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Abstract—With the increase in the number of cores embedded
on a chip; The main challenge for Multiprocessor System-
on-Chip (MPSoC) platforms is the interconnection between
that massive number of cores. Networks-on-Chip (NoC) was
introduced to solve that challenge, by providing a scalable
and modular solution for communication between the cores.
In this paper, we introduce a configurable MPSoC framework
called RVNoC that generates synthesizable RTL that can be
used in both ASIC and FPGA implementations. The proposed
framework is based on the open source RISC-V Instruction Set
Architecture (ISA) and an open source configurable flit-based
router for interconnection between cores, with a core network
interface of our design to connect each core with its designated
router. A benchmarking environment is developed to evaluate
variant parameters of the generated MPSoC. Synthesis of a single
building block containing a single core without any peripherals,
a router, and a core network interface, using 45nm technology,
shows an area of 102.34 kilo Gate Equivalents (kGE), a maximum
frequency of 250 MHz, and a 9.9 μW/MHz power consumption.

Keywords—Multiprocessor System-on-Chip (MPSoC),
Network-on-Chip (NoC), RISC-V, System-on-Chip (SoC)

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) platforms have

been introduced to satisfy the complexity of modern ap-

plications. Such systems offer more modularity, scalability,

and processing power than ever before. One of the major

challenges facing the performance of MPSoC architectures

is the communication between different Intellecutal Property

cores (IPs) [1]. Traditionally, communication was handled

via bus or crossbar structures. However, with Moore’s law

forcing the integration of more and more IPs on a single chip,

these structures began to fail, especially in terms of scal-

ability, throughput, bandwidth, and power consumption [2].

Networks-on-Chip (NoC) has emerged as a solution to in-

terconnection challenges in modern digital systems [3]. NoC

platforms provide significantly high on-chip communication

bandwidth, which most MPSoC systems need.

RISC-V is a new extensible open-source Instruction Set

Architecture (ISA) [4] developed to support computer archi-

tecture research and education and can also provide a reliable

cost-free open ISA for industrial applications. The ISA itself

is highly extensible with numerous open extensions such as

atomic instructions, bit-manipulation, vector operations, and

floating-point operations.

In this work, we introduce using RISC-V as the main

Processing Element (PE) for lightweight MPSoC systems.

Multiple NoC-based MPSoC systems have been introduced in

literature, but none of them used any RISC-V implementation.

In [5], a NoC-Based MPSoC is introduced to use clusters of

a configurable 32-bit Very Large Instruction Word (VLIW)

processor architecture called CoreVA, which is used mainly

for multimedia and streaming applications. That MPSoC uses

two hierarchical levels of communication with the inter-

cluster communication implemented via a bus structure and the

cluster-to-cluster communication handled using a packet-based

NoC system. HeMPS is a framework for generating NoC-

based MPSoC systems [6]. This framework uses a small 32-

bit RISC implementation of a MIPS-I like-ISA and a simple

2-D mesh NoC, with deterministic, distributed XY routing

algorithm.

II. PROPOSED ARCHITECTURE AND IMPLEMENTATION

To emphasize scalability, the architecture of RVNoC is

based on a replicated building block that is divided into three

main parts, processing tile, router, and the Core Network

Interface (CNI). RVNoC uses two levels of communication;

the RISC-V core communicates with its dedicated peripherals

within the tile using an Advanced eXtensible Interface (AXI)

bus, and with other cores via a network of routers. The detailed

architecture of a single building block is illustrated in Figure 1.

A. RISC-V Processing Tile

Several hardware implementations of the RISC-V ISA ex-

ist [7] [8]. This work mainly uses RI5CY as the core Central

Processing Unit (CPU) for the proposed MPSoC [9]. RI5CY

is a 32-bit 4-stage pipelined RISC-V CPU. It mainly uses

the RV32I base integer instruction set [4], with a single-cycle

multiplication and other DSP extensions. To program a single
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Figure 1: Detailed architecture of RVNoC building block.

