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ABSTRACT The paper develops novel algorithms for time-varying (TV) sparse channel estimation in
Massive multiple-input, multiple-output (MMIMO) systems. This is achieved by employing a novel reduced
(non-uniformly spaced tap) delay-line equalizer, which can be related to low/reduced rank filters. This low
rank filter is implemented by deriving an innovative TV (Krylov-space based) Multi-Stage Kalman Filter
(MSKF), employing appropriate state estimation techniques. MSKF converges very quickly, within few
stages/iterations (at each symbol). This is possible because MSKF uses those signal spaces, maximally corre-
lated with the desired signal, rather than the standard principal component (PCA) signal spaces. MSKF is also
able to reduce channel tracking errors, encountered by a standard Kalman filter in a high-mobility channel.
In addition, MSKF is well suited for large-scale MMIMO systems. This is unlike most existing methods,
including recent Bayesian-Belief Propagation, Krylov, fast iterative re-weighted compressed sensing (RCS)
and minimum rank minimization methods, which requires more and more iterations to converge, as the
scale of MMIMO system increases. A Bayesian Cramer Rao lower bound (BCRLB) for noisy CS (in sparse
channel) is also derived, which provides a benchamrk for the performance for novel MSKF and other CS
estimators.

INDEX TERMS Adaptive signal processing, compressed sensing, channel estimation, Kalman filters, time-
varying channels.

I. INTRODUCTION
Massive MIMO (MMIMO) systems are considered for high
data rate communications in sparse channels, e. g. digital
television (DTV) [1], [2], echo cancellation, underwater [3],
millimeter-wave (mmwave) 5 G communications [4]. For ex-
ample, in terrestrial DTV transmission [1], [2], a typical re-
ceiver is expected to handle multipath with delays as long
as 18 microseconds, which at high symbol rates, requires
adaptive finite impulse response (FIR) linear equalizers with
several hundred symbol-spaced taps [5]. In order to alleviate
dynamic multipaths, due to propagation effects, flutter from
moving objects, e.g., airplanes and changing atmospheric
conditions, the equalizer must update its coefficients at high
speed. This situation is also witnessed in a high data rate wire-
less channel, where only the main signal and a few multipath

reflected signals are significant, among (maybe) hundreds of
channel taps, (in a tapped-delay line model). Advanced sparse
channel estimation methods, requiring estimation of only few
significant channel tap weights, have been developed for or-
thogonal frequency division multiplexing (OFDM) [6] and
code division multiple access (CDMA) systems, and provide
superior performance.

Existing works estimate the significant channel tap loca-
tions first [7], after which least-squares (LS) methods (em-
ploying training subcarriers only) are used to estimate the sig-
nificant channel tap weights, but may require a large amount
of training data, making them unsuitable for MMIMO. The
large number of training symbols/subcarriers required or the
resultant pilot contamination/re-use problem in MMIMO [8]
necessitated the development of blind/semi-blind sparse
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time-invariant (ITV) channel/data estimation methods, [9]–
[12]. Though [11], [12] perform much better than [9], [10],
all of these blind algorithms are data block-based methods (i.
e., require a block of received data symbols to be collected,
before filtering), and is not adapted for symbol-by-symbol up-
date, for rapidly time-varying (TV) channels. This motivates
the development of time (symbol) iterative/update Kalman-
like filters. The novel methods here utilize the ideas of
reduced-rank, sparse, and multistage Kalman filters (MSKF)
jointly to exploit the sparsity in different dimensions (time,
space etc).

Recent methods, like the popular sparsity based com-
pressed sensing (CS) and Bayesian methods [13]–[21], yield
superior performance in MMIMO mmwave spatially sparse
channels, by exploiting the low rank angular structure in-
duced by the multi-ray channel model with narrow angular
spread (AS). But these methods have been derived for single
path (not multipath) channels, and thus do not utilize the
temporal sparsity (in multipath lag) domain. Moreover, CS
and Bayesian methods are computationally very demanding,
and their few iterative versions, like proximal re-weighted
CS (RCS) [16], [18] or [20], converge after many symbols,
making them unsuitable for use in high mobility TV channels.
Moreover, one of the few existing Krylov space spaced TV
channel estimators [22] models the time variation by a basis
exponential method (BEM), which inevitably introduces ap-
proximation error to channel estimates, due to the imperfect
model assumed. Here, on the other hand, the novel equalizer
is updated by reduced-rank, TV novel MSKF and Krylov-
Kalman filters, with reduced computational complexities. In
particular, the novel multi-stage MSKF performs very well,
employs some data censoring and converges quickly, within
a few stages/iterations, at each time symbol. Additionally, the
novel MSKF is able to reduce channel tracking errors of a
standard Kalman filter, which occurs in a high-mobility, TV
channel (as seen in Fig. 8 [23] and text below it).

A. CONTRIBUTIONS
The main contributions of this paper are

1) A novel, symbol-iterative MSKF, exhibiting superior
performance and rapid stage-wise convergence (at each
symbol), is developed for high mobility sparse TV chan-
nels. This is achieved by

a) having a novel TV reduced (non-uniformly
spaced) equalizer structure, reminiscent of some
time-invariant (ITV) reduced equalizers for DTV
and echo cancellation. ITV Reduced equalizers
have been seen to outperform uniformly symbol-
spaced estimators, as evidenced in [1]) (Fig. 3),
and in learning curves (Fig. 4, [1] and Fig. 3, [2]).
Using auto-regressive (AR) TV channel models,
the reduced equalizer is generalized to exploit any
available sparsity in cluster-sparse channels, even
with continuous ISI, and with time-varying signif-
icant channel tap locations, to cater to real-world

FIGURE 1. (a) Clustered sparse channel model as multi-user sparse
channel (equation (3)), (b) Time-varying significant channel tap locations
(equations (4) and (5)), and (c) MMIMO channel model (Section IV.C).

FIGURE 2. Block diagram of MSKF (N = 3).

channels, encountered in in 4 G/5 G transmission
(Sections II and III).

b) Substantial synthesis and analysis of the reduced
equalizer leads to reduced channel vectors and
matrices for data estimation in high mobility
sparse TV channels. Then the very large number
of receive antennas J in MMIMO systems allows
the derivation of a low rank algebraic reduced
equalizer structure (Section III).

c) Next, motivated by some ITV Multi-stage Wiener
Filter (MSWF), exhibiting fast stage-wise conver-
gence for some DOA applications [24], a novel
TV Multi-stage Kalman Filter (MSKF) is inte-
grated into the reduced rank equalizer structure
above (Sections III and IV). Significant derivation
of this novel dynamic, sparse MSKF equalizer,
with data censoring (as in sensor networks [25]) is
developed in Sections III and IV.
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FIGURE 3. (a) OMP convergence and (b) MSKF for stationary channel.

FIGURE 4. (a) Channel NRMSE versus symbol no., for different orders and
SNRs, for λ = 0.988 and (b) λ = 0.995.

d) Derivation of Bayesian Cramer Rao bounds
(BCRB) for noisy CS in sparse channel, and its
comparison with novel MSKF filter (Section VI).

e) Performance analysis of TV MSKF’s much
improved (order/iteration)-wise convergence
of normalized mean squared error (NRMSE)
and analytical comparison and connection with
Bayesian, CS and other existing sparse methods,
(Section V).

Other contributions include
� 1. Close connection between the ideas of compressed

sensing(CS) and reduced rank filters (matrix rank
minimization) in sparse estimation (Section III.B);
development of a second novel TV Krylov filter
(Section V).

� 2. Extensive comparative simulations of MSKF
with recent Bayesian, CS and Krylov space based
sparse estimators, in high mobility MMIMO
systems (Section VII). Conclusions are provided in
Section VIII.

Notations: Bold upper-case symbols A denote matrices.
Bold lower-case symbols b denote vectors. Ii is an iden-
tity matrix of size i × i, 0 j,k is a j × k-sized zero matrix.

Also, A(i : j, k : l ) denotes the ith to jth rows and kth to lth
columns of the matrix A.

