CRA; the middle column (ET) represents the total reasoning
time of the ERA; and the right column (EF) represents
reasoning time of the ERA for generating first results. The
edge nodes perform a part of the reasoning tasks and we call
the result from edge nodes as “first result”. The latency for
generating first results include the time to transfer data from
IoT nodes to edge nodes and the reasoning time of performing
semantic reasoning tasks on edge nodes. We choose eight out
of seventeen experiments based on the total RDF data size. The
X-axis of the figures represents the size of the RDF data. Our
experiments show that the first results are ready much earlier
than the results from Cloud server. For example, in the third
test case with 16000 RDF statements in short EN experiments,
the Cloud reasoning time is ten times of that of the first
results. The average ratio between Cloud reasoning time and
first results time from edge nodes for RDF/XML is 5.1 times,
for Turtle is 4 times, for JSON-LD is 6.6 times, and for EN
is 8.9 times. When utilizing computation capabilities of edge
nodes, the average Cloud reasoning time reduces 12.4% for
RDF/XML format, 12.3% for Turtle format, 6.2% for JSON-
LD format, and 12.1% for EN format. The total transferring
time on edge of Turtle is 1.2 times of reasoning time in average
and the time of EN is 6% of the average reasoning time.

3) Edge reasoning performance comparison with different
rule sets: Aiming to study task distribution strategies between
the Cloud and edge nodes that lead to the best overall
performance, the last experiment focuses on the performance
improvement of ERA with deploying different semantic rea-
soning rules on edge nodes. It’s obvious that the more rules
are processed on edge nodes, the fewer rules are processed
on the Cloud. We choose RDF/XML as the only data format.
In this experiment, there are eight edge nodes and each edge
node will collect data from ten IoT nodes. Each IoT node will
send 400 individual RDF data to either edge node or Cloud
server. Thus for CRA, 80 IoT nodes will send 32000 RDF
data in total.

We design four groups of task distributions: Group A
implements all reasoning tasks on the Cloud server; Group
B implements rules which related to “High Average Speed”
on the edge nodes and the rest on Cloud; Group C imple-
ments rules related to “High Acceleration” and “High De-
acceleration” on edge nodes and the rest on Cloud; Group D
implements rules related to both “High Average Speed”, “High
Acceleration” and “High De-acceleration” on the edge nodes
and the rest on the Cloud.

Figure 12 presents the result of the performance comparison
between different task distributions on edge nodes. In each
group, the overall time consumption is:

TOverall = max (TCloud, TEdge)

In Figure 12, the left chart shows the overall processing time
including both data transferring time and reasoning time and
the right chart shows only the reasoning time. The Cloud
column represents the total processing time from IoT node
to edge nodes and from edge nodes to Cloud server. The edge
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Fig. 12. Performance comparison with different rule set. (left: overall data
processing time, right: reasoning time)

column only counts the processing from IoT nodes to edge
nodes including data receiving time and reasoning time. For
example, in Group B, IoT nodes first send the data to edge
nodes, and then the edge nodes simultaneously reason the data
and send data to the Cloud. Thus both columns have the same
orange part, which is data sending time from IoT nodes to
edge nodes. Then the yellow part in edge column represents
the reasoning time on edge. The green part represents the
data sending time from edge to Cloud. And the red part
represents the data reasoning time on Cloud and the brown part
represents the data storage time on Cloud. As the Cloud and
edge are simultaneously performing tasks, we could calculate
the overall reasoning time with the formula:

TReasoning = max (TCloudReasoning, TEdgeReasoning)

From the right chart we observe that the more rules imple-
mented on the edge node, the less reasoning time needed from
Cloud server. Comparing with Cloud reasoning in Group A,
Group B reduces 4% reasoning time, Group C reduces 15.6%
reasoning time and Group D reduces 20.7% reasoning time.
From the left chart, comparing with Cloud reasoning time
in Group A, Group B increases 8% reasoning time, Group
C reduces 1.4% reasoning time and Group D reduces 5%
reasoning time.

C. Analysis

We conclude that the transferring time is relevant to syn-
taxes. The required transferring time scales linearly with the
payload size, which depends the data structures and formats.
In our experiments, we send different amounts of similar data
structures. Therefore, the encoding ratios between different
formats are similar with different amounts of data. Regarding
reasoning latency, different RDF syntaxes require significantly
different amount of time in building Jena models but require
the same amount of time for reasoning after they are loaded
in a model. Hence, the more time is required in building Jena
models, the more time is needed for reasoning. In general, the
amount of reasoning time grows linearly as RDF statements
are added.

The transferring time is based on the total data size and
network status. We measured the total size of the 50 individual
data and observed that:

SizeTurtle > SizeRDF/XML

> SizeJSON−LD > SizeShortEN



The comparison of CRA and ERA shows that adding edge
nodes in IoT systems accelerates data processing and reduces
need for network bandwidth. When only first results are
required, the ERA can generate results ten times faster than
the CRA. As our IoT edge devices are located in Finland and
the Cloud Server is in Germany, the long distance and unstable
network affect the latency. The networking equipments affect
the general performance as well. We are using panOULU
[52], which has five types of wireless routers with different
capabilities. In our experiments, we try to utilize the maximum
capacity of the network.

From the third experiment, distributing semantic reasoning
tasks, we summarize two strategies for optimizing the design
of the edge based IoT systems. First, to achieve fast responses,
transferring time to the edge and reasoning time on the edge
devices should be minimized. Second, to achieve minimum
overall reasoning time, reasoning on edge and processing time
on Cloud (including transferring time to Cloud, reasoning time
on Cloud and storing to database) need to be balanced. In
other words, selecting the correct amount of semantic rules
and deploying a suitable amount of reasoning tasks improve
the overall performance. Distributing workload on the edge
shortens processing time in the Cloud.

How much time is saved depends on the system structure
and capabilities of edge nodes. The reasoning time can be
decreased when the edge devices have sufficient processing
capability and the reasoning task can be distributed into several
edge nodes and executed in a parallel manner. However, even
when the reasoning time is decreased, the overall time can be
increased. As we observe from Figure 8, Figure 9, Figure 10,
and Figure 11, overall reasoning time for generating complete
results are comparable. Some of the experiments even show
that ERA requires more overall reasoning time than CRA,
for example in 32000, 36000, and 40000 RDF statements
bars of Figure 8. This is because adding an edge device adds
also one transfer operation; instead of sending data from an
IoT node to the Cloud, the data is first sent to the edge
nodes and then from the edge nodes to the Cloud. Overall
time is saved only when the reduced reasoning time is larger
than the increased transferring time. When IoT devices have
poor network connections, for example moving vehicles, data
transfer requires more time and thus undertaking more tasks
on edge nodes improves performance.

VI. DISCUSSION

Edge and fog computing allow computation to be performed
at the edge of the network, on downstream data on behalf of
Cloud services and upstream data on behalf of IoT services [3].
This article focuses on analyzing the performance of semantic
reasoning in IoT systems with edge nodes. Our contribution
is a detailed analysis of three experiments with a large smart
transportation data set to address the research challenges of
scalability and latency. For studying the influence of edge
computing, we evaluate the performance of semantic reasoning
with cloud and edge architectures. Moreover, we evaluate the

performance with different amount of tasks deployed on the
edge nodes.

The size of the RDF data is an essential factor for data trans-
ferring and storage. Thus, selecting a proper format for RDF
data can improve the performance of semantic processing.
However, our results show that the same format may perform
differently on different cases. The time to transfer semantic
data is closely related to the RDF data sizes and formats, but
the semantic reasoning times for different syntaxes are similar.

Our study shows that adding edge nodes into an IoT system
can improve system performance: first results can be generated
faster, bandwidth usage on the core network can be reduced
and the workload of the Cloud can be reduced as well. Physical
proximity between edge nodes and IoT nodes improves trans-
ferring efficiency. Additional edge nodes reduce the reasoning
time of the Cloud server. If computation is distributed properly,
the overall processing time is reduced, as reasoning tasks
are executed at the edge in a parallel manner. The degree
of improvement depends on the relationship between the
transferring, reasoning, and storing times.

This research focuses on analyzing the performance of an
edge based IoT system. We deploy the system on the Amazon
EC2 Cloud platform and Android devices. Our performance
evaluation is based on measuring latency for data transfer and
reasoning. However, the results may differ in other hardware
and software systems. Our experiment does not count how
many background services are running during our test. More
objective measurement metrics could be selected in the future
research, such as the number of executed CPU instructions for
specific processes. Similarly, the measurement of transferring
time of the RDF data is also affected by network situation.
The comparison between CRA and ERA is based on Oulu
taxi scenario and we utilize predefined rules and ontologies.
More experiments could be carried out to study whether the
result differ when the data, rules and ontologies are more
dynamic. Moreover, challenges such as how to assign the tasks
on edge nodes and what criteria should be adopted to optimize
the performance should be addressed in future research [54].
Finally, we will evaluate the resource usage of semantic
reasoning and investigate minimum required resources for
semantic reasoning on edge nodes.
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(ed) Smart sensing and context, Zürich, Switzerland, Springer Berlin
Heidelberg, pp. 168–181, 2008.

[40] T. Gu, Z. Kwok, K.K. Koh, and H.K. Pung, “A mobile framework
supporting ontology processing and reasoning,” in Proc. the 2nd workshop
on requirements and solutions for pervasive software infrastructures, in
conjunction with the 9th international conference on ubiquitous comput-
ing. Innsbruck, Austria, 2007, pp.16–19.

[41] S. Ali and S. Kiefer, “µOR - Micro a micro owl dl reasoner for
ambient intelligent devices,” Abdennadher N and Petcu D (eds) Advances
in grid and pervasive computing, Geneva, Switzerland, Springer Berlin
Heidelberg, pp. 305–316, 2009.

[42] J.I. Vazquez, “A reactive behavioural model for context-aware semantic
devices,” Doctoral Dissertation of Universidad de Deusto, 2007.

[43] Androjena, Porting of Jena to Android,
https://github.com/lencinhaus/androjena. Cited 2016/06/29.

[44] Apache Jena on Android, https://elite.polito.it/research/downloads/182-
jena-on-android-download.

[45] J. Ye, G. Stevenson, and S. Dobson, “USMART: An Unsupervised
Semantic Mining Activity Recognition Technique,” ACM Trans. Interact.
Intell. Syst., Vol. 4, No. 4, Art. 16, 2014.

[46] D. Riboni, T. Sztyler, G. Civitarese, and H. Stuckenschmidt, “Un-
supervised recognition of interleaved activities of daily living through
ontological and probabilistic reasoning,” In Proc. of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
ACM, New York, USA, 2016, pp. 1–12.

[47] A.I. Maarala, X. Su, and J. Riekki, “Semantic Reasoning for Context-
aware Internet of Things Applications,” IEEE Internet of Things Journal,
Vol. 2, Iss. 4, pp. 1–13, 2016.

[48] Message Queuing Telemetry Transport (MQTT), http://mqtt.org/.
[49] J. Kiljander, A. Ylisaukko-Oja, J. Takalo-Mattila, M. Eteläperä, and
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