RI5CY core, a custom GCC RISC-V toolchain is used. The

core also uses 32 vectored interrupts. As depicted in Figure 1,

other PEs as coprocessors, accelerators, I/O devices and, IP

cores can be connected to the RI5CY core via the AXI4 bus.

Although this work mainly focuses on the RI5CY core, other

RISC-V implementations can be used and evaluated using the

same methodology and architecture.

B. Configurable Router

RVNoC uses the open source router discussed in [10] which

is considered a configurable, complex router with extensive

options to adjust network parameters. These parameters not

only control the network flow but also generate a wide

variety of different NoC architectures. This router is flit-based,

meaning that packets in the network are divided into flits; head,

body, and tail flits. Router nodes in the network communicate

with each other via two buses; channel bus, containing the

traversed flits and flow control bus, containing the signals that

manage the transfer of packets inside the network. Each router

node is connected by its local port’s channel and flow control

buses to a network interface which is linked to a RI5CY core.

This router was also verified and tested using the environment

in [11][12]. The 3D networks routers [13] could be studied

and implemented in future work.

C. RISC-V CNI Architecture

The core network interface is the bridge connecting the

core to the NoC. Many CNI architectures already exist with

some extra functionalities [14][15]. The CNI used in our

work is a memory-mapped I/O interface, which is given an

address space within the memory to facilitate accessing the

core using the standard load and store instructions. The main

advantage of that kind of interfaces is that they need no further

modifications to the architecture of the attached core or the

ISA.

As shown in Figure 1, the interface can be divided into four

main elements: CNI data registers, CNI control registers, CNI

controllers and the network injector and collector.

1) CNI Data Registers
CNI Registers generally are memory-mapped registers that

can be directly accessed by the core and CNI controllers.

CNI registers are directly connected to the core via multi-

plexers/demultiplexers and not via the AXI bus to accelerate

communication.

CNI data registers contain: (i) the source bank in which the

core injects packets to transmit, (ii) the sink bank in which the

router injects packets it received for the attached core. Both

source and sink bank sizes are set to the maximum payload a

packet of the underlying network can hold.

2) CNI Control Registers
CNI control registers consist of two registers: source and

sink control registers. The source control register contains:

(i) Sending control bits (S-bits), which are two control bits

accessed by the core and the CNI source controller to syn-

chronize between them and indicate the transmission state.

(ii) Packet size, written by the core to indicate the number of

flits in the injected packet. (iii) Destination address, written by

the core to indicate the destination core of the injected packet.

Similar to the source control register, the sink control

register contains the fields: receiving control bits (R-bits),

accessed by the core and the sink CNI controller, and packet

size, which is the same as the corresponding one in the source

control register, but is set by the sink CNI controller to indicate

number of flits of the received packet.



3) CNI Controllers
CNI controllers are the abstraction layer between CNI

registers and the network injector, and collector which directly

interact with the router. Two versions are implemented: source

and sink CNI controllers. The source CNI controller is respon-

sible for handling the source control register, loading data from

CNI data registers, formatting the packet in the appropriate

number of flits, and sending it to the network injector, which

in turn injects the data as flits in the network with the required

flow control. At the beginning the source CNI checks if the S-

bits are “11” which indicates a packet sent by the core, then it

sets the S-bits to “01” in the source control register to indicate

that it is currently processing the packet in the source control

registers and then resets them to “00” when it is done, allowing

the core to send new packet. While the sink CNI controller is

responsible for interfacing with the network collector to get

the received packets, extracts the data from the packets and

sends them to the core through the CNI data registers while

handling the CNI sink control register. The sink CNI controller

sets the R-bits to “01” in the sink control register while writing

a received packet to the sink control registers and then resets

them to “00” when it is done to inform the core of the received

packet.
4) Network Injector and Collector
The network injector and collector are responsible for

injecting and collecting packets from the router, respectively.