II. SYSTEM MODEL
A single-carrier sparse channel transmission system, with
maximum multipath delay spread of up to L symbols, is
considered. A novel algorithm is designed to deter-
mine the finite impulse response (FIR) equalizer, re-
quired to invert this channel in the minimum mean
squared error (MMSE) sense [5]. Consider first a SIMO
system, with a single transmit antenna and J receive
antennas. The TV lth tap channel weight, at sym-
bol n, is h(n, l ) = [h1(n, l ), h2(n, l ), . . . , hJ (n, l )]T , l =
0, 1, . . . , L − 1, (h j (n, l ) is the lth lag channel weight from
transmitter to the jth receive antenna at nth symbol). However
in a sparse channel, only D, (out of a total of L), channel tap
weights, have non-zero values. In many cases, D << L.

In next section, we consider generic cluster-sparse channels
with continuous ISI, (e. g. 3 G LTE channel). The J × 1
received signal (on J received antennas) is

y(n) =
L−1∑
m=0

h(n, m)s(n − m) + w(n)

=
D−1∑
k=0

h(n, lk )s(n − lk ) + w(n);

0 ≤ lk ≤ L − 1, k = 0, 1, 2, . . . , D − 1, (1)

where lk’s denotes the kth non-zero weighted channel
tap locations. Generally, l0 = 0, [9], [10]. Also, assume
that 0 = l0 < l1 < l2 < · · · < lD−1 ≤ L − 1; w(n) is the J ×
1 additive white gaussian noise (AWGN). For MIMO
systems with S̄ transmit antennas and J receive anten-
nas, the channel matrix H̃(n, l ) is a J × S̄ matrix, given
by H̃(n, l ) = [h(1)(n, l ) h(2)(n, l ) . . . , h(S̄)(n, l )], with J × 1-
sized h(k)(n, l ) being the channel from the kth transmit an-
tenna to the J receive antennas, at lth delay and nth symbol.

Three general assumptions are made as follows:

(A1) The symbol sequence of each user s(n) is temporally
white with zero mean and unit variance, and is statistically
uncorrelated with s(n − m) for m �= 0.

(A2) The noise sequences w j (n) are stationary, and tempo-
rally and spatially white with zero mean and variance σ 2

w.
(A3) The symbol sequences s(n) are statistically uncorrelated

with the noise sequences w j (n).

Remark: In point-to-point MIMO systems, the transmit
and receive antennas are co-located. In such a case, the propa-
gation delay is approximately the same for all transmit-receive
pairs; thus, significant channel tap locations, should be the
same for all transmit-receive pairs [10], i.e., common sparsity
support across all receive antennas. However, this assumption
may not hold over a large number of receive antennas in
MMIMO [15]. Ma et al. proposes a spatial domain BEM
(SBEM), with beamforming so that each ray directed to one
user cluster. However, [18] derives algorithms for time delay
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and angle estimation in MMIMO, with the same multipath
delays for all receive antennas.

III. NOVEL TIME VARYING (TV) REDUCED EQUALIZER
FOR SPARSE CHANNELS
A. EXTENDED CHANNEL MODEL
1) GROUP OR CLUSTERED SPARSITY
Here, group sparsity [26] is considered, where the few non-
zero (i.e., significant) channel taps occur in clusters/blocks
in a structured manner, see Fig. 1(a). Suppose the multipath
channel consists of D clusters (instead of D single taps). The
total support of the channel S is given by S = ⋃D−1

k=0 S(k), S(k)
being the support of the kth cluster. The kth cluster consists of
|Sk| consecutive multipaths at lags of lk, (lk + 1), · · · , (lk +
|Sk| − 1); let S̄ = maxk=0,1,...,D−1 |Sk|. Then (1) can be rewrit-
ten as

y(n) =
S̄−1∑
i=0

D−1∑
k=0

h(n, lk + i)s(n − lk − i) + w(n),

0 ≤ lk ≤ L. (2)

For a fixed i, the inner summation in (2) is again a
D-sparse channel, with sparse multipaths, still separated
by {(lk+1 + i) − (lk + i) = (lk+1 − lk )} taps, just as in (1).
Defining H(n, lk )�

− [h(n, lk ), h(n, lk + 1), . . . , h(n, lk + S̄ −
1)], and s(n − lk )�

= [s(n − lk ), s(n − lk − 1), . . . , s(n − lk −
S̄ + 1)]T , (1) is equivalent to

y(n) =
D−1∑
k=0

H(n, lk )s(n − lk ) + w(n). (3)

Since the different components of H(n, lk ) are uncorrelated
with each other (and so also for s(n)), (3) can be regarded as
a S̄-user sparse channel model.

Then there is the issue of continuous ISI, as in a 3 G LTE
Pedestrian B channel. There may be some multipaths, in be-
tween the significant multipath clusters, shown in Fig. 3, [14].
Their powers may be approximately 50, 70, 170 dB below that
of the main path. Simulation results, for TV 3 G LTE channel,
in Section VII show that the effect of these paths is not much,
see (last right-most paragraph, pp. 1428) [11] and Table 2, [9].

2) TIME-VARIATION OF SIGNIFICANT TAP LOCATIONS
Assume that the time-evolution of random, TV channel is
modeled by a first order auto-regressive (AR(1)) model [5],
[23], (with significant channel tap locations lk (n) as a function
of the nth symbol),

H(n, lk (n)) = λH(n − 1, lk (n − 1)) + V(n), (4)

where V(n) is the process noise with zero mean and variance
σ 2

v I. λ represents how fast and how much the time-varying
part of channel taps H(n, lk (n)) varies with respect to the
mean of H(n, lk (n)). Actually, λ = J0(2π fDT ), where J0 and
fDT are the zero-th order Bessel function and Doppler rate
respectively; the Doppler frequency fD corresponds to the
vehicular velocity [23].

Substituting (4) into (3),

y(n) =
D−1∑
k=0

H(n, lk (n))s(n − lk (n)) + w(n)

=
D−1∑
k=0

(λH(n − 1, lk (n − 1)) + V(n))

s(n − 1 − (lk (n) − 1)) + w(n)

= λ

D−1∑
k=0

H(n − 1, lk (n − 1))

[s(n − 1 − (lk (n) − 1))] + w̃(n) = λy(n − 1) + w̃(n)
(5)

where w̃(n)�
= w(n) + V(n)

∑D−1
k=0 s(n − 1 − (lk (n) − 1)) is

the overall noise. Let m = n − 1 − (lk (n) − 1).
Now

E{w̃(n)sT (m)} = E{V(n)}E{s(m)sT (m)}
+ E{w(n)}E{sT (m)} = 0,

as noises E{V(n)} = 0, E{w(n)} = 0, and both are also un-
correlated with signal s(m).

Then lk (n − 1) = lk (n) − 1, i. e., significant channel tap
locations are shifted by 1, which is already accommodated in
AR(1) model (4) above. This expression for the time variation
of lk (n) is obtained, within the limitations of the assumed
AR(1) model, and may differ for other TV channel models.
The novel channel model is illustrated in Fig. 1(a) and (b).

B. REDUCED TV EQUALIZER
Motivation

There exists a close connection between the ideas of com-
pressed sensing (CS) and matrix rank minimization/reduced
rank filters, in beam formed sparse (angular and temporal)
channel estimation. [18], [20], [21]. [21] investigates single
path mmwave channel sparsity in angular/space (Direction of
Arrival (DOA)) domain, where the low-rank algebraic struc-
ture of the channel matrix is exploited by employing a reduced
rank method, followed by a CS sparse method. [20] solves
the same problem (in MMIMO) using CS methods only. On
the other hand, [18] compares the performance of individual
CS and reduced rank methods in MMIMO mmwave multipath
channels. In this paper, a novel reduced rank filtering method
is used for sparse multipath (non-beamformed) channel esti-
mation. This is facilitated by having very large J in MMIMO,
which makes Assumption (A4) (below) more likely to be
satisfied.

A novel model of a reduced equalizer, adequate for data
estimation in a sparse channel, is introduced in this section. A
sparse equalizer means that only few of its taps (in a tapped-
delay line model of linear FIR equalizer) have significant
weights. These significant, non-uniformly spaced, FIR equal-
izer tap locations are seen to be related to the auto-correlation
matrix of y(n) [11]. Define the ith lag auto-correlation ma-
trix, at symbol n, R(n, i)�

= E [y(n)yH (n − i)]. After evaluating
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R(n, i) for the sparse channel in (1), it can be seen that the TV
R(n, i) �= 0, only for the lags i’s, [11],

i = l0 − l0 = 0; i = lk − l0 = lk, (k = 1, 2, . . . , D − 1),

i = lk − lm, (m < k, k = 2, 3, . . . , D − 1). (6)

Then, an algorithm for selecting non-uniformly spaced
equalizer tap delays {mp}N

p=1’s, is enumerated in Table 1, by
employing Assumptions (A1) − (A3), and by extending [11].

