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Abstract—Operating at reduced voltages offers substantial
energy efficiency improvement but at the expense of increasing
the probability of computational errors due to hardware faults.
In this context, we targeted Deep Neural Networks (DNN) as
energy hungry building blocks in embedded systems. Without
an error feedback mechanism, blind voltage down-scaling will
result in degraded accuracy or total system failure. In this paper,
solutions based on the inherent properties of Self-Supervised
Learning (SSL) and Algorithm Based Fault Tolerance (ABFT)
techniques were investigated. A DNN model trained on MNIST
data-set was deployed on a Field Programmable Gate Array
(FPGA) that operated at reduced voltages and employed the
proposed schemes. The SSL approach provides extremely low-
overhead fault detection at the cost of lower error coverage and
extra training, while ABFT incurs less than 8% overheads at
run-time with close to 100% error detection rate. By using the
solutions, substantial energy savings, i.e., up to 48%, without
compromising the accuracy of the model was achieved.

Index Terms—Low power design, Self-supervised learning,
Fault detection, FPGA, Neural Network, Radio resource man-
agement, 5G.

I. INTRODUCTION

Arrival of 5G and 6G radio access technologies that aim
to support millimeter wave bands up to 300 GHz and multi-
gigabit per second data rates, necessitates deployment of high-
performance and energy efficient wireless infrastructure to
overcome the stringent thermal constraints. On the other hand,
Deep Neural Networks (DNN) have proved to efficiently tackle
the challenging Radio Resource Management (RRM) tasks
in 5G base-stations [1], [2]. Besides, neural networks are
emerging as essential building blocks of many applications
in consumer electronic devices, demanding substantial energy
and computational resources. Training and optimizing even a
medium size neural model is computationally expensive [3],
[4]. While neural inference consumes less energy, it is an
equally important optimization target due to the large number
of devices [5].

Tailoring hardware processors specifically for neural com-
putations [1] is an approach for optimizing the energy effi-
ciency. For instance, in [6] an Application Specific Processor
(ASP) was proposed for neural inference by minimizing the

* Source codes used to generate models in this study are available from
https://github.com/NeuroFan/LowVoltageDNNonFPGA.git

instruction decoding effort and instead dedicating resources to
actual computations. Other works, e.g., [7], have focused on
algorithm level modifications of the models using quantization
and pruning [4] to reduce the computational resource demands
in return for a minor drop in model performance [8].

Since, the energy dissipation of digital logic is quadrat-
ically proportional to the supply voltage, in this work we
are seeking solutions that enable reduced voltage operation
without trading-off the performance of the model. Nonetheless,
it is challenging to ensure the correctness of computations
when the supply voltage is reduced. Timing uncertainties
exacerbate at reduced voltages due to increased impact of
process variations. Solutions based on static calibration or
emulation are either too conservative, i.e., lead to unnecessary
clock scaling, or do not take into account dynamic variations
such as voltage noise, aging and temperature [9].

In GreenTPU [10] a neural inference accelerator with ag-
gressive voltage scaling down to near-threshold voltage of
transistors was designed and studied. Timing violations were
shown to occur in Multiplier and Accumulator (MAC) units.
Consequently, the MAC units were equipped with Timing
Error Detection (TED) circuits. However, augmenting the
design with TEDs increases substantially the design time and
run-time overheads [11].

This calls for a mechanisms to detect errors on-the-fly
without requiring modifications to the underlying hardware.
Conventional system level fault detection approaches such
as N-modular redundancy (NMR) increase the design size
and power consumption by at least by a factor of two,
rendering them unsuitable to be used for low-power purposes
[12], [13]. In [14] the similarity of two consecutive video
frames is exploited, expecting the prediction from the neural
network to be the same for both. This simple fault-detection
method doesn’t incur overheads, however, the use cases for
the technique is limited to video processing applications [15].

This paper presents two solutions for the detection of com-
putational errors in neural inference deployed on an embedded
platforms. Self-supervised Learning (SSL) [16] and Algorithm
Based Fault Tolerance (ABFT) [17] were utilized as low-cost
error detection schemes. While ABFT provides a high level
of confidence in error detection as shown in [18] and [17],
the SSL based scheme does not require modifications of the



implementation.

II. PROPOSED SOLUTIONS

We propose to add low-overhead redundancies to the neural
model, either through SSL or ABFT, or both, to enable reliable
dynamic voltage scaling (DVS). The computational errors are
detected on-the-fly while the voltage is adjusted according to
the detections, as shown in Fig. 1.

Figure 1. System level error detection enable aggressive voltage down-
scaling.

As the first approach, we investigate a SSL based technique
to detect accuracy degradation of the model due to reduced
voltage induced computational errors. The SSL method was
exploited by assigning a pre-text task to the model during
the training. That task is made independent of the label of
input data, however, it relies on computations common with
the main task. Since the prediction accuracy of the dummy
task is known at run-time, faulty operation of the network is
detected at reduced voltage by monitoring the performance for
the dummy task [19]. Neural networks exhibit some degree of
error resilience, therefore, not all faults may show up.

The second solution based on ABFT detects computational
errors at a finer-grained level in matrix arithmetic. While pro-
viding for more sensitive error detection [18], minor hardware
modifications are necessary to make this approach applicable
with a neural network.

A. Self-Supervised Learning

The idea behind the SSL is to automatically generate a
supervisory signal to learn a discriminative and rich repre-
sentation from the unlabeled data. The learned representation
can be exploited effectively for solving the downstream tasks.
Recent investigations have shown that SSL can improve the
generalization and robustness of supervised task [19]. This
means, learning a DNN for a supervised task (i.e., main task)
such as classification will be more robust if it tries to optimize
a SSL task (pre-text task) [20], [16] at the same time.

The DNN tries to solve the pre-text task by optimizing the
generated (i.e., defined) supervision signal. In this paper, in
the manner devised in [20], [16] the pre-text task is used to
predict the rotation of the input image (See Fig.2) while the
main task is considered to be image classification.

In the starting phase, the fed samples are rotated by pre-
determined amounts, e.g., by 45 degrees, and the network,
in addition to the main task, is asked to predict the amount
of rotation. In this setting only the performance/accuracy of
the SSL task is available at run-time, while there are no

labeled samples for the main task in inference phase. Based
on experimentation there is a strong correlation between the
performances of both tasks. Consequently, we use the pre-text
task for detecting the fault of the model for the main task.

A persisting failure of the network in the prediction of the
rotation can indicate faulty operation of the model. Using
this approach, no modification on generated network model
is required.

It is important to notice that the overheads and fault detec-
tion capability of this approach depends on the design of the
network and the pre-text task. Our aim was at demonstrating
the utility of the scheme. A simple pre-text task as the one
used in the current experiments incurs negligible overheads in
the inference phase.

Figure 2. Process of self-supervised learning and detection. g(.), X and ϕ
are transform function, the input sample and amount of rotation, respectively.

B. Algorithm Based Fault Tolerance

ABFT proposed by Huang and Abraham [17] is a low-
overhead method that enables detection of computational
errors in large-scale supercomputing systems. ABFT methods
cover all basic linear algebra operations. The majority of
applications including DNNs rely upon matrix arithmetic [21].

When ABFT is used with matrix multiplication [22], the
operand matrices are augmented with checksum property that
is used to pinpoint computational errors in the output. Assum-
ing A is an N−squared matrix, a row checksum matrix Ar is
defined as a N × (N + 1) matrix, as following [22].

Ar =
[
A AeT

]
(1)

where eN = [1, 1, ..., 1]. The column checksum, Ac, and full
checksum, Af matrices are defined in a similar manner, see
Equations 2 and 3, respectively.

Ac =

[
A

eA

]
(2)

Af =

[
A AeT

eA eAeT

]
(3)

In case of matrix multiplication, ABFT ensures the existence
of checksum property in result matrix when the column
checksum matrix, Ar, is multiplied in a row checksum matrix
as Eq. 4. Inconsistencies in checksums reveal the existence of
a computational error.

Cf =

[
A

eA

] [
B BeT

]
=

[
AB ABeT

eAB eABeT

]
(4)



The overhead ratio of ABFT method grows sub-linearly
with matrix size. This is an advantage when used within the
layers with large number of inputs and outputs [18], [23].

Figure 3. Checksum of inputs to each layer is added on-the-fly, while check-
sums of weights are pre-computed. Multiplication and bias implementations
are carried out using ABFT based arithmetic.

In the current study a DNN was implemented as ABFT
augmented matrix arithmetic as in [21]. The checksums of the
weights are pre-computed while the with checksums are added
to the inputs on-the-fly. As shown in Fig. 3, the checksum
of the output vector after each matrix-matrix multiplication or
addition is inspected to verify the correctness of the operations
[21].

III. EXPERIMENTS AND RESULTS

Both solutions were investigated with a DNN architecture
[24] trained using the MNIST data-set [25]. The solutions were
synthesized on a Xilinx Zynq-7000 System-on-Chip (SoC)
[26] with clock frequency set to 200MHz, while the operating
voltage of the FPGA section of the SoC was dynamically
adjusted using Power-Management-BUS (PMBUS) commands
from the host PC [27] according to detected computational
errors. Firmware was written for the ARM processor in the
SoC to control the FPGA acting as a neural accelerator. The
processor feeds the network with input vectors and fetches
the output via AXI ports. [28]. For further investigations on
accuracy loss, fault model of the FPGA with voltage scaling
may extracted to study larger model behavior with injected
faults. The RTL of this model was generated using tools
provided in [28].

After deployment of each solution on the FPGA, the supply
voltage of the FPGA was gradually reduced by 10mV steps
from the default 1.0V.

A. Fault detection through Self-supervised learning

The DNN model was modified slightly and re-trained with
rotated images where prediction of input image rotation was
considered as the pre-text task. After training accuracy of the
main and the pre-text tasks were 78% and 93%, respectively.

The accuracy of the model for the main and the pre-text
tasks versus voltage are plotted in Fig. 4 when the voltage is
down-scaled close to 0.7V from 1.0V. A strong correlation be-
tween the accuracies of both tasks can be observed. Although
SSL is not accurate in the detection of Point-of-First-Failure
(POFF), it is able to detect failure regardless of the source of
errors. The power consumption of the NN on the FPGA side
is reported in Fig. 5, where the error detection points of both
ABFT and the SSL techniques are recorded.

Figure 4. Voltage scaling impact on the accuracy of the main and pre-text
tasks.

Figure 5. The impact of Voltage scaling on power dissipation.

B. Error detection through ABFT

The original trained model was converted into input to
High-Level-Synthesis (HLS) and ABFT functionality was in-
tegrated. The HLS code of the network was modified in a
manner that inputs to each layer are augmented with the
checksum property and at the output the checksums are
inspected as shown in Fig. 6. An accumulator at the input of
multiplication/addition part of each layer augments the check-
sums. Likewise, at the output an accumulator together with a
comparator verifies the integrity from ABFT checksums, and
the results are sent to the control processor. The tool chain
[28] was modified to automatically generate the necessary RTL
code to integrate ABFT into the neural model computations.
In addition to network output, the results of the checksum
inspection blocks are routed back to the processor to report



possible detections during the inference phase as single value
output through AXI interfaces [26].

As analysed in [18], ABFT provides for high confidence,
i.e., close to 100%, in detecting errors in neural computations.
While it is not protecting the look-up-table based non-linear
operations in the activation layers of the neural net, the delay-
paths of multiplication and addition circuits are far longer and
more likely to suffer from lower voltage induced phenomena.
Figure 8 depicts the POFF for different operating points.

Figure 6. ABFT is added to the a multiplication section of a layer of neural
network layer.

ABFT provides for high confidence in POFF detection as
shown in Fig. 7 and Fig. 5, where, ABFT reported errors
per 10k inferences are plotted together with the classification
accuracy of the model. In all case, the ABFT detected errors
in computations resulting in ”no” performance degradation of
the DNN model.

This enables substantial power savings by protecting the
correctness of arithmetic operations of the DNN. With the
employed model the ABFT overheads were less than 8%,
while it would be even less with larger networks [21]. The
overheads in power consumption are in the same ball park,
while the power saving greatly outweigh the overheads. Unlike
SSL, ABFT serves as an earlier detector, alarming just before
the accuracy of the model would drop.

Figure 7. Impact of voltage scaling on an ABFT augmented DNN.

0 50 100 150 200 250
0.7

0.72

0.74

0.76

0.78

Frequency (MHz)

V
D

D
(V

)

Figure 8. Shmoo plot for DNN deployed on Zynq FPGA. Appearance of
ABFT detected error in computations is considered a fault.

IV. COMPARISON AND DISCUSSION

Jiang et al [12] and Salami et al. [29] propose to leverage
voltage down-scaling and to exploit inherent fault-tolerance of
neural networks for increasing the energy efficiency of DNN
inference. However, those solutions reduce voltage without
consideration to the associated dwindling accuracy of the net-
work. In [30] extensive hardware simulation and modifications
are required to augment the design with TEDs. Since, TEDs
are not generally implementable for hard-blocks of FPGAs,
their use is limited to ASIC implementation. The method
achieves up to 3x improvement in energy efficient by reducing
voltage down to near-threshold region. However due to high
overheads a trade-off in adding TEDs was made amounting
in a 3% accuracy drop. In [14] correlated predictions for
consecutive frame in video processing were exploited. While
the scheme does not incur any overheads, 20% of the faults
escape detection.

The proposed solutions in this paper, are fully imple-
mentable in software. Their high reliability has been demon-
strated, and the approaches are applicable to all types of neural
network models.

The used self-supervised scheme is simplistic one. In the
future more robust self-supervised learning schemes can be
explored. Furthermore, since ABFT does not provide pro-
tection against faults in activation and pooling layers, it can
benefit from co-use with the SSL. In addition to low-power
applications, we envision utility from the proposed approaches
for fault-critical systems [8].

Considering extensive utility of DNNs in 5G / 6G tele-
com [1] as the largest application area with a few billion
mobile phones in service, the proposed solutions are easily
portable to this area to curb growing challenges from limited
battery-life of mobile phones to thermal issues in base-stations.

V. CONCLUSION

In this paper two solutions were investigated that enable safe
voltage down-scaling of neural networks used for inference.
With the SSL based scheme a pre-text task acts as a ”ca-
nary bird in cage” indicator. The approach may incur some



accuracy loss. The ABFT approach requires augmentation of
neural computing with with checksums, and provides for high
confidence in computational error detection. Both approaches
add negligible overheads.

Detection of faults enabled conserving half of energy con-
sumption on an FPGA through voltage reductions.
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