They act as a normal I/O port of a router to supply necessary

mechanisms to the attached router, like flow control and cred-

its. The separation between CNI controllers and the network

injector and collector is meant to isolate the core control from

the router control, and thus, facilitate connecting other network

infrastructures to the framework by only replacing the network

injector and collector.

III. SIMULATION PLATFORM

To allow fast prototyping and performance analysis, a com-

plete simulation environment was built as shown in Figure 2.
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Figure 2: Simulation environment

A. Software Layer for Simulation Environment Setup
The software layer of the simulation environment consists

of:

1) Traffic Generator
The traffic generator generates packets according to the

adopted traffic pattern with a specified packet length distri-

bution at each specified inter-arrival time distribution. Packets

along with their destination addresses and sizes are stored in

the data memory of each core to be extracted and injected by

the core. The test layer supports uniform, hot-spot, transpose,

bit-shuffle, bit-rotation, bit-reversal, tornado, and neighbor

traffic patterns [3].
2) Scheduler and Software Controller

The scheduler is responsible for ensuring that the traffic pattern

timings are met by generating an interrupt to the core to

indicate that a packet should be injected in this cycle and main-

taining an external register in the data memory that contains

the total number of packets the core should have injected in

this cycle. On the other hand, the software controller consists

of two low-level control functions namely: Inject and Collect,

which are developed to facilitate data transmission between

cores in the higher level. These functions are implemented in

assembly using both polling and interrupt-based approaches.

In the following paragraphs, the implementation of the two

functions are depicted.
a) Inject Function: The pseudocode shown in Algo-

rithm 1 describes the polling-based Inject function. While for

the interrupt-based approach, after checking the S-bits, if the

last packet is already injected, the function will be the same

as in the polling-based approach. But, if the previous packet is

not yet injected, the function will put the function’s arguments

in a queue and enable the injection interrupt. Eventually when

CNI controller finishes sending the previous packet, it will

trigger the injection interrupt, which in turn loads the packet

into the CNI data registers.

Algorithm 1 Inject function pseudocode

1: function Inject(Packet[], Size, Addr)

2: {S bits,OldSize,OldAddr} ← SRC Ctrl Reg
3: if S bits �= “00” then
4: return 0
5: end if
6: S bits← “10”
7: SRC Ctrl Reg ← {S bits, Size, Addr}
8: for i from 0 to Size do
9: SRC Regs[i]← Packet[i]

10: end for
11: S bits← ”11”
12: SRC Ctrl Reg ← {S bits, Size, Addr}
13: return 1
14: end function

b) Collect Function: The polling-based approach of the

Collect function is described in Algorithm 2. Similarly for the

interrupt-based approach, after checking the R-bits, if there is

a packet ready for loading, the function will act normally as

in the polling-approach. But, if no packet exists, the function

will put the packet’s array pointer in a queue and enable

the collection interrupt. Eventually, when the CNI controller



receives a packet, it will trigger the collection interrupt, which

in turn loads the packet into the packet’s array using the pointer

in the queue.

Algorithm 2 Collect function pseudocode

1: function Collect(Packet[])
2: {R bits, Size} ← SINK Ctrl Reg
3: if R bits �= “00” then
4: return 0
5: end if
6: R bits← ”10”
7: SINK Ctrl Reg ← {R bits, Size}
8: for i from 0 to Size do
9: Packet[i]← SINK Regs[i]

10: end for
11: R bits← “11”
12: SINK Ctrl Reg ← {R bits, Size}
13: return Size
14: end function

Both functions are integerated in each core’s program code

and loaded into its instruction memory.

B. Hardware Platform

The hardware platform is responsible for generating the

MPSoC system according to the specification and configura-

tions given in Table I. The hardware platform also generates

a synthesizable Verilog RTL that can be later used for both

ASIC and FPGA implementations. The generated RTL along

with the code of the desired application can be simulated using

any HDL simulator.

Table I: The router’s parameters and configurations.