Now the noiseless reduced data vector yred (n) = yred (n) =
[yT (n − m1)yT (n − m2) · · · yT (n − mN )]T , mN ≤ M.

(defined in (56), Table 1) can be written as yred (n) =
Hred (n)sred (n) (Hred (n) and sred (n) are the corresponding
reduced channel matrix and transmitted data vectors
respectively). Obtaining general expressions of the novel
reduced channel matrix, (for generic sparse channels, which
have many different combinations of {l j}D−1

j=0 ’s, even for the
same sparsity level D), may not always be possible [11], [12].

The reduced channel matrix and transmitted data vector can
only be illustrated fully for specific channels, e. g., Example I
Channel (equations (14), (47), (48) and (49) in [11]). Extend-
ing it to the reduced, TV Example I channel matrix Hred (n)
here is given by (for M = 23) ((7), shown at the bottom
of this page) of size 12 J × 21S̄. If we had taken equalizer
taps at all lags, the “full” channel matrix H f ull (n) will be of
size MJ × (M + L) = 23 J × (23 + 12)S̄ = 23 J × 35S̄, Ex-
ample I Channel, [11]. An assumption made is (A4) Channel
matrix H f ull (n)/Hred (n) is of full column rank.

In MMIMO, with very large number of receive anten-
nas J , the channel matrix is a very “tall” matrix, which
makes Assumption (A4) more likely to be valid. Then
rank(H f ull (n)) = 35S̄ always, irrespective of the sparsity
structure in channel. But rank(Hred (n)) = 21S̄ for Example
I Channel and has reduced rank, which depends on each spe-
cific sparse channel. This is unlike the full channel matrix used
traditionally in data estimation; thereby indicating that the re-
duced equalizer methodology has transformed sparse channel
estimation problem into that of TV reduced-rank filtering.

C. STATE SPACE REPRESENTATION AND INNOVATIONS IN
REDUCED FILTER
Here, the state is the channel H(n, lk (n)), for which the mea-
surement equation is (using (3)),

y(n) = C(n)H̃(n) + w(n), (8)

with measurement matrix C(n) = [IJ ⊗ sT (n − l0), IJ ⊗
sT (n − l1), . . . , IJ ⊗ sT (n − lD−1)] (⊗ : Kronecker product).

Defining JS̄ × 1-sized h̄(n, lk ) = [hT (n, lk ), hT (n, lk +
1), . . . , hT (n, lk + S̄ − 1))]T , H̃(n)�

− [h̄T (n, l0) · · · h̄T (n,

lD−1)]T . However, since we don’t know the significant
channel {lk}’s a priori, one starts with assuming that
all channel taps are present, in novel MSKF algorithm
and its simulations. The only information we have is the
non-uniformly-spaced reduced equalizer lags, i. e. the
yred (n) vector (which is deduced from Algorithm I). The TV
channel’s dynamic state equation

H̃(n) = diag(λ)H̃(n − 1) + V(n) (9)

follows from (4). Since the reduced equalizer is
yred (n)=[yT (n − m1) yT (n − m2) · · · yT (n − mN )]T , H̃(n)
needs to be updated only at symbols {(n − mN ), . . . , (n −
m2), (n − m1), . . . , n}.

Note This may be viewed as some form of data censoring
in sensor networks [25].

Now, y(n), in (8) is used in block-based channel estima-
tion method [11], i. e., a block of received data symbols is
collected before H̃(n) is estimated, i. e., the estimate is not
iteratively updated from one symbol to the next, which is the
objective of this paper. For our novel, reduced Kalman filter,
the innovations (used to derive an time-iterative algorithm)
is ỹ(n) = ỹ(n − m0)[m0 = 0]�

= y(n) − ŷ(n|n − m1). ŷ(n|n −
m1) is the MMSE estimate of y(n), based on non-uniformly
spaced past data {y(n − m j )}N

j=1’s. Similarly, channel esti-

mate ˆ̃H(n|n) uses the current data ỹ(n); the a-priori chan-
nel estimate ˆ̃H(n|n − m1) uses past data {y(n − m j )}N

j=1’s;

a priori estimate error is denoted by He(n|n − m1)�
− H̃(n) −

ˆ̃H(n|n − m1).
Next, the innovations has to be expressed in terms of

Kalman state matrices (in (8) and (9)), [unlike time-invariant
Wiener MSWF [11], [24]]. From (8), ỹ(n) and its auto-
correlation matrix are

ŷ(n|n − m1) = C(n) ˆ̃H(n|n − m1),

ỹ(n) = y(n) − ŷ(n|n − m1) = C(n)He(n|n − m1) + w(n),

Rỹ(n) = C(n)RHe (n|n − m1)CH (n) + σ 2
wIJ , (10)

where RHe (n|n − m1) is the a priori channel error correlation
matrix. Next, a time-update of the state, H̃(n), is obtained,

Lemma 1:

ˆ̃H(n|n) = ˆ̃H(n|n − m1) + ˆ̃H(n|ỹ(n)). (11)

Proof: See Appendix A.

Hred (n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0(n, 0) 0J,1 H(n, 4) 0J,3 H(n, 11) 0J,14
0J,1 H(n, 0) 0J,1 H(n, 4) 0J,4 H(n, 11) 0J,12
0J,2 H(n, 0) 0J,1 H(n, 4) 0J,4 H(n, 11) 0J,11

...
...

0J,5 H(n, 0) 0J,2 H(n, 4) 0J,5 H(n, 11) 0J,6
...

...
0J,11 H(n, 0) 0J,3 H(n, 4) 0J,4 H(n, 11)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
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From (11), we have,

(H̃(n) − ˆ̃H(n|n)) = (H̃(n) − ˆ̃H(n|n − m1) − ˆ̃H(n|ỹ(n))
(12)

He(n|n) = He(n|n − m1) − ˆ̃H(n|ỹ(n)) (13)

Using (13), the a-posteriori channel estimate error
auto-correlation matrix RHe (n|n) = E{He(n|n)HeH (n|n))} =
RHe (n|n − m1) − 2E{He(n|n − m1) ˆ̃HH (n|ỹ(n))} +
E{ ˆ̃H(n|ỹ(n)) ˆ̃HH (n|ỹ(n))}. Using orthogonality principle
of MMSE estimation, the a-priori channel estimate
error He(n|n − m1) is orthogonal to the a-priori estimate
ˆ̃H(n|n − m1); also, ˆ̃H(n|ỹ(n)) is orthogonal to ˆ̃H(n|n − m1)
[27]. Then

RHe (n|n) = RHe (n|n − m1)

− E{ ˆ̃H(n|ỹ(n)) ˆ̃HH (n|ỹ(n))}. (14)

Since number of receive antennas at MMIMO base-station,
J is very large, the state He(n|n), of size (L + 1)J , has a very
large dimension. Thus direct application of the Kalman filter
may be computationally prohibitive. In such cases, Krylov
based methods [27]–[29] become relevant.

Remark: The equivalence between the reduced equalizer
and sparsity promoting Bayesian estimator [30], [31] is
shown in [12] (Section V), by considering (sparse) channel’s
prior probability density function (pdf) as f ((H(n, lk )(i, j) ) =
[(H(n, lk ))(i, j)]−1/2, (i. e., magnitude of a channel tap will
have a low value with high probability, and a large value with
low probability [30]). Then equations (26)– (34) in [12] show
that this (prior) pdf transforms the above sparsity promoting
Bayesian estimator into a reduced rank filter.

IV. NOVEL, FAST-CONVERGING, MULTI-STAGE KALMAN
FILTER (MSKF)
A computationally efficient, reduced rank Multistage Wiener
Filter (MSWF) (for time-invariant (ITV) systems) has been
developed in [24], which converges to some Krylov based
methods. It involves a reduction in the dimensionality of the
observed data to obtain a MMSE filter, which is as close as
possible to what can be attained if all the observed data were
used in the estimation process. [24], and its variants [32],
have been successfully used in CDMA data estimation, and
recently in the author’s semiblind estimation of time-invariant
sparse channels [11]. The novel Multistage Kalman Filter
(MSKF) here, is inspired from such considerations, and in-
volves substantial extension to TV state estimation. This is
achieved by utilizing innovations data ỹ(n) to estimate the de-
sired signal H̃(n|ỹ(n)) (i. e., second term in RHS of (11)), by
employing a novel, fast-converging, stage-by-stage Kalman
filter structure, referred to as MSKF.

A. FULL KALMAN FILTER
The the top-level/0th stage data, z0(n)�

− ỹ(n), uses the full (not
multi-stage) Wiener filter’s weights wz0 (n) [5] to estimate (0th

order) desired signal D0(n) = H̃(n|ỹ(n)). at each symbol n, by

wz0 (n) = (Rz0 )−1Rz0,H̃(n),

D̂0(n) = ˆ̃H(n|ỹ(n)) = wH
z0

(n)z0(n). (15)

Then the aposteriori channel estimate ˆ̃H(n|ỹ(n)) and channel
error correlation matrix RHe (n|n) are updated iteratively by
(11) and (14) respectively.

B. MSKF DERIVATION
The top-level Kalman filter weight wz0 (n), in (15), is im-
plemented in a multi-stage fashion (MSWF) here, leading to
faster stage-wise convergence at reduced complexity. For ease
of presentation, the derivation of vector MSWF (V-MSWF)
(obtained by extending scalar MSWF [24]), is provided in
Technical Report [33]. The main steps of V-MSWF algorithm
are shown in Table 2. Table 3’s equations, (58)–(62), are then
directly applied to TV state space model, (9), (10), to derive
the MSKF’s novel state estimator, in terms of state space
matrices.

The block diagram of novel MSKF, with N = 3 stages, is
shown in Fig 2. First, the J × J (M + 1)S̄-sized (0th stage)
cross-correlation, Rỹ(n),He(n|n−m1), and its normalized version,
C1, are defined as,

Rỹ(n),He(n|n−m1)
�

−E{ỹ(n)HeH (n|n − m1)}, (16)

�1 =
[
RH

ỹ(n),He(n|n−m1)Rỹ(n),He(n|n−m1)

]1/2
,

C1
�

− [Rỹ(n),He(n|n−m1)][�1]−1. (17)

In the time-invariant (ITV) case [11], [24], the expectation
operator in (16) is implemented by time averaging over some
received symbols. But in TV channel, the different received
symbols are generated by different channel conditions H̃(n),
which vary with symbol number n, making time averag-
ing unsuitable in this situation. To circumvent this problem,
Rỹ(n),He(n|n−m1) has to be computed in terms of state matrices
available at time n only. Substituting (10) in (16),

Rỹ(n),He(n|n−m1) = E{ỹ(n)HeH (n|n − m1)}
= E{(C(n)He(n|n − m1) + w(n))HeH (n|n − m1)}
= C(n)RHe (n|n − m1) + E{w(n)HeH (n|n − m1)} (18)

Now, the 2nd term on RHS of (18), (noise term), is

E{w(n)HeH (n|n − m1)} = E{w(n)(H̃(n)

− ˆ̃H(n|n − m1))H } (19)

The first term in (19), E{w(n)H̃H (n)} = E{w(n)
(diag(λm1 )H̃(n − m1) + V(n))H } = 0, since measurement
noise w(n) is uncorrelated with process noise V(n); w(n)
is also uncorrelated with H̃(n − m1), (which depends
on V(n − m1), . . . , V(n − m1 − k)’s etc). Similarly, the
second term in (19), E{w(n) ˆ̃HH (n|n − m1)} = 0, since
ˆ̃H(n|n − m1) is estimated by {ỹ(n − j)} j=m1

j=mN
‘s, which
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contain measurement noises {w(n − j)} j=m1
j=mN

’s, all of which
are uncorrelated with white noise w(n) at symbol n. Then
(17) can be computed by

C1 = [C(n)RHe (n|n − m1)][�1]−1. (20)

Equation (20) is a key equation. From (8), C(n) is known at
time n. Moreover, RHe (n|n − m1) is iteratively updated from
its past value at (n − m1 − m2)th symbol, by (14) and (38)
below, and is thus available (at present time n) for computing
C1 by (20) as the product of C(n) (measurement matrix in
state-space representation) and RHe (n|n − m1). This avoids
explicit time averaging in (16), required in time-invariant
(ITV) filter [11]. Equation (20) also gives the 0th order
Wiener filter weights, in (15), as

wz0 (n) = [C(n)RHe (n|n − m1)·
CH (n) + σ 2

wIJ ]−1[C(n)RHe (n|n − m1)] (21)

Again (21) avoids explicit time-averaging and is computed
from state matrices, available at the present nth symbol. In
the next stage, the (1st order) JS̄(M + 1) × 1 desired signal
vector d1(n) and blocking matrix B1 are formed by

d1(n) = CH
1 ỹ(n), B1 = [I − C1CH

1 ]. (22)

It can easily be shown that when B1 operates on any signal,
it removes the component of C1 present in that signal, i. e.,
[CH

1 B1] = 0. Defining the 1st order signal,

ỹ1(n)
�

−B1ỹ(n) = B1(C(n)He(n|n − m1) + w(n)), (23)

Then the 1st order normalized cross-correlation is given by

C2
�

− = Rỹ1(n),d1(n)[�2]−1,

�2 = (RH
ỹ1(n),d1(n)Rỹ1(n),d1(n) )

1/2,

⇒ C2 = B1Rỹ(n)C1[�2]−1, (24)

by using (22) and (23). From (20),

C2 = B1(C(n)RHe (n|n − m1)CH (n) + σ 2
wIJ )C1[�2]−1,

= [I − C1CH
1 ][C(n)RHe (n|n − m1)CH (n) + σ 2

wIJ ]·
[C(n)RHe (n|n − m1)][�1]−1[�2]−1. (25)

Again, explicit time averaging (over a number of received
data symbols) is avoided in (25).

To obtain the equations for any generic order (stage), as
the order is changed from ith to (i + 1)th, and using (23),
Rỹ1(n) = B1Rỹ(n)B1, since B1 is a Hermitian matrix. Again
defining 2nd order signals, B2 = [I − C2CH

2 ], desired sig-
nal d2(n) = CH

2 ỹ1(n), ỹ2(n) = B2ỹ1(n), the 2nd order cross-
correlation is obtained as

Rỹ2(n),d2(n) = B2E{ỹ1(n)ỹH
1 (n)}C2 = B2Rỹ1(n)C2

= B2(B1Rỹ(n)B1)C2. (26)

Then for the generic ith order, it can be shown that

ỹi(n) = Biỹi−1(n), di(n) = CH
i ỹi−1(n),

Rỹi (n),di (n) = BiRỹi−1(n)Ci,

�i+1 =
(

RH
ỹi (n),di (n)Rỹi (n),di (n)

)1/2
,

Ci+1
�

−Rỹi (n),di (n)[�i+1]−1. (27)

Also, Rỹi (n) = (
∏ j=i

j=1 B j )Rỹ(n)(
∏ j=i

j=1 B j ). The normalized
cross-correlations Ci’s, blocking matrices Bi’s, and ith order
desired signal di(n) and data ỹi(n)’s have been generated as
the order i is increased from 1, 2, . . . , N (up-recursions).

From the computed varying-order signals, a reduced-rank
multistage estimation algorithm is derived. This requires 0th
order desired signal D0(n) = H̃(n|ỹ(n)), (in the outer loop in
block-diagram of Fig. 2), to be estimated from the 1st order
data z1(n)�

= [dH
1 (n) ỹH

1 (n)]H (see (9), Table 2), which is in
the 1st inner loop of Fig. 2. The MMSE filter wz1, in (59)
(Table 2), is employed for this purpose. This process is contin-
ued in a nested fashion, to generate the (i + 1)th (order) inner
loop from the ith loop in Fig. 2. Thus at the (i + 1)th stage,
di(n) has to be estimated by zi+1(n) = [dH

i+1(n) ỹH
i+1(n)]H .

Generalizing (59),

wzi+1 =
[
IDJ −wH

i+2

]H
(E−1

i+1�i+1), (28)

where wi+2 = R−1
ỹi+1

Rỹi+1,di+1 are the Wiener tap weights for
estimating di+1(n) from ỹi+1(n). Extending (62) to the ith
order (and after some algebra),

d̂i(n) = wH
zi+1

zi+1(n) = w̃H
i+1εi+1(n)

εi+1(n)
�

− [di+1(n) − d̂i+1(n)] = [di+1(n) − wH
i+2ỹi+1(n)],

w̃i+1 = E−1
i+1�i+1. (29)

In (29), estimation error εi+1(n) = [di+1(n) −
wH

i+2ỹi+1(n)] is error between (i + 1)th order desired signal
di+1(n) and its estimate d̂i+1(n) = wH

i+2ỹi+1(n) (obtained by
using (i + 1)th stage data ỹi+1(n)). The application of weight
wi+1 to this εi+1(n)), in (29), provides the estimate of the
lower (ith) order desired signal, i. e. d̂i(n), leading to the
down-recursion in (32).

Initializing εN (n) by εN (n) = yN−1(n) = dN (n), the error
energy is

EN
�

−E{εN (n)εH
N (n)} = E{dN (n)dH

N (n)}
= CH

N RỹN−1 (n)CN . (30)

Again, no explicit time averaging (over a number of data
symbols) is involved. Also,

�N
�

−E{ỹN−1(n)dH
N−1(n)}

= BN−1RỹN−2 (n)R̃ỹN−2(n),dN−2(n) (31)
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Using (28)-(31), the order down-recursions, for j = N, N −
1, . . . , 1, are given by

w j = [E j]
−1� j, d̂ j−1(n) = wH

j ε j (n), (32)

ε j−1(n) = d j−1(n) − d̂ j−1(n) = d j−1(n) − wH
j ε j (n), (33)

E j−1 = E
{
ε j−1(n)εH

j−1(n)} = E{d j−1(n)dH
j−1(n)

}
− wH

j E jw j = E{d j−1(n)dH
j−1(n)} − wH

j � j .

(34)

Again, in order to avoid using the expectation operator in
(34), we have from (27),

E
{

d j−1(n)dH
j−1(n)

}
= CH

j−1E
{

ỹ j−2(n)ỹH
j−2(n)

}
C j−1

= CH
j−1Rỹ j−2(n)C j−1

⇒ E j−1 = CH
j−1Rỹ j−2(n)C j−1 − wH

j � j .

(35)

Thus (35) is implemented from precomputed quantities at
previous time, employing only matrix multiplications, without
any explicit time averaging of received data symbols.

1) TIME-UPDATES

Using (32)–(35) and (13), desired signal D0(n) = ˆ̃H(n|ỹ(n))
channel estimate and the channel estimate error He(n|n) are
given by,

ˆ̃H(n|ỹ(n)) = w̃H
1 ε1(n);

⇒ He(n|n) = He(n|n − m1) − w̃H
1 ε1(n). (36)

First, the apriori channel error correlation matrix is iteratively
predicted by

RHe (n|n − m1) = diag(λm1 )RHe (n − m1|n − m1)

diag(λm1 )H + Rv (n − m1) (37)

Then, using (14), aposteriori RHe (n|n) is updated by

RHe (n|n) = RHe (n|n − m1) − E{ ˆ̃H(n|ỹ(n)) ˆ̃HH (n|ỹ(n))}
= RHe (n|n − m1) − w̃H

1 E1(n)w̃1. (38)

Remark: This nested filter structure is possible because
1) By the orthogonality principle of MMSE estimation, the

estimation error εi+1(n) = [di+1(n) − wH
i+2ỹi+1(n)] is

orthogonal to the data used in estimation, i. e. ỹi+1(n).
2) Again by construction, ỹi+1(n) is orthogonal to di(n),

since

Rỹi+1(n),di (n) = Bi+1[E{ỹi(n)dH
i (n)}]

= Bi+1[Ci+1�i+1]

= [I − Ci+1CH
i+1][Ci+1�i+1] = 0. (39)

3) Since di(n) and εi+1(n) are both uncorrelated with
ỹi+1(n), di(n) and εi+1(n) may be correlated, which
incidentally is �i+1 Hence, εi+1(n) can be used for
estimating the desired signal di(n), [i. e., d̂i(n) =
w̃H

i+1εi+1(n) in (29) above], leading to the novel nested

MSKF filter. The novel MSKF algorithm is then fully
tabulated in Table 3.

C. SOME ISSUES
1) MMIMO CASE
Next, re-visit the discussion in “Remark” (Section II) about
the common sparsity support (over all receive antennas) as-
sumption being violated in MMIMO, since the received sig-
nal is delayed at the J different receive antennas, with over-
all distance between them increasing for large J . Following
([15], pp. 106, and Table 1) with distance between 2 con-
secutive antennas d = C

2 fc
, (C-velocity of light), the maxi-

mum distance (between the farthest antennas in a linear ar-
ray) dmax = (J − 1)d) is very large, for large J in MMIMO.
Then for high bandwidth (BW ) communication systems, if
dmax

C > 10
BW , significant channel tap locations lk vary spatially

or, are different, across the farthest antennas, see [15]. As an
illustrative example, in Fig. 1(c), J = 3J̄ , and say over the
bottom J̄ receive antennas, the significant channel taps loca-
tions are l0, l1, l2, and over the next (upper) J̄ antennas, the
locations are l0 + 1, l1 + 1, l2 + 1, while over the top-most
J̄ antennas, they are at l0 + 2, l1 + 2, l2 + 2. Thus, for the
mid antenna group, channel location vector hmid = [0, 0, l0 +
1, 0, . . . , 0, l1 + 1, 0, . . . , 0, l2 + 1, 0, . . . , 0]T . Then y(n), in
(3), can be considered as a S̄ = 3-user system, with channels[
hbottom hmid htop

]
, as in Fig. 1(c) (Simulations in Sec-

tion VII).
Note However, the common sparsity assumption might still

be valid for MMIMO systems with compact arrays such as
those proposed for futuristic THz frequencies [35].

D. KALMAN KRYLOV FILTER (KKL)
In KKL, the Wiener filter (15) is implemented using a
Arnoldi-Krylov-Householder method [28], [29], expected to
have superior numerical properties than [27]. For ease of pre-
sentation, the KKL agorithm is shown in Table 4.

V. PERFORMANCE ANALYSIS: COMPARISON OF
ORDER-WISE CONVERGENCE SPEEDS
In [24], it is shown that time-invariant (ITV) MSWF filter
converges to a N dimensional subspace, that has the largest
correlations between the eigenvectors of Rỹ(n) and the desired
signal D0(n) = H̃(n|ỹ(n)), (equation (76), [24]). Suppose at
the 1st stage, the Kalman filter weight (with ỹ(n) = z0(n) in
(15)) is collinear with the cross-correlation vector C1, i. e. let,
wỹ(n) = kC1, where k is a scalar constant. Then after just 1
stage/iteration, (by (22)), d1(n) becomes

d1(n) = CH
1 ỹ(n) = (1/k)wH

ỹ(n)ỹ(n)

= (1/k) ˆ̃H(n|ỹ(n)) = (1/k)D0(n), (40)

i. e., the final channel estimate. Thus, just after 1 stage,
d1(n) (in MSKF) gives the optimal estimate of desired signal
H̃(n|ỹ(n)), for each symbol n. Then using (40), 2nd stage C2
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is

C2 = Rỹ1(n),d1(n)[�2]−1 = E{ỹ1(n)dH
1 (n)}[�2]−1

= (1/k)(E{ỹ1(n)DH
0 (n)})[�2]−1 = (0)[�2]−1, (41)

by (39) (for i = 0). Thus, there is no further need to compute
succeeding stages C j’s for j ≥ 2, similar to (pp. 2953, [24]).
Again, (14) in MSKF, gives

RHe (n|n) = RHe (n|n − m1) − E{ ˆ̃H(n|ỹ(n)) ˆ̃HH (n|ỹ(n))}
= [I − wH

ỹ(n)Rỹ(n),He(n|n−m1)(RHe (n|n − m1))−1]·
RHe (n|n − m1). (42)

For a given RHe (n|n − m1)), (42) is minimized, when
the 2nd term, wH

ỹ(n)Rỹ(n),He(n|n−m1)(= wH
ỹ(n)C1�1) is maxi-

mized [24]. This happens traceonly when wỹ(n) and C1(n) are
in phase with each other, i. e., Kalman filter weight wỹ(n) is
collinear with the cross-correlation vector C1(n). Then the
maximum value (of 2nd term of (42)) is CH

1 (n)C1(n)�1,
and this minimizes (42). Thereby, by attempting to make the
normalized cross-correlation collinear with the Kalman filter
weight, (at each stage/iteration, and symbol n), the MSKF
has a fast stage/iteration number-wise convergence. This also
leads to novel MSKF exhibiting approximately same conver-
gence speed (number of iterations), even for large MIMO
systems, i. e., larger loading ratio R = S̄

J . This has also been
seen in ITV MSWF [34], (where equation (46) and Fig. 4)
show that for any R < 1, the output SINR increases rapidly
(to optimal value) with increasing stage number i. This unique
property of novel MSKF, i. e., rapid convergence (even for
large-scale systems), is not exhibited in Bayesian MSBL [16],
[22] and RCS methods (Simulations Section VII).

On the other hand, Kalman-Krylov filter (KKL) converges
to the dominant signal/eigen subspace of Rỹ(n), corresponding
to its N largest eigenvalues. Theorem 3.5.1 (pp. 48, [27])
shows the angle (between the KKL and the true eigen sub-
space) decreases at every stage/iteration. Also, the KKL algo-
rithm steps show that it determines a N dimensional subspace
for Rỹ(n) (principal component analysis PCA), rather than
converging to one, which has the largest correlations between
of Rỹ(n)’s eigenvectors and desired signal D0(n) (as done
by novel MSKF). Simulation results (Section VII) show the
MSKF converge quickly, within an order of 14; (i. e., channel
NRMSE remains almost same, even with number of iterations
increasing from 14 to 40). But KKL converges slowly, with
increasing iteration number. For large systems (J = 28, S̄ =
14), MSKF performs well, while MSBL, CS (RCS), [22] and
PCA methods perform inadequately, i. e., they do not not scale
up well.

A. COMPARISON WITH EXISTING METHODS
Not much work exists on TV MMIMO channel estimation [4],
(pp. 1926). The novelty of MSKF vis-a-vis existing algo-
rithms is

1) The MSKF is compared with re-weighted compressed
sensing (RCS) [18], [20] (which is closer to l0 than
the l1 norm criterion). Starting with the minimization
of RCS (in proximal form), it develops an iterative CS
algorithm using soft thresholding. This is then applied
to sparse beam-formed channel estimation; [20] is only
for single path (not multipath) channel. However, RCS
converges very slowly, after many symbols (see [20],
Fig. 3) and also in simulations for our signal model
(Section VII, Fig, 1), where it takes as many 200 − 600
symbols to converge. This requires the channel to be
static over that time period, rendering it unsuitable for
high Doppler channels; while MSKF works, even with
the channel changing every symbol. This is because, the
number of stages (in OMP) is sparsity level d = DKJ ,
which increases rapidly with increasing J, K in Large-
Scale MMIMO systems. Thus, its convergence speed is
slow.

2) By using additional beam-forming hardware, which
slows down MMIMO channel time-variation ([17], pp.
2, and its ref [12]). [4] and [17] estimate high Doppler
channels in mmwave communications, but both are de-
veloped only for single-tap channels, and do not exploit
sparsity in temporal (lag) domain.

3) The uniformly-spaced “Full’ equalizer perform worse
than a reduced/non-uniformly spaced equalizer (see
Fig. 3 in [1]) and also in learning curves (Fig. 4, [1] and
Fig. 3, [2]), even for time-invariant (ITV) sparse DTV
channels, and in simulations (Section VII) here. [Also,
similar results in [11] are due to the non-required taps
in “Full” equalizer just adding noise to the estimation
process]. Also, the Bayesian filter (used in Expectation
step in [4] employs a ()))“Full” - uniformly spaced all
equalizer taps) Kalman filter (see 3. below), unlike the
novel reduced re-configurable equalizer here.

4) In addition, KKL and Bayesian MSBL [16] are seen to
converge much slowly than novel MSKF, especially for
large-scale MMIMO systems (Section VII).

5) Bayesian methods [14], (simulated only for slow-
varying channels, an AR(1) model, λ = 0.9999), and [4]
can be computationally very demanding for MMIMO
systems, since they are not equipped with suitable
model order reduction.

6) Channel magnitude, corresponding to smaller λ (high-
mobility channels), decreases, with increasing n, as dis-
tance between mobile and base-station increases. Thus
received signal (for large n) will be more noisy, and
leads to channel tracking errors in a standard Kalman
filter (see Fig. 8, [23]). This is alleviated by data censor-
ing and reduced equalizer in MSKF.

7) MSKF has also been compared to one of few existing
Krylov based TV channel estimator [22]. [22] mod-
els the channel time-variation by a basis exponential
method (BEM), which inevitably introduces approxi-
mation error to channel estimates, due to the imperfect
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model assumed [17]. Though [22], [36] are developed
for high mobility channels, they do not exploit its spar-
sity. [22] performs worse than novel MSKF and KKL
methods (Section VII).

8) Moreover, our novel reduced-rank filters are shown
to be equivalent to some Bayesian estimator [12],
with sparse channel’s (prior) pdf of f ((H(n, lk )(i, j) ) =
[(H(n, lk ))(i, j)]−1/2, i. e., (magnitude of a channel tap
will have a low value with high probability). Then equa-
tions (26)-(34) in [12] show that this prior pdf leads one
to a reduced rank filter - see Section III.B. above

9) Unlike existing methods, MSKF combines both channel
sparsity with a Kalman filter incorporating model-order
reduction, leading to fast convergence speed.

B. COMPARISON OF COMPUTATIONAL COMPLEXITIES
First, computational complexity of traditional (full -
uniformly spaced all equalizer taps) Kalman filter is
evaluated. Since one does not know the significant channel
tap locations apriori, (L + 1)JS̄ × 1-sized H̃(n) is used
in state-space equations (8) and (10), (C f ull (n)’s size is
J × (L + 1)JS̄). In [27], Kalman update H̃(n|ỹ(n) and chan-
nel error correlation RHe (n|n), R−1

ỹ(n), along with intermediate
quantities, are computed. Then “Full” Kalman requires
computational complexity of J3(2(L + 1)2 + L + 1) +
((L + 1)J )3 + J2 + (2/3)J2.376 + (L + 1)[J4 + J3 + J2] =
5.963 × 108 multiplications (for Example I Channel with
L + 1 = 12 taps and D = 3 significant taps, J = 60 receive
antennas). for each symbol n, which over 30 symbols,
gives the total complexity of “Full” filter as 18 × 109

complex multiplications. Since sparse channel has only D
non-significant taps, yred (n), has fewer N ≤ M equalizer
taps. Thus, calculating C1 in (20), first requires multiplication
of J × DJ-sized C(n) and DJ × DJ-sized RHe (n|n − m1),
to obtain intermediate Ũ �

− (C(n)RHe (n|n − m1), requiring
J[DJ]2 multiplications. Additional �1 (in (17)), Cholesky
decomposition based matrix inversion for [�1]−1 [37],
gives the total computational complexity of C1 as
3 J3[D]2 + (2/3)((DJ )2.376) multiplications. Then com-
plexity of d1(n), ỹ1(n), Rỹ(n), E−1

N , EN−1, w j (n), εN−1(n),
using (22), (23), (10), (20) etc. is (D2 + 2D)J2 + DJ3 +
(1/3)(DJ )2.376) + J3(D3 + D2 + D) multiplications.
Then computational complexity of 14 stages of MSKF
(by which convergence is achieved) 18.84 × 107 for
each symbol n. Then with only 11 time updates, (over
30 symbols), the overall complexity is 2.0724 × 109

complex multiplications. The KKL method [28], [29],
[27] requires order of at least 30 to converge (see
Fig. 3); thus its complexity C = J3(1 + ∑30

k=1 k2) +
J2 + 2J + ∑30

k=1
2
3 k3 + ∑30

k=1 k2J + (L + 1)J2(J + 1).
For J = 60, C = 2.0458 × 109 multiplications, (at each n),
which over 30 symbols, requires 61.374 × 109 complex
multiplications. Table 5 shows the scaling of computational
complexity as J is increased.

VI. BAYESIAN CRAMER-RAO BOUNDS FOR NOISY
SPARSE CHANNELS
Bayesian Cramer-Rao bounds for noisy non-blind, stationary
compressed sensing have been derived in [39], with measure-
ments y(n)

y(n) = �x(n) + e(n), x(n) = �w(n). (43)

� is the measurement matrix, e(n) is the measurement noise,
a 0 mean white noise with variance σ 2

e . x(n) is a vector that is
sparse in the dictionary/domain �.

Adapting to our problem of MIMO sparse channel estima-
tion, � = T(n); T(n) is the transmitted data matrix; T(n) (for
a M length Massive-SIMO filter with J receive atennas) is
formed, such that its (ith block-row, jth block-column) entry
is defined by

[T(n)]((i−1)J+1:iJ,( j−1)J+1: jJ ) = IJ ⊗ s(n + i − j),

i = 0, 1, 2, . . . , M − 1, j = 0, 1, . . . , L, (44)

(⊗ again the Kronecker product, s(n) : transmitted signal at
nth symbol). The vector x(n), in (43), here is given by x(n) =
h(n) = h, the (L + 1)J × 1-sized (stationary) channel vector
(with (L + 1) taps), which is sparse in the lag/time domain
(i. e., dictionary �). Thus the dictionary matrix � = I(L+1)J

and w(n) = hred
�
= [hT (0), 0, . . . , hT (l1), 0, . . . , hT (lD−1)]T

in the dictionary �. (L + 1)J × 1-sized reduced channel vec-
tor hred (n) is a sparse vector, having DJ non-zero block en-
tries only, i.e. ‖hred (n)‖0 = D. Corresponding to (43), the
measured vector is the “full” received data vector y f ull (n),
given by

y f ull (n) = [yT (n) yT (n + 1) · · · yT (n + M − 1)]T . (45)

For SIMO systems, the transmitted data matrix
T(n) is of size MJ × (L + 1)J and channel vector h
is of size JL × 1. [For MIMO systems (K transmit
antennas), T((i − 1)J + 1 : iJ, ( j − 1)JK + 1 : jJK ) =
IJ ⊗ [s(1)(i + j − 2), s(2)(i + j − 2) . . . , s(K )(i + j − 2)]
is of size MJ × J (L + 1)K , channel vector h is of size
J (L + 1)K × 1].

For the stationary sparse channel estimation problem, (43)
simplifies to

y f ull (n) = T(n)�hred + e(n)

= T(n)[I(L+1)J ]hred + e(n), (46)

from which hred is solved by various OMP, matching pur-
suit and other CS algorithms [39]. The pdf of the significant
channel tap locations p(h(l j ) �= 0J ) = IJ , j = 0, 1, . . . , D −
1, and assume that the prior pdf (of the non-significant channel
tap location l’s) is

p(h(l )) = (2π )−J/2[det (IJ )−1/2]e
− [

∑J
j=1 |h j (l )|2]

σ2
j , (47)

(σ 2
j : variance of 0-mean h j (l )). For simplicity, we assume

that σ 2
j = σ 2, j = 1, 2, . . . , J . Using the Fisher information

matrix (FIM) J, the Bayesian Cramer-Rao (BCRB) for the
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noisy CS is

E{(h(n) − ĥ(n))(h(n) − ĥ(n))H } ≥ J−1 (48)

J = JT + Jp (49)

[JT](i, j)
�

− − Ey(n),h(n)

[
∂2log(p(y|h)

∂hi∂h j

]
, (50)

[Jp](i, j)
�

− − Eh(n)

[
∂2log(p(h)

∂hi∂h j

]
, (51)

where JT is the data FIM, Jp is the prior FIM. After some
algebraic manipulations [39], the BCRB is give by

E{‖(h − ĥ(n)‖2} ≥
(σeσ )2)

L + 1
· D(MJσ 2 + σ 2

e ) + MJ (L − D + 1)σ 2

(σ 2MJ )(MJσ 2 + σ 2
e )

(52)

BCRB bounds for J = 50, K = 1, Example II channel with
channel length L + 1 = 12, D = 3 are compared against ex-
isting CS algorithms in Fig. 8. The number of measurements
is related to filter length MJ . Initially M = 23 for which
BCRB is computed. Against all filter length of M = 23 for
other methods, the novel MSKF selects only 12 equalizer
taps for Example I channel (see (7) above). This is how
novel MSKF exploits MMIMO channel sparsity in lag do-
main. Thus, BCRB are also shown for M = 12 in Fig. 8.
BCRB bounds for SNR = 30 dB, M = 23 and M − 12 are
8.6956 × 10−7 and 1.666 × 10−6 respectively. As in [39],
there is substantial performance gap between the practical
algorithms and BCR bounds.

Novel MSKF is also compared with an ideal (but unreal-
izable) “Oracle Estimator” (believed to provide the sparse-est
CS solution) in [13], where the significant channel taps are
known apriori to be at lm, m = 0, 1, 2, . . . , D − 1. The ith
block-row and jth block-column of the associated training
data matrix U(n) is given by

[U(n)]((i−1)J+1:iJ,( j−1)J+1: jJ ) = IJ ⊗ s(n + i − j),

i = 0, 1, . . . , M − 1, j = l0, l1, . . . , lD−1, (53)

the channel estimate is ˆ̃hred = (U(n))†y f ull (n).

VII. SIMULATION RESULTS
In MMIMO (J = 50 receive antennas) systems, the data sig-
nals {s(k)

i (n)} are binary phase shift keying (BPSK)/quadrature
phase shift keying (QPSK) modulated. Simulation results are
obtained by averaging over 600 trials; for each computer
trial, independent and identically distributed complex Gaus-
sian channel coefficients with zero mean and unit variance
(Rayleigh fading channel) are generated, with TV component
given by parameter λ in (4).

The following algorithms are simulated:
1) “Full” Kalman filter, also used in recent [4], [14], TV

EM method [38],
2) Reduced-rank KKL filter over varying orders, denoted

by “Krylov,”

3) Novel Multistage Kalman Filter (MSKF) filter for
varying number of iterations, vs symbol number, at
different SNRs, and varying λ’s,

4) Multi-user Sparse channels,
5) Cluster-Sparse channels,
6) Recent dynamic, Bayesian-Belief Propagation

method [16], denoted by “SBL,”
7) Large scale MMIMO (large loading ratio R = S̄

J ) sys-
tems,

8) Iterative re-weighted compressed sensing (RCS) [20],
9) Existing BEM based Krylov TV channel estima-

tion [22], denoted by “Klov-BEM,”
10) Oracle Estimator.
The receiver signal-to-noise ratio (SNR) is defined as

SNR = E(||y(n)−w(n)||2 )
E(||w(n)||2 )

, (w(n) : AWGN noise); perfor-
mance of different estimators measured by normalized MSE
(NRMSE)

NRMSE = 1

500

500∑
p=1

{∑L
�=0 ||H(p)(�) − Ĥ(p)(�)||2F∑L

�=0 ||H(p)(�)||2F

}
. (54)

First, following Section VI.B., we consider a stationary
channel, as in [20], to investigate the convergence speed (in
symbols) of OMP based RCS, for different values of loading
factor R = K

J and different SNRs of 5, 20, 30 dBs in Fig
3(a), while Fig 3(b) is the corresponding plot for the novel
MSKF. Fig. 3(a) shows RCS to converge very slowly, after
as many as 400 − 500 symbols, making it unsuitable in high
Doppler channels. (This has also been witnessed in [20]’s
Fig. 3). Also, the performance of RCS degrades substantially,
at lower SNRs (it is to be noted that non-stationarity factor
λ is not incorporated into RCS [23], as is done in MSKF).
Fig 3(b) shows the novel MSKF to perform very well with
low NRMSE, starting from n = 12 on wards; also there is no
channel tracking errors, as this is a stationary channel. Also,
MSKF’s performance degradation (at low SNR) is much less
than that of RCS.

Next, Fig. 4 simulates the channel NRMSE of “Full,”
(which also limits the performance of Bayesian [4], [14],
[38], Section VI.B.); along with comparative simulations of
novel MSKF, KKL, over varying number of iterations, at 30
and 5 dB SNRs, and λ = 0.988. The plot shows the KKL
to converge slowly, with its NRMSE decreasing as number
of iterations increases from 14 to 22, . . . , 50. MSKF sparse
channel estimator converges very quickly, within an order of
14; as difference in channel NRMSE (at order of 14 to that
at 40) is not significant. The “Full” equalizer also performs
inadequately. The NRMSE of MSKF (with 14 iterations) is
also less than that of “Full” and KKL (50 iterations). Fig. 4(b)
shows results for λ = 0.995, resulting in lower NRMSEs.
Also, the novel MSKF is able to handle the non-stationarity
of the channel better than the “Full” filter. For λ = 0.995, the
ratio (of NRMSE at symbol no 26 to that at symbol no 12)
is 4.67 for MSKF and 21.33 for “Full”; while it is 10.43
in MSKF and increases rapidly to about 100 in “Full,” for
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FIGURE 5. (a) 2 User channel NRMSE versus symbol no. and (b) Clustered
Sparse Channel NRMSE, λ = 0.988, for different orders.

FIGURE 6. Channel NRMSE versus symbol no, (a) Practical 3 G LTE
channel, λ = 0.988, λ = 0.995 and (b) Comparison of MSKF with SBL, J =
50, K =1, SNR = 10 dB, 14 iterations/stages.

a more TV channel (λ = 0.988). Updating only at symbols
{(n − ml )}’s, akin to data censoring (in sparse channel) and
updating in a reduced subspace, prevents the MSKF from ex-
hibiting larger NRMSE, with increasing n, i. e. channel track-
ing errors (see Fig. 8 and text below it, [23]) occurring in a TV
channel (see Section VI.A.6). Fig. 5 provides results for multi-
user (S̄ = 2) Example I Channel, and cluster-sparse (S̄ = 3)
channels. Fig. 5(b) also includes the case for space-variant
sparse channels, where large antenna arrays make l j’s change
by a few lags, over two ends of antennas in MMIMO, (see
Section IV.C). As expected in Section. VI.A. 7,“Klov-BEM”
(Krylov-space based method, using BEM, instead of more
generic Kalman filter), performs worse than our Kalman-
Krylov KKL method (denoted by “Krylov”) in Fig. 5(a) and
(b). Fig. 6(a) shows simulation results for 3 G LTE Pedes-
trian B channel (having continuous ISI and some significant
multipath clusters, with TV component λ = 0.988/0.995 in-
corporated here), illustrating the novel MSKF performs well
for such practical channels as well; see Section III.A. 1) as to

FIGURE 7. (a) Large scale systems, channel NRMSE versus symbol no,
J = 20, K = 11, SNR = 10 dB and (b) J = 28, K = 14, MSKF with < 14
iterations, SNR = 10 dB; SBL: 100 iterations, SNR = 10 and 35dB.

FIGURE 8. (a) OMP, Oracle, Bayesian CR bounds (M = 23, 12), 30 dB, 5
path stationary channel and (b) MSKF : 30 dB, CR bounds, 5 path
stationary channel, also Single-path TV channel, λ = 0.988, illustrating
spatial sparsity only.

how the MSKF adapts to such general cases. Fig. 6(b) simu-
lates a J = 50, S̄ = 1, SNR = 10 dB system, where MSKF
performs well, similar to the very recent SBL [16]. Fig. 7
shows results for large scale (large R) , a) J = 20, K = 11 and
b) J = 28, K = 14, MMIMO systems. Fig. 7(a) shows that
MSKF still converges within 14 iterations even for this large
scale MMIMO systems, i. e., MSKF exhibits almost same
convergence speed, (though with a larger NRMSE for a more
loaded system), as that for (J = 50, K = 1 system in Fig 3).
Though it uses a symbol-iterative Kalman filter, recent (sparse
PCA based) SBL [16] requires many more iterations. For e.
g., J = 28, K = 14, at 10 dB SNR, MSKF still converges fast
in < 14 iterations; KKL’s performance is inferior, (with > 40
iterations). But SBL [16] performs very poorly and does not
even converge, even with number of iterations increased to
more than 100 (for each symbol n), at both SNR of 10 dB,
and higher 35 dB SNR.

This phenomenon of convergence speed of our novel TV
MSKF being unaffected, even as the system is scaled up to a
large ratio R, has been also witnessed in time-invariant (ITV)

32 VOLUME 3, 2022



MSWF [34], (Fig. 4). [34] also shows that PCA based meth-
ods do not scale up well. This unique property makes the novel
MSKF ideally suited for TV, large-scale MMIMO systems.
Finally, all sparse estimation methods are compared against
Bayesian Cramer Rao bounds (BCRB) for J = 50, K = 1
stationary single path and Example I multipath channel, for
different filter length M’s. As in [39], there is substantial
performance gap between the practical algorithms and BCR
bounds. To illustrate how the novel MSKF exploits the spa-
tial sparsity only, (by isolating it from the time/lag sparsity),
its NRMSE, for single-path TV channel (λ = 0.988), is also
shown in Fig. 8(b), though this effect will be more clearly ex-
hibited when the MSKF filter is integrated into a beam-formed
mmwave system.

VIII. CONCLUSION
The paper develops TV, sparse data/channel estimation al-
gorithms in MMIMO, using a novel non-uniformly spaced
TV equalizer, which transforms channel/data estimation prob-
lem into one of reduced-rank filtering. This is enabled by
a novel reduced-rank Multi-Stage Kalman Filter (MSKF).
MSKF is obtained by substantial extension of a time-invariant
(ITV) Multi-Stage Wiener Filter (MSWF) (seen to perform
admirably for some DOA applications) to the TV case, by
using suitable state estimation techniques. It is to be noted
that the overall MSKF algorithm is non-linear, because of
the thresholding involved in Algorithm I. MSKF converges
very quickly, within few iterations, because MSKF uses those
signal spaces maximally correlated with the desired sig-
nal, unlike most existing PCA based KKL, re-weighted CS
(RCS) [20], rank minimization [18] and sparsity promoting
Bayesian estimators [4], [15], [16], with much reduced calcu-
lation load. Moreover, MSKF also reduces channel tracking
errors, encountered by a standard Kalman filter, in a high
mobility TV channel. A key advantage of novel MSKF is
its ability to scale up to large-scale MMIMO systems, with
very rapid convergence, in contrast to most existing sparse
methods. The paper derives a multi-stage version of the om-
nipresent Kalman filter, which can be extended to TV 5 G
mmwave communications, by appropriate inclusion of angu-
lar estimation [4], [17], and beamforming vectors. Moreover,
Bayesian Cramer Rao bounds (BCRB), for noisy CS methods,
is derived; novel MSKF and existing CS algorithms.

APPENDIX A
DERIVATION OF LEMMA 1, (11)
Proof: From (56), the reduced data vector

yred (n)
= yT (n), yT (n − m1), yT (n − m2), yT (n −

mN ) · · · , yT (0)]T can be partitioned into

yred (n) = [
yT (n)|yT

red (n − m1)
]T

. (55)

This is because yred (n − m1) = [yT (n − m1) yT (n −
2m1) yT (n − m1 − m2) · · · yT (n − m1 − mN ) · · · yT (0)]T ,
and components {y(n − 2m1), y(n − m1 − m2), . . . , y(n −

TABLE 1 Algorithm I

TABLE 2 Vector Time-Invariant (ITV) MSWF

m1 − mN )}’s, (contained in yred (n − m1) above), are also all
included in yred (n), [as lags {2m1, m1 + m2, . . . , m1 +
mN , · · · } are included among the mp = ∑

l cp,l tl ’s,
which are are calculated in Algorithm I (Steps 2 and
3), in the novel reduced data vector. As in the classical
Kalman filter, the space spanned by yred (n) is equivalent
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TABLE 3 Mskf

to ỹred (n) =
[
ỹT (n) yT

red (n − m1)
]T

. Since ỹ(n) is

uncorrelated with yT
red (n − m1),

Rred = E{ỹred (n)ỹH
red (n)}] =[

E (ỹ(n)ỹH (n)) 0
0 E{yred (n − m1)yH

red (n − m1)}
]

,

from which Lemma 1 (11) follows easily, since (using
Wiener filter),

ĥred (n|n) = [(E (ỹ(n)hH
red (n))T , (E (yred (n − m1)

hH
red (n))T ]

·
([{E (ỹ(n)ỹH (n))}−1 0

0 {E{yred (n − m1)yH
red (n − m1)}}−1

])
[

ỹ(n)
yred (n − m1)

]
.

TABLE 4 KKL Algorithm

TABLE 5 Computational Complexity
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