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Abstract—A multi-tone measurement can be used to charac-
terize the noise and distortion of a device or a system. Such
assessment can be accomplished by a least-squares sinusoidal fit,
which is widely analyzed in the prior art. The IEEE standard
sinusoidal least-squares fit (sinefit) can be quite easily expanded
to multiple tones, real or complex. From a designer point-of-
view, the challenge is to generate a proper stimulus. The design
questions in such case are the following: ”How do I design
the tone spacing?”, ”What is the minimum record length of
the stimulus with n tones?”, ”Can I use the 3-parameter fit
(known frequencies)?”, ”How many iterations do I need in the
4-parameter fit (unknown frequencies)?” and ”How accurate the
initial guess of the frequencies have to be for the 4-parameter
fit?”. This study strives to answer the aforementioned questions
with reflections to the analytical results from prior art.

Index Terms—Measurement, Characterization, IEEE sinefit

I. INTRODUCTION

A least-squares fit of a sinusoid can be used to characterize
the distortion and noise of various devices and systems. The
fitting algorithms have been standardized in the IEEE standard
1057 [1] and IEEE standard 1241 [2]. The 3-parameter fit
finds the amplitude, phase and offset for a known frequency.
For unknown frequency (typical case), the 4-parameter sinefit
finds the amplitude, phase, offset and frequency iteratively.

To characterize a device or a system by a multi-tone fit
requires designing an array of stimulus with proper length N
and frequency separation. This work concentrates mainly on
the typical usage of tone fitting i.e. 4-parameter multi-tone fit,
in which the initial guess for the tone frequencies may have
some uncertainty.

In [3], Händel and Zetterberg expanded the single-tone
sinusoid fit to complex domain (cisoid fit) and proposed a
least squares approach to determine the I/Q imbalance of a
direct-conversion receiver. Their transformation to complex
domain was realized in polar form and the tone frequency
was found by a built-in Matlab function. In Section II, the
IEEE standard sinefit is introduced and also generalized for
complex-domain tones (cisoids) in both rectangular and polar
form. The basis functions and the transformation between
rectangular and polar form are described in Sect. II.

In [4], Anderson and Händel studied the least-squares multi-
tone fit in real domain. They used the IEEE standard sinefit
[1] in combination with the Expectation-Maximization (EM)
algorithm [5] to improve the parameter estimation. In [6],
Anderson and Händel introduced the generalized version of the
IEEE sinefit procedure for real-domain multi-tones. The idea
in [6] was to combine all necessary basis functions for each
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tone into a single observation matrix. This is also used here
and the generalization further refined in Sect. II by expanding
the multitone fit into complex domain.

Section III demonstrates fit examples with identical noise
floor but with different bandwidths. As will be shown in
the later Sections, bandwidth contributes to fit errors such
as magnitude, phase and frequency, but the residual variance
σ̂2 should remain constrained for a successful fit in a Gaus-
sian noise environment. The requirement for the bandwidth-
independent σ̂2 will be used to investigate the often debatable
question on 4-parameter sinefit: When to stop the iterative
fitting algorithm? This condition is typically determined by
providing a tolerance on minimal parameter change during
iterations or a by a fixed number of iterations.

Section IV suggests the pivotal figures of merit in the fit: the
frequency difference and initial error normalized by bandwidth
and Fourier resolution. This type of normalization enables
expressing the number of samples as a function of bandwidth,
number of tones and the normalized frequency difference.

In [7], Anderson and Händel derived asymptotic Cramér-
Rao lower bounds (CRBs) for three and four model parameters
under the Gaussian assumption. They provided the expression
on the maximum initial frequency error for the 3-parameter
sinefit, which will be expanded to equidistant multi-tones in
V. Section V also demonstrates that the initial error boundary
for successful 4-parameter fit is quite insensitive to bandwidth.

Section VI presents the lower limits for the bandwidth-
independent Fourier-normalized frequency difference, which
defines the lower limit for the multi-tone data record length.
It will be shown that such limit is dependent on how the tones
are spaced and whether the multi-tone data is real or complex.
Analytical limit suggested by prior art is reached only by a
complex multi-tone. Fit error estimates are also presented and
reflected to the prior art.

II. BACKGROUND

In the sinefit [1], [2], a real sinusoid y(t) is perceived as
in (1), where the a and b define the sinusoid magnitude and
phase and c defines the dc-offset. For known frequency ω, the
the observation matrix H is formed by the basis functions, i.e.
the multiplicands of {a,b,c}: {cos(ωt), sin(ωt), 1}. The size
of the observation matrix H is N-by-3, where N is the number
of samples in the data array y. The parameter estimates are
obtained by the least squares fit (3), where the results in X

are the estimates [â, b̂, ĉ]
T