Parameters Configurations
Topology Mesh, torus, ring, and tree.
Flow control store and forward, virtual channel

and wormhole flow controls.
Number of Virtual Channels
(VCs)

Variable number of virtual
channels per port.

Buffers size Variable number for total input
buffer size per port in flits.

Buffer management Static and dynamic buffer
management.

Flit size Variable number of bits for each
flit.

Routing algorithm Oblivious, deterministic, and
adaptive routing.

Arbiter Round robin, Tree, Matrix and
Priority arbiters.

Maximum payload length Variable number of body flits per
packet.

VC allocation type Separable input-first, Separable
output-first, and Wave front-based
VC allocation.

IV. RESULTS

In this section, synthesis results of the proposed archi-

tecture and performance analysis of different configurations

are illustrated. The synthesis results are obtained using a 64-

bit NXN mesh topology credit-based 2-virtual-channel router

using deterministic dimension order routing with static buffer

management and Round robin separable virtual channel and

switch allocators.

A. Physical Implementation Results

A single MPSoC building block containing a single RI5CY

core without any peripherals, CNI and a single router is

synthesized using 45nm technology. The obtained physical

implementation results depicted in Table II show relatively

low area and low power implementation, which is suitable for

high performance low power parallel applications. The area is

reported in μm2 and kilo Gate Equivalent (kGE).

Table II: Physical implementation results.

Total area (μm2) 81670.77
Total area (kGE) 102.34

Core 55.75 (54.48%)
Router 32.67 (31.92%)
CNI 13.91 (13.60%)

Maximum frequency (MHz) 250
Power consumption (μW/MHz) 9.9
Operating Voltage (V) 1.1

The CNI shows relatively low area, representing only 14%

of the total area. Also, considering that the processing tile

should also contain other peripherals attached to the AXI

bus, it should result in even lower area percentage for the

interconnection as a whole compared to the PEs.

B. Performance Results

Different configurations of the MPSoC have been evaluated

by the proposed benchmarking environment. Throughput and

latency results versus different injection rates using some

of the available configurations are depicted in this section.

Injection rates and throughput are measured in flits per cycle

per router to ensure fair results representation for different

network sizes. Latency in cycles measures the time spent for a

flit to traverse from the core’s data memory until it is received

by the addressed core and stored in its data memory.

Measuring the performance results from core to core results

in higher latency and lower throughput compared to measuring

router to router only. This happens due to the fact that the

core has a software cost for transferring the packet from data

memory to CNI registers and vice versa, and also for the

handshake with CNI control registers. This greatly affects the

performance, resulting in a real life practical impacts, rather

than theoretical ones.

Figures 3a and 3d show the throughput and latency results

respectively for 4-ary, 16-ary and 64-ary MPSoC using 1

VC and 64-bit buffer size with uniform distribution traffic

pattern. The results clearly show that lower mesh sizes have

higher throughput and lower latency, as expected in mesh

networks. Figures 3b and 3e show the throughput and latency

results respectively for 16-bit, 32-bit and 64-bit buffer sizes

using 64-ary MPSoC with uniform distribution traffic pattern.

While larger buffer sizes obviously have positive effects on

network performance, however, it greatly affects the physical

implementation performance, especially increasing area and

power consumption. Real life applications tend to generate
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(a) Throughput results for different MPSoC
mesh sizes.
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(f) Latency results for different traffic patterns.

Figure 3: Throughput and latency results for different RVNoC configurations.

nonuniform traffic patterns, thus evaluation using other traffic

patterns is essential. Figure 3c and 3f show the throughput and

latency results for uniform, transpose, bit complement traffic

patterns, respectively, using 16-ary MPSoC with 16-bit buffer

size.

V. CONCLUSIONS

In this work, a framework for generating NoC-based MP-

SoC is introduced. The framework uses an open source RISC-

V implementation having two levels of communication using

an AXI4 interconnection bus and a highly configurable NoC

system. A single building block of the MPSoC was synthesized

for ASIC showing relatively low area and low power results.

The performance results of various configurations were dis-

cussed.
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