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ABSTRACT The damage to cellular towers during natural and man-made disasters can disturb the
communication services for cellular users. One solution to the problem is using unmanned aerial vehicles
to augment the desired communication network. The paper demonstrates the design of a UAV-Assisted
Imitation Learning (UnVAIL) communication system that relays the cellular users’ information to a
neighbor base station. Since the user equipment (UEs) are equipped with buffers with limited capacity to
hold packets, UnVAIL alternates between different UEs to reduce the chance of buffer overflow, positions
itself optimally close to the selected UE to reduce service time, and uncovers a network pathway by acting
as a relay node. UnVAIL utilizes Imitation Learning (IL) as a data-driven behavioral cloning approach
to accomplish an optimal scheduling solution. Results demonstrate that UnVAIL performs similar to
a human expert knowledge-based planning in communication timeliness, position accuracy, and energy
consumption with an accuracy of 97.52% when evaluated on a developed simulator to train the UAV.

INDEX TERMS UAV-assisted communication, behavioral cloning, disaster communication, imitation
learning, packet delivery.

I. INTRODUCTION

DEVASTATING natural disasters such as climatolog-
ical (wildfires, drought), biological (animal plague,

disease) geophysical (volcano, earthquake), and hydrolog-
ical (avalanche, floods) put human lives in danger. As a
result, first and zero responders aim to help the people
in the affected area in a timely manner by locating the
survivors, repairing the damaged infrastructure, and provid-
ing communication food, medicine, etc. [1], [2]. Unmanned
Aerial Vehicle (UAV) networks can offer various services
during or after disasters such as agile aerial assessment
of impacted areas, search and rescue in harsh and hard-to-
access regions, delivering emergency supplies, and acting as
aerial base stations when the communication infrastructure
is damaged [3], [4], [5], [6], [7], [8].

UAV systems have received a lot of attention
in commercial, military, government operations of
telecommunication, search and rescue (SAR), surveillance,
and public safety in the recent era because of their unique
features such as fast deployment, wide aerial to ground point
of view [9], and 3-dimensional mobility [10], [11], [12].
Several challenges such as scalability, robustness, and
performance of agile response, high throughput and
low latency communication entice researchers to use
Unmanned Aerial Systems (UASs) in disaster relief
operations [13], [14], [15].
In this paper, we consider a situation where a natural or

man-made disaster (e.g., wildfire, flood) occurs in a sparsely
populated rural area with a few number of terrestrial user
equipment (UEs) and completely damages the cellular base
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station (BS) of the Long-Term Evolution (LTE) system to
the point that it can no longer service the UEs in its region.
One solution considers a single UAV as an aerial relay in
the remote disaster region to deliver the UEs’ packets to
an available neighbor BS before the UEs’ buffers get full
and the packets are dropped. The unique features offered by
the UAVs including the 3D mobility, and high probability
of line of sight (LoS) transmission make them an attractive
candidate for such relaying service. This paper proposes a
scheduling method for packet relaying utilizing behavioral
learning where the UAV selects a UE to provide connectivity
with the objectives to minimize the UE packet drop rate,
decrease its own energy consumption, and increase the UEs’
communication session’s time. Figure 1 shows an example
situation where one BS is damaged and a UAV relays the
UEs information to a neighbor operational BS. The UAV’s
task is to choose a UE at the right time to avoid packet
dropping in queues.
Several recent works have studied UAV-assisted transmis-

sion scheduling for cellular users in disaster areas. In [16],
a UAV-assisted non-orthogonal multiple access communica-
tion is proposed for public safety networks, in which not
all the UEs are capable of communicating with the UAV
because of energy constraints or channel conditions. Hence,
a minority game approach is proposed to cluster the UEs to
multiple groups in a distributed manner. Next the UEs utilize
a Reinforcement Learning (RL) approach to select a cluster
head to join. The UAV’s position is determined based on the
cluster heads’ location. The UEs’ optimal transmission power
is calculated based on a non-cooperative game theoretic
model to maximize the UEs’ Quality of Service (QoS).
Moreover, the studies such as [17] and [18] used Team

Q-learning and a hybrid RL approach to address the task
allocation and the movement of UAVs in disaster relief oper-
ations. However, in such Markov Decision Process (MDP)
problems, when the agent (i.e., the UAV) faces new system
conditions that did not exist in the training scenarios, it
has to start experiencing from a limited priori knowledge
basis with no previous observation to interact with the envi-
ronment in order to gain some knowledge. The ignorance
may require spending a significant amount of time to handle
the state-action space which is not appropriate for disaster
relief operations. Also, in some applications such as dis-
aster relief operations, the interaction between the agents
and environment can be costly and unsafe. In addition, in
real-world scenarios, it is non-trivial to define a meaningful
reward function for the MDP objective functions to fully
address the relation between actions and optimal policies. In
scheduling problems which involve a large state-space and
an intensive process to define a meaningful reward func-
tion for the optimal goal, an imitation learning (IL)-based
approach is developed where the optimal policy in different
conditions and states is determined based on real-world or
simulation demonstrations from an expert that offers a more
time-efficient, practical and reliable solution. In some rare
cases where the expert has not experienced the state before,

FIGURE 1. Simplified version of the system model.

the agent (UAV) may face some deviation from the true path
which is investigated in the last section of the simulation as
well. While not applicable to our scenario, in sensitive appli-
cations, where the deviation may result in system failure,
other approaches such as Inverse Reinforcement Learning
(IRL) are utilized to reconstruct the expert’s intention which
is out of the scope of this paper. Hence, the advantage of
the proposed IL approach is that the UAV does not have to
experience all states, but instead only mimics the expert’s
behavior and leverage the results to have the best outcome
in each state. In summary, the model-based optimizations
are often not optimal or may lead to sub-optimal solu-
tions. Moreover, these optimizations can be very complex.
On the other hand, RL based approaches require large con-
vergence time and heavy on-board computation. However,
the proposed IL solution can offer an agile response based
on the agent’s observation of the expert behavior. We should
note that the proposed model is defined in a way that the
expert’s strategy is easily reproducible for the agent by look-
ing at the UEs’ queue length as the user selection criterion,
rather than finding the most optimal UE by the expert con-
sidering various factors such as physical layer characteristics,
queue length and information priority altogether since such
information may not be easily accessible to the UAV agent.
Therefore, as the expert’s strategy in the UE selection is
not the most optimal one, the agent is also not expected
to find the most optimal UE but it is only rather expected
to follow the expert’s action without heavy onboard com-
putations. Hence, the proposed model is not assessed by
how optimal the solution is; but, we evaluate how well the
proposed method can mimic the expert’s action.
In this paper, the proposed imitation learning-based solu-

tion reduces the experience’s time and finds the policy taken
by the expert [19]. To the best of our knowledge, this study
is one of the first works to address the UAV-assisted trans-
mission scheduling using an IL technique as developed in
the UnVAIL solution. The main contributions of this paper
are as follows:

• Develop a UAV-assisted communication using a single
UAV to extend the coverage area of cellular networks
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or service a small number of users in remote and low
traffic regions. The UAV can place itself faster in a
proper sector to service the UEs;

• Devise a behavioral cloning approach that is based on
a deep neural network (DNN) to reduce the level of
complexity involved at the drone in the UE selection
and decrease the execution time in real-time solutions
for disaster scenarios;

• Showcase the dynamic techniques to determine the
optimal service time based on the length of UEs’ buffers
to minimize the packet drop rate and save the UAV’s
energy, rather than the common assumption where the
UAV hovers above all the UEs for a pre-determined
amount of time;

• Evaluate the solution by considering the UAV’s
movement as a function of UE’s selection decision-
making based on the imitation learning approach.

The rest of the paper is structured as follows. Section I-A
presents related works regarding the UAV-assisted communi-
cation and the application of IL in other domains. Section II
discusses the system model and assumptions. Section III
introduces the imitation learning technique using the behav-
ioral cloning technique to mimic the expert’s behavior and
policy. The numerical results are illustrated in Section IV
over a variety of metrics. Conclusions and discussions in
Section V summarize the UnVAIL solution.

A. RELATED WORKS
While UAV-assisted communication can offer unique fea-
tures for extended communication during disaster scenarios,
developing an autonomous UAS which can offer reli-
able performance in an uncertain disaster environment still
requires pragmatic design. The majority of recently published
works focus on communication optimization or energy effi-
ciency and the problem of joint path planning and packet
scheduling optimizations has been scarcely studied. LTE was
optimized and designed for transferring the packet data and
the core network’s architecture is mainly packet-switched;
hence the packet scheduler (PS) has an important role in
the network. Moreover, the PSs are responsible for choos-
ing the right user at the right time for the service which
affects the physical layer parameters as well [20], [21]. This
section provides an overview of some recent works empha-
sizing on communication and path planning for UAV-assisted
emergency in disaster scenarios.
Wu et al., [22] considered an emergency situation in a

disaster relief area where a fleet of UAVs are tasked to
enhance the communication coverage and quality of service
for a group of terrestrial users. The ground users are assumed
to be cellular users and the UAVs are utilized as aerial BSs to
enhance the downlink transmission. The problem is divided
into different challenges: 1) the ground users scheduling
jointly with the UAV’s path planning, and 2) a power control
optimization to maximize the average minimum downlink
throughput rate and minimize the interference between the
drones. Next, the problem is defined as a mixed-integer

non-convex optimization problem. The authors used the
block coordinate descent method to solve the non-convex
optimization using a centralized method for a multi-UAV
scenario. Although, a complex solution was used to solve
this non-convex problem, the optimization technique can still
approximately find the solution. Hence, the approximation of
non-complex solutions only considers the location of users
for the communication. However, the length of the queues or
the type of applications utilized by the terrestrial users can
impact the UAV communication and paths. Another draw-
back is that a centralized approach can be a bottleneck in
the network to handle all drones.
Duong et al., [23] proposed an optimization method for

a network of relay-assisted UAVs in a disaster area, where
the UAVs serve as small-cell flying BSs. The ground users
are assumed to be cognitive users including primary and
secondary networks. The proposed method targets the energy
efficiency and the UAV’s power allocation where the problem
is defined as a mixed-integer optimization. The authors used
a deep learning approach to solve the non-convex problem
considering the power and QoS constraints for the downlink
transmission. While this method contributes to reducing the
execution time of finding the solution for the mixed-integer
optimization, it still involves a heavy computation load and
cannot be efficiently implemented at the UAV.
Game theoretical methods provide a valuable direction for

UAVs’ data analysis, and communication analytics which
have been developed for two decades [24]. For example,
Koulali et al., [25] recently proposed a fully distributed
non-cooperative approach using game theory to deal with
the activity scheduling for a group of UAVs in disaster relief
operations. The UAVs are considered as a small set of drones
to provide coverage for terrestrial users. However, guarantee-
ing the convergence and optimality of the proposed solution
is difficult for complex problems. Fragkos et al., [26] con-
sidered a framework for a public safety system where the
infrastructure is damaged and different agencies aim to send
critical information to an emergency center using an aerial
relay. The authors proposed a distributed self-optimization
method for the reporting task based on two common direc-
tions of metrics [27] directions of Information Quality [28]
and Information Value. A cost function is defined for each
agent to show the level of information exchange between the
emergency center and the agent. The authors used a non-
cooperative game approach to minimize the cost function and
find a level of information exchange for the agents. Next,
to minimize the cost function, the authors transformed the
problem into a maximization case and used a reinforcement
learning approach to find the optimal information exchange
level between the agencies and the UAV. In another study,
Lu et al., [29] considered a scenario of a cellular network
including a UAV, multiple base stations, mobiles users, and
a single smart jammer. The authors assumed that the serv-
ing base station for the mobile user is under attack by
the jammer. The UAV is considered as an agent with a
Deep Reinforcement Learning solution running a Q-learning
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approach to counteract the jammer by choosing the appro-
priate relaying policy to forward the mobile user information
and data to another base station. The UAV does not have any
information about the network topology and it only considers
its experience to update its Q-values. The authors reported
the performance evaluation using the bit error rate (BER)
and the UAV’s energy consumption rate which are obtained
from both the Nash equilibrium and simulations.
A framework for a UAV-assisted network in disaster and

emergency situations is studied in [30], where three different
scenarios are investigated: i) A case of a single UAV to
optimize the communication for the ground users and the
UAV’s flight path with an active BS; ii) Using a network of
UAVs with no active BS to utilize a multihop D2D concept
and extending the coverage area with a novel transceiver
design; and iii) A scenario where there is no available BS and
a multihop UAV relaying exchanges important information
to an emergency center. In the third scenario, the relays’
hovering location is optimized to enhance the performance.
While this paper studied various scenarios, all studied cases
are considered for static parameters, and any small changes
need a new establishment for the framework.
The authors of [31] proposed an approach called “HIRO-

Net" for a disaster relief scenario where a disaster happened
and there is no BS around the UEs. The approach attempted
to establish a mesh network using Bluetooth for short-range
communication and later used drones for each mesh for
their communication. A long-range communication between
the drones and emergency units is defined based on Ultra
High Frequency (UHF) and Very High Frequency (VHF)
links to relay the UEs’ information to the emergency center.
The authors considered an offline and NP-hard trajectory
optimization with some predefined constraints.
In [32], a millimeter wave (mmWave) spectrum applica-

tion to enhance the scalability and the capacity of the fifth
generation (5G) mobile networks is developed. This work
targets dynamic link rerouting using aerial relays and UAV
networks with the aim of reducing the blockage probability
on the terrestrial users. The authors proposed a mathemati-
cal framework for the UAV’s speed and path planning and
showed in the numerical results that the UAV-assisted frame-
work can reduce the outage probability of the mmWave for
the ground users with the aid of the UAV relays. However,
it is noteworthy to mention that the mmWave technology
has not been universally adopted yet and it is still highly
impacted with propagation path loss, hence, the UAVs need
to be equipped with highly directional antennas.
This paper proposes a learning approach called UAV-

assisted Imitation Learning (UnVAIL) for the UAV drone
in the remote disaster area to service the affected terrestrial
users and relay their information based on their buffers’
length to a neighbor BS. Unlike other previous works that
considered a fixed service time for all the users, a dynamic
technique is devised to determine the service time (i.e., hov-
ering time in the UE’s sector) based on the buffers’ length
in order to save the UAV’s energy and service high priority

UEs as needed. Also, unlike the literature that considered
static UAVs or a pre-determined path defined by a control
station, in this study, the UAV’s movement is a function of
UE’s selection decision making based on the IL approach.

II. SYSTEM MODEL
Assume a network of N UEs in a predefined cellular area
located in a sparsely populated remote area. The UEs carry
high priority situational-awareness data such as fixed-size
pictures or-duration video from the disaster to transfer.
Usually, such data is not delay-sensitive and can be modeled
using a constant bit rate (CBR) application for uplink trans-
mission over a UDP agent [33], [34]. Although we assumed
the CBR rate for all UEs in this system model, having a
variable bit rate (VBR) does not change the approach or the
methodology used in this study. It is possible to use VBR in
the simulation and system definition to fit other streaming
applications such as YouTube and Netflix for the bursty data
traffic. The cell’s base station (BS) is compromised due to the
disaster’s damage (e.g., wildfire). However, there are other
BSs available in the neighbor regions. The BSs of the neigh-
bor cells have access to the signal plane and information of
the UEs. These BSs could provide the coverage for the UEs’
uplinks. However, due to long-distance or natural phenomena
such as blocking, or shadowing, the required quality of com-
munication is not guaranteed for the data plane. Therefore,
a UAV-assisted communication solution is desiring where an
autonomous UAV which flies in a predefined circular path
in the impacted area serves as a relaying UAV to service
these UEs, as shown in Fig. 2. The UAV uses amplify-and-
forward (AF) as the relaying technique to forward the packets
to the neighbor BS. The UnVAIL solution considers vertical
take-off and landing (VTOL) fixed wing UAVs due to their
capability to perform both vertical and horizontal (hovering)
movements, their ability to instantly change their flight direc-
tion and transition between moving and hovering, their fast
speed to reach the impacted area in a short time, and their
battery lifetime efficiency. These VTOLs can fly between 6
hours to 18 hours based on their battery’s performance and
the utilized applications. Additional options include utiliz-
ing solar UAV-charging stations if the UAVs were needed to
operate for a longer time [35], [36], [37], [38].
All UEs can be modeled as the same CBR rate; however,

this assumption can be relaxed and it does not change the
methodology and the results of the simulation. The packet
arrival rates for these applications are different and follow the
Poisson distribution. (λi) denotes the packet arrival rate for
UE i. Each UE is equipped with a queue (Qi) with a limited
and defined size of Qlim for the arrival packets. All UEs
have the same queue limit. In the UnVAIL system model,
the queues utilize the First-In-First-Out (FIFO) structure for
the packet arrival and departure. All arriving packets are
ordered in the queue based on their arrival time and if the
queue reaches its maximum limitation, the arriving packets
will be dropped. The system assumes that there is no age of
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information (e.g., time-out stamp) for the incoming packets
in the system model.
Several studies in LTE-advanced relaying systems utilize

the UEs’ or relay’s buffer level (queue length) to optimize the
time, spectrum, and scheduler for the resource allocation in
backhaul systems [39]. UnVAIL considers the queue length
and queue modeling as one of the relaying priority factors for
the UEs besides the packet service time, energy consumption
rate, and packet drop rate [40]. The UAV acts as a server to
service these queues to relay the queued information to the
neighbor BS. Hence, there are multiple M/M/1 queues which
the arrival time is determined by the Poisson process and the
service time follows the exponential distribution with the rate
of 1

μ
. Each UE has a different service rate ( 1

μi
) compared

to other UEs. The amount of time that each packet spends
in the queue is called the waiting time. The UAV relays
the packet to the neighbor BS with respect to the service
time. The moment the packet is delivered to the neighbor
BS, the packet is stamped as a “Processed” packet. The
UAV’s strategy is to avoid packet dropping at the UEs’
queues. Hence, the UAV should identify a high-priority UE
to forward its information to the neighbor BS. The high-
priority UE is defined as a UE whose queue is getting full
and the packets may start dropping; hence, the UAV should
switch to this user. On the other hand, another factor for the
UAV’s decision-making is to save its limited energy to be
able to service more UEs, where frequent switching between
the UEs makes the UAV to change its location and consume
more energy.
The UAV is equipped with a single directional

antenna [41]. Hence, the UAV services a single UE at each
time slot [42]. The UAV can also simultaneously perform a
surveillance task in the disaster area, which often involves
the UAV to fly in a circular path. Such orbit path helps avoid-
ing the UAV’s collision with other possible operational aerial
drones in the area. The impacted disaster area is divided to
multiple sectors, as depicted in Fig. 2. Since a remote and
sparsely populated disaster area is considered, it is assumed
that the maximum number of UEs in each sector is one.
The dimension of one sector is defined based on the UAV’s
antenna’s beam, the UAV’s altitude, and the location of
neighbor cells. For the sake of simplicity, each sector is
10◦ of a circle with the center of the damaged BS. The
radius of the UAV’s circle is determined based on several
factors including the UAV’s altitude and transmission power
to cover the selected UE, the location of neighbor BS, the
distribution of UEs, and also considering a safe distance
to avoid any collisions with other operational drones in the
affected area.
The channel between the UAV and the neighbor BS is

Line-Of-Sight (LoS)/Not-LoS (NLoS). The NLoS part con-
sists of the multipath scatters from other objects between the
UAV and the neighbor BS. However, the channel between
the UAV and UEs is considered as the LoS one [43]. It is
assumed that the UAV flies at a fixed altitude. The optimal
altitude is determined based on the transmission power and

the trade-off between the coverage, the beam angle of the
directional antenna, and the interference level to the neighbor
cells [44], [45]. Despite most recent works which assume
that the UAV’s hover time above each user is a constant and
the same for all UEs, this work defines the available time as
a function of the UE’s queue length. Therefore, the UAV can
release itself as soon as it identifies another high-priority user
rather than hovering above the UE for a pre-defined time.
The UEs operate on a single sub-band, which is assigned
by the neighbor and it is used to relay the packets. The
exchanging information between the UEs and the neigh-
boring BSs is based on the X2 protocol in the LTE-A
standard [46], [47].
3rd Generation Partnership Project (3GPP) has been

actively working on standardization for Long Term Evolution
(LTE) to improve the efficiency of the Universal Mobile
Telecommunication System (UMTS) [48]. In the UMTS
system model, the length of queues are available at
the neighbor BSs. Based on [49], [50], [51], [52], [53]
from the 3GPP reports, the buffer status report (BSR)
is a mechanism in which the MAC layer of the UE
reports the number of packets in their buffer to the
eNodeB or the BS. Several works such as [54], [55], [56]
used this BSR reporting method to perform the adaptive
resource allocation or the quality of service (QoS)-aware
scheduling based on the buffer size information. Typically,
the neighbor BS shares the scheduling report with the
UAV, hence the UAV has knowledge of the UEs’ queue
sizes.
Figure 2 demonstrates the topology of the system includ-

ing the relay UAV, neighbor BSs, and the UEs. The UEs
are mobile in each sector. Their mobility pattern follows the
Brownian motion with a constant velocity. The UEs have
random directions based on the Brownian pattern but the
expected location for each UE is the same allocated sec-
tor. The UEs are located in random locations across the
cell. The cell is divided into different sub-areas or sectors
based on the UAV movement operation. In the scenarios of
interest, the primary BS of the cell is damaged. The UAV’s
path is pre-defined based on a circular track. The UAV can
move clockwise, counterclockwise, or remain (e.g., hover)
in a fixed location. The action related to moving towards
another UE consumes more energy compared to hovering in
a fixed location to continue serving the same UE [57], [58].
The UAV plane is also divided into different angles. For
instance, in Fig. 3, the circular plane of the UAV consists
of 36 sectors which each fragment is 10 degrees. In each
movement action or step, the UAV flies 10◦ clockwise or
counterclockwise. If both the UAV and the UE are located
in the same sector, then the Euclidean distance between the
two entities would be minimized. Although the service time
for each packet is modeled based on the exponential dis-
tribution, the larger distance between the UAV and the UE
can increase the service time as an additional delay. Figure 3
shows the top view of UEs and the UAV in a sample circular
plane. The UAV starts moving clockwise from sector 17 to
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FIGURE 2. A schematic of the proposed system model.

FIGURE 3. The top view of the UAV service area, where the high priority user is
changed from UE3 to UE1 (Sector 17 to 14).

sector 14 since the high-priority user is switched from UE3
to UE1.
Qi denotes the queue size of the ith UEs. The UEs with

more occupied queues are likely to experience a packet drop
if the UAV cannot service them at an appropriate time. For
instance, in Fig. 2, two packets, PKT1 and PKT2, arrived
for UE1 and UE2 accordingly. The PKT1 is queued since
the queue for the UE1 was not full. However, the PKT2
is dropped since the Q(UE2) was full at that moment.
Therefore, in the proposed model, the UAV’s objective is
to choose the high-priority UE to minimize the number of
packet drops. Then, the UAV moves toward the selected
UE’s sector to minimize the service time. It is worth noting
that although moving between the UEs to service the high-
priority UE at any given time can reduce the rate of packet

drop; however, such frequent switches come with a high
energy consumption to change its location. Thus, the UAV
faces a trade-off in its decision making between servicing
the high priority UEs to minimize the packet drop rate and
saving its energy.
In a nutshell, the problem statement based on the

Energy/Delay Throughput (EDT) utility function is as
follows:

max
1J

EDTf (1J) (1)

s. t. EDTf (1) =
L ∗

K∑

j=1
Df ,j(1j)

(
K∑

j=1
tSf ,j(1j))

(2)

× 1
(

1 +
K∑

j=1

N∑

i=1
#pkt drop

(
1j
)
f ,j,i

)

∗
(

K∑

j=1

(
etf ,j + emf ,j

)
)

tS
(
1j
) ∼ Poisson(μ) ∗ α

(
1j
)

(3)

α(1j) ∝ Scale(Distance(UAV-UE(1j))), (4)

where 1 is the one-hot indication vector for the UE selec-
tion, J is the set of all events in one frame from 1 to K
(j ∈ J = {1, 2, . . . ,K}), EDTf (1) is the EDT of the f th

frame based on the jth UEs selection vector, L is the num-
ber of bits or the packet length, In case that VBR is used
for the variable data traffic, L is not a constant anymore
and it varies for each event and each UE based on their
application, Lj,i. However, this does not change the study’s
intention to reduce the packet drop rate and the energy con-
sumption rate. K is the number of events in each frame.
Df ,j(1j) is the total number of delivered packets to the BS
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at jth event in frame f based on the jth UEs selection vector.
#pkt drop(1j)f ,j,i is the total number of dropped packets at
the f th frame and jth event for ith UE based on the indicator
variable. tS, et, and em are the packet service time, transmis-
sion energy consumption, and mobility energy consumption,
respectively. α is a punishment factor which increases the
service time because of the distance. Scale(R) → R is a
function which maps the distance between the UAV and the
UE to a limited range of [1, 2]. A simple scale function of
f = dist

max_dist + 1 is defined to map the distance to the range
[1, 2]. The function is defined in a way that if the UAV and
the UE are in the same sector, the scaled output is 1 and if
the UAV and the UE are in the longest distance from each
other (e.g., sectors 1 and 19), the scaled output is 2. The
scale function is defined based on the simulation and numer-
ical results from the experiments. Although different scale
functions could be used, this one is more appropriate for the
emulation interaction and trade-off between the service time
and switching to another UE. If the lower limit of the scale
function is less than “1”, then there is a contradiction with
the assigned service time based on the exponential distribu-
tion. We tried different upper limits for the scale function
and we observe that values more than 2 significantly affect
the pack drop rate.
In summary, the UAV’s action such as choosing the proper

UE at a right time affects the number of dropped and deliv-
ered packets. Also, choosing the right time to switch to
other UEs can save the UAV’s energy. Moreover, the UAV’s
movement action based on the high-priority UE keeps the
service time low. If the service time for a UE increases, the
UAV remains busy to deliver the packets for the UEs; there-
fore, it is more likely for other UEs to have larger queues. The
optimization variable 1J in each frame is determined by the
expert knowledge based on the expert’s experience. Next, the
UAV wants to find the proper indicator function using the
UnVAIL approach. Section III explains the proposed UnVAIL
approach to address the distributed UAV challenge.

III. IMITATION LEARNING: BEHAVIORAL CLONING
The operation of autonomous agents (e.g., robots or self-
driving vehicles, UAVs) in uncertain environments involves
complex decisions and is often time consuming [59]. The
objective of Imitation Learning (IL) or Apprenticeship
Learning (AL) is to enable the agent to mimic the human
experts’ behavior through training scenarios obtained from
real or simulation demonstrations. Later, these training data
and optimal obtained trajectories learned from the demon-
strations are used to model the expert policy for the agent’s
test scenario. In most disaster relief scenarios, there is a
need for an agile system that can take care of high priority
data. This agile system needs to be implemented on a low
computational drone’s computer. IL methods usually do not
need complex reward function for implementation and they
can be implemented with low tensor allocation on minicom-
puters for fast decision making using the expert’s training
data.

We like to note that in this study, the trajectory refers to a
set of agent’s states and actions-not the UAV’s trajectory or
movement route. The trajectory set of the state and actions
is being collected and recorded in a local dataset to be
trained later by the drone and the trained model can be
utilized in a real-time scenario. In this study, the state is
the number of packets in queues for all UEs. For instance,
if there are five UEs in the area and each UE is equipped
with a limited queue with a length of 199 packets, then
the possible number of states for the problem is 2005 =
320,000,000,000 combinations. The action will be chosen
by the UAV which affects the state. The UAV chooses the
UE at the right time to relay its packet to avoid the packet
dropping while noting the energy involved in reaching this
user. If there are five UEs in the scenario, then the UAV has
five possible actions for the user selection. The policy maps
the future action to the current state of the problem. In this
problem, the expert and the imitation model are the possible
options for the policy. In the proposed IL-based approach, an
intelligent agent, i.e., the UAV, learns optimal decisions based
on imitating the expert’s decisions in extensive simulation
scenarios [60], [61], [62], [63], [64].

A. THE EXPERT POLICY
In this study, the expert is a computer with high computation
capability that utilizes a human experience to optimize the
objective function of the EDT in different scenarios in a
limited time and generate data for the deep imitation model
(UnVAIL). Then, UnVAIL tries to mimic the expert’s policy
and since the expert’s policy is complex to recover, the
expert’s demonstrations are being observed for the drone’s
imitation model.
In general, IL methods can be categorized into three

main groups: (1) behavioral cloning (BC), which is defined
as directly mimicking the expert trajectories, (2) Dataset
Aggregation (DAgger), and (3) apprenticeship learning via
inverse reinforcement learning (IRL), in which the agent
learns the hidden purpose or reward function of the expert
from demonstrations. The BC’s implementation does not
require a high capability system and it only requires the
expert for a few trajectories at the beginning; however, any
false decision compared to the expert’s data may result into
a big deviation. DAgger assumes that the expert is always
available for those scenarios where the state has not been
seen before to mitigate those deviations and improve the
optimal policy, which is not feasible in many applications.
In this study, the expert is not available all the time for
the agent (UAV). In this paper, behavioral cloning approach
is selected as it does not rely on the availability of the
expert and involves low computation at the agent for an agile
response in disaster operations. The proposed BC method
replicates the expert’s decisions by the UAV. Also, it is
assumed that the UAV does not attempt to learn the forward
model of the dynamic environment and it only tries to regen-
erate the demonstrated behavior by learning the policy, hence
the approach in the UnVAIL solution is model-free. At the
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FIGURE 4. Imitation learning diagram.

end of the demonstration, the expert dataset D = {(xt, st, at)}
is available for the UAV. Here xt is the “context” [65] which
stands for the initial condition or the trigger function for the
next iteration. In the system model, the xt is the departure of
one packet from one of the UE’s queues. st is the system’s
state at time t and at is the taken action based on the observed
state st. The expert utilizes its policy πE to decide on an
action:

a = πE(xt, st), (5)

where, πE is the expert policy. The UAV uses these demon-
strations to estimate the expert’s policy and behavior based
on Fig. 4. In Figure 4, τ is the trajectories of state-action
set, E and F are the number of events in one frame and total
number of frames accordingly. πL is the estimated policy by
the learner (UAV). It is assumed that trajectories are fully
observable as a set of states and actions when the expert
generates data using a simulator:

τ =
[
s(0), a(0), s(1), a(1), . . . , s(E×F), a(E×F)

]
(6)

After explaining the nature of IL, the action set contains
two different vectors: i) A1 = {0, 1, . . . ,N − 1} denotes the
indices for the UEs. One of the factors for the UAV to con-
sider in choosing the next user to service with relaying is the
system’s current state which refers to the number of packets
waiting in the queue. We like to note again that the proposed
user selection process depends on multiple factors based
on the defined energy-delay throughput (EDT) utility which
considers the packet delivery, packet drop rate, and service
time in the problem formulation. ii) A2 = {0, 1, 2} denotes
the movement actions based on the chosen UE and the cur-
rent location. 0 and 1 notations refer to moving one sector
in a clockwise or counterclockwise direction, accordingly. 2
stands for hovering at the same location and sector without
changing the angle. It is also noted that the movement action
is chosen based on the selected user and it is determined
based on the learning algorithm.
In the UnVAIL system model, the state space is a com-

bination of UEs and length of the queues for all UEs, and
the index of the active UE. The state feature space can be
shown as a matrix with two dimensions. The row dimension
stands for an occurred event in a specific frame and the col-
umn dimension shows the number of features in one state.
Based on the state features, the high-priority user is cho-
sen in the output as the first action and then the movement
action is chosen based on the relative distance between the

UAV’s location and the high-priority user and the predefined
path of the UAV. These two matrices of the state-features
and taken actions are shown in (7) and (8) for an example
scenario with three UEs.

φ =

Q lengths
︷ ︸︸ ︷⎡

⎢
⎢
⎢
⎣

54 55 89
55 57 88
...

...
...

170 70 62

⎤

⎥
⎥
⎥
⎦

(7)

(a1, a2) ∈ (A1,A2) =

⎡

⎢
⎢
⎢
⎣

2 1
2 2
...

...

0 2

⎤

⎥
⎥
⎥
⎦

(8)

In (7), the columns show the queue lengths of the UEs.
In (8), the first column shows the UE that the UAV chooses
to service and the second column is the selected direction
to move based on the selected UE.
Here, to access the expert knowledge, a simulator is

designed for the expert to generate the training data [66].
The simulator generates sample arrival time for the incoming
packets and queues the packet in UEs’ buffers. The expert
uses its knowledge to observe the states of queues, locations
and then decides about the active user to service and the
UAV’s next movement action. The expert’s goal is to avoid
the packet dropping or lower its rate based on the UEs’
queue states. The expert’s decision is based on his/her expe-
rience which is a complex model and hard to define for the
UAV. All generated states and taken actions are gathered and
stored for the purpose of behavioral cloning. A short video
of the designed simulator including how the expert handled
the problem is available on YouTube [67]. Also, the algo-
rithm which generates the expert trajectories is presented in
Algorithm 1.

B. LEARNER (UAV) POLICY
One simple approach to find the right UE could be sorting
all state-action data in a look-up-table, then using search
algorithms to find the appropriate action based on the
observed state. However, there are some drawbacks with
this approach such as the fact that the search algorithms
are slow and also if the observed state does not exist in
the table, then the returned action would be none. As a
result, we choose a learning algorithm to find or estimate
the proper action based on the observed state and the training
data.
After generating the training data using the simulator and

the expert knowledge, we have to train the data to clone
the expert’s behavior in the test scenario. To train the data
and mimic the expert’s behavior, we defined the problem
as a supervised learning. More specifically, this supervised
learning can be categorized as a multi-class classification
problem. A learner model or behavioral model can be used to
identify the right UE to service based on the queue states. We
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Algorithm 1: Expert Behavior Algorithm

1 Initialization:
2 Set the path for the UAV
3 Set the initial location for all UEs and the drone
4 Set the different arrival rates and sample rates for UEs
(λi, 1

μi
)

5 for all Runs do
6 Initialize all arrays, queues to zero, also set the

battery to the initial value
7 for all Frames do
8 Generate the arrival and service time for all

packets and all UEs in one frame (tA, tS)
9 for all Events do
10 for all UEs do
11 Compare the current time with arrival

time and en-queue incoming packets
12 end
13 Store all current queue states for the deep

NN (φ, τ )
14 Store all directions and distance information
15 Use the expert knowledge to select the best

UE (πE)
16 Use the GPS location to update the

direction (a2)
17 Store the selected UE for the deep NN
18 Release the packet from the chosen queue,

service the packet, update the distance,
residual battery, and the current event time

19 Save all expert knowledge and information
in the database (τ )

20 end
21 end
22 end

develop a deep learning model for the UAV to select the UE
to deliver its packet from its queue to the base station. Then
based on the selected UE, the UAV decides on the movement
action based on the distance and direction information in the
current state. We assumed that the GPS coordinates of the
UEs are available from the base station report at each time
interval. And the UAV updates its current states based on
the recent changes and movements in the environment. The
UAV’s goal is to reduce its distance to decrease the service
time. Since higher service time makes it possible for the UEs
to have a longer queue. Fig. 5 shows the imitation learning
model including the expert trajectories, the deep learning
model, and the mobility selection. The user selection and
service time will affect the queue lengths of the UEs as a
new feedback from the previous state. πE, the expert policy
is used in the training phase to generate the trajectories set.
All training data is used to model πL, the learner policy.
Hence, in the real test scenario, those trajectories data are
not required. However, the current state of the queues is fed
into the model, then the behavioral cloning model estimates

FIGURE 5. UAV decision making model.

and classifies the output by choosing a UE. We should note
that in behavioral cloning models as adopted here, during
the test scenario, the UAV does not have access to the expert
knowledge anymore.
The developed deep learning model is shown in Fig. 6,

which consists of an input layer with 40 units of neurons,
where the input dimension depends on the number of UEs.
The first, second, and third hidden layers have 80, 160,
and 80 neurons, respectively and they are all dense layers.
All input and hidden layers include a Rectified Linear Unit
(ReLU) [68] layer, the output layer is a dense layer in which
the number of neurons is equal to number of classes and in
our scenario, it is equal to number of UEs. Since we defined
this model as a classification problem, a softmax activation
function [69] is used as the last component in the output layer
to identify the UE in need for service. The equation for the
softmax function is shown in (9). Algorithm 2 provides more
explanation about the training phase.

σ(UE = j|θ(i)) = eθ(i)

K∑

j=0
eθj(i)

for i = 1, . . . ,K (9)

In (9), K is the number of UEs. θ = (θ1, . . . , θK) ∈ R is
the set of output values from the deep learning model based
on the network weights and the input variables which are
the queue states in this system model. These θ values are
mapped to the predicted UE based on the softmax function.
To train the neural network and find the network weights

of the neurons, we need a value/loss function to find the
optimal values and weights. Since we define our system
model as a multi-class classification problem for the user
selection, the categorical cross-entropy loss function [70] is
suitable for this problem. The loss function is defined as:

L(y, ŷ) = −
N∑

z=0

K∑

i=0

(yzi log(ŷzi)), (10)
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FIGURE 6. Deep learning model for the imitated policy.

Algorithm 2: Training Phase Algorithm

1 initialization: Learning rate, loss function, Epochs,
and batch size

2 for all Runs do
3 Import all expert knowledge and database
4 end
5 Split the data into the train and validation sets w.r.t
%80-%20

6 Define the NN based on Fig. 6
7 for all Epochs do
8 Import data into the model
9 Train the model and update the weights
10 end
11 Report the accuracy and loss values for both train and

validation data

where, N is the number of samples, K is the number of UEs,
y is the true label for the UE, and ŷ is the predicted label
for the UE based on the current queue state. Afterward, we
use the Adam optimization to obtain the optimal weights
and minimize the loss function [71].
After finalizing the model using the expert knowledge, the

UAV is ready to imitate the expert as a behavioral cloner.
This means, if the current state was not observed before by
the expert, the UAV is likely to make a mistake. To test
the UAV performance using the learned neural networks,
Algorithm 1 is used for the evaluation. However, in line 15
of the algorithm, instead of using the expert knowledge, the
trained network can be used to predict the correct UE.

IV. NUMERICAL RESULTS
To evaluate the performance, we divide this section into
different parts. In the first part, we investigate the impact

of the emulator parameters. The second part explains the
performance of the trained deep neural network. After the
training phase, we perform a comparison between the expert
and the behavioral cloning over fixed arrival rates for the
incoming packets. The last part investigates the case where
there is a slight change in arrival rates. All simulation and
emulation parts are executed on a system with AMD Ryzen
9 3900X on Ubuntu. The training phase of the behavioral
cloning used Nvidia GPU RTX 2080 Ti as a resource for
the computation.

A. OBTAINING EXPERT KNOWLEDGE USING THE
EMULATOR
In this part, we explain the emulator environment and the
used parameters for the expert knowledge and experience.
We assume that there is one UAV in the affected area with
five UEs in the covered circle. At the beginning, the UAV
is located in a random location with a random initial value
for its battery energy between 40,000J and 50,000J. We also
assume moving between the sectors consumes more energy
compared to hovering in place. We assume that each UE
has 220 packets to send in each frame which means 1100
packets are generated in each frame. That means the frame
size is 220 packets for each UE. The size of each packet is
100KB and the total number of frames is 50. The expert runs
the emulator for 10 times to generate enough trajectories.
The covered area is considered as a 360◦ circle and divided
into 36 equal sectors. Each user has a queue with a limit
of 200 packets which means if the queue is full, the new
incoming packets from the application layer will be dropped.
The expert should take an action to choose one UE at a time
to avoid packets being dropped, increase the session dura-
tion, and decrease the energy consumption. Afterward, the
UAV controls its movement based on the selected UE’s loca-
tion to reduce the service time. We assumed that the UEs
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FIGURE 7. One snapshot of the expert simulation in four different conditions.

have different random arrival rates and at the beginning of
each frame, the packet arrival time is generated based on
a random Poisson distribution with those fixed arrival rates
λ = (λ1, λ2, . . . , λ5) = (3, 5, 10, 8, 7). Moreover, the ser-
vice time for each user is calculated based on a random
Exponential distribution with a fixed rate and we assumed
that all the users have a fixed rate, μ = (μs, μs, . . . , μs).
Also, a snapshot of the emulator for the queue lengths and
UAV movement control system is shown in Fig. 7. The
first row shows the status of buffers for all UEs. The sec-
ond row shows the UAV’s controlling system regarding its
movement. The green bar chart shows the high priority UE
which the UAV is servicing at that moment. In the control-
ling system, the high priority UE is shown with a green
sector and the UAV is highlighted with a blue one. From
Figures 7(a) and 7(e) to Figures 7(d) and 7(h), the UAV
selects different UEs and changes its location accordingly.
The full demonstration of this interaction between the expert
and the UEs is shown in [67]. At the end of this phase,
100,000 seconds ∼ 28 hours of the expert interaction for
550,000 packets is stored for the training phase. To obtain
and collect the expert knowledge, an emulator is set up in
Python 3.6. The emulator uses a single drone at this version,
but it has the capability to develop it for multiple UAVs at
the same time. The altitude of the drone is a variable that
the user can change. Also, the dimension of the emulator
and coverage area radius are other variables that can be con-
figured in the code. The code for the emulator is available
in [66].

B. TRAINING THE DEEP NEURAL NETWORK
In Deep Learning (DL) training, the performance of the
trained behavioral cloning model supports imitation. To train
the model, all gathered data from the expert is split into two

TABLE 1. Accuracy and loss for training, validation, and test sets.

sets of training and validation w.r.t 80%-20%. The initial
learning rate for the Adam optimizer is 0.001 and the decay
rate for the learning rate is equal to initial rate over the
number of epochs. 40 epochs are considered for the training
phase.
In Fig. 8, the accuracy and loss of the trained model for

the training and validation dataset over 20 epochs is shown
for the user selection based on the queue states of UEs. The
Figure 8-top shows the loss data and Figure 8-bottom shows
the accuracy metric. Table 1 reports the accuracy and loss
for three different datasets: 1) Training set, 2) Validation set,
and 3) Test set. The training and validation set were used to
train the model and find the weights. However, the test set
was never used in the training phase and it is totally new to
the model.
In addition, Figure 9 illustrates the confusion matrix plot

for the UE prediction and selection compared with the true
labels in the test scenario. This matrix is plotted for five UEs
to report a summary how accurate the behavioral cloning
is performing given all queue states. Training the imitated
model on 28 hours of expert’s trajectories (set of states
and actions) only takes less than half an hour. Later this
trained model can be used in real-time scenarios on the
UAV’s computer. Nvidia Jetson Nano [72] is a good example
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FIGURE 8. Accuracy and loss values for the training data over 20 epochs for user
selection based on queue states.

FIGURE 9. Confusion matrix for the true and predicted UE in 50 frames of data
transmission.

of a mini-computer equipped with Nvidia GPU capable of
running light on-board Tensorflow. The time complexity of
the decision making does not depend on the training data
and it only depends on the mini-computer performance since
the imitated model has been already trained before. The
UnVAIL model is imported to the Jetson Nano to test the
time complexity. Jetson returns the chosen UE based on
the imitated expert policy in less than a millisecond. It is
worth noting that the input data for the Jetson was not based
on a real-flight or an LTE network, it was a dataset generated
by another computer.

C. IL-BEHAVIORAL CLONING PERFORMANCE
The goal of the evaluation is to determine how well the UAV
imitates the expert. This section does not intend to investi-
gate the optimality of the solution, since it is assumed that

FIGURE 10. Energy delay throughput for both the expert and the imitated model by
the UAV.

the expert’s demonstration is already optimal. Two scenarios
were conducted with the exact same inter-arrival rates for
the incoming packets for all UEs. However, in both cases,
the inter-arrival times are generated randomly based on the
constant rates and the Poisson distribution. Figure 10 illus-
trates the energy-delay throughput (EDT) versus all frames
for both the expert and the UAV. The EDT was defined in (1)
in Section II. At the beginning of the session, the EDT value
is higher for both of the UAV and the expert. Based on the
observation, it can be concluded that the UAV mimics the
expert behavior with a reasonable performance.
Figure 11 shows the number of dropped packets versus

50 frames for all UEs for both the expert and the UAV. Each
point on the plot is a summation of dropped packets for all
UEs over all events in one frame. At early frames, the packet
dropping rate is lower since the queues are less occupied at
the beginning of the session and the probability of packet
dropping is lower. Increasing the number of UEs with the
same rates of packet arrival and service time will increase the
number of dropped packets compared to Figure 11. However,
in general, the number of dropped packets depends on the
number of UEs and packet arrival and service time rates and
it is a trade-off between these values.
Figure 12 shows the total energy consumption rate for

the drone versus all frames in both scenarios of the expert
and the behavioral cloning. Each point in the graph is the
summation of packet transmission, and the mobility energy
consumption rates. There are two reasons that the behav-
ioral cloning method has a higher energy consumption rate
as compared to the expert policy. (1) the inter-arrival rates for
the packets are not exactly the same. Although they have the
same mean rates in both cases, they are generated completely
at random, (2) in behavioral cloning, the agent (UAV) cannot

VOLUME 2, 2021 749



SHAMSOSHOARA et al.: UAV-ASSISTED COMMUNICATION IN REMOTE DISASTER AREAS USING IMITATION LEARNING

FIGURE 11. Number of dropped packets for both the expert and the autonomous
UAV using the imitation learning.

FIGURE 12. Consumed energy based on hovering, movement, and transmission for
both the expert the imitated model.

realize the full policy of the expert or the reward function;
and instead it tries to mimic the expert without any fun-
damental model of the scenario. And since the behavioral
cloning in this paper is a model-free approach, the learner
cannot reconstruct the reward function in (1). As a result, it
switches more often to mimic the expert and this increases
the energy consumption rate.
Figure 13 reports the longest session versus all 50 frames.

In each frame, 1000 events occurred. Each point in the graph

FIGURE 13. Longest session based on number of events or transmission for both
the expert and the UAV.

FIGURE 14. Performance plot for the expert and the imitation learning with a new
inter-arrival rates for UEs.

shows the longest session for one UE that the UAV keeps
scheduling its packet to the base station before switching
to another UE. It is assumed that 1000 events are the total
number of events in each frame. Since the imitation model
tries to mimic the expert regarding the queue states, it could
not completely realize the intention for having a long session
communication. The longest session for all 50 frames is
recorded as 160 transmissions with no interruption for the
expert and 158 transmissions for the behavioral cloning.

D. PERFORMANCE COMPARISON FOR THE NEW
ARRIVAL RATES
In this part, the packet inter-arrival rates is slightly changed
for the UEs. The purpose is to investigate the robustness of
the imitated model based on the previous inter-arrival rates
for the current changes in the environment. Here, another
scenario with both the expert knowledge and the behavioral
cloning model is analyzed. Figure 14 shows the performance
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of the UAV using the behavioral cloning and compares it with
the expert performance. It can be inferred that, those small
changes in the inter-arrival rates brought new queue states
which had never been observed before in the training phase.
Hence, those states were not trained in the behavioral cloning
model. As a result, one can observe that the performance is
degraded compared to the expert performance. The average
accuracy of the behavioral cloning in this scenario for 50
frames is 79.436% and the reported loss is 20.7759 which
are a huge change compared to Table 1. To compensate the
accuracy and loss regarding those small changes in the state-
action trajectories and address the related issue, we aim at
implementing similar approaches for the expert-knowledge
demonstrations such as DAgger, RL, and IRL to compare the
performance with UnVAIL and other methods in the future.

V. CONCLUSION
This paper introduces a model-free approach for a UAV-
assisted communication in a sparsely populated remote
area where a natural or man-made disasters such as flood
or wildfire has completely damaged the base stations. In
the developed UnVAIL (UAV-Assisted Imitation Learning)
approach, the user equipment (UEs) have limited buffers to
store the queued packets for the transmission. The packets
arrival time is randomly generated based on a Poisson pro-
cess with fixed arrival rates. The proposed UnVAIL method
utilizes a data-driven learning method called imitation learn-
ing (behavioral cloning) to train the UAV using a deep neural
network based on a human expert knowledge and trajec-
tories using a simulator. The UAV’s strategy is to select
an UE at a proper time to minimize the packet dropping
rate, prolong the UAV’s battery lifetime, and minimize the
number of switches between different UEs. The simulation
results show that the UAV mimicked the expert behavior
with approximately 97% accuracy, likewise the comparative
energy throughput overt the the number of dropped packets,
the consumed energy, and the longest session between the
expert and the learner UAV. The proposed IL-based approach
is evaluated in the scenarios which have not been seen in
the demonstration by using different arrival rates to show
how well the agent can determine an optimal strategy for
these unseen scenarios using the previously trained model.
Future steps include leveraging modeling and tools to assist
in situation awareness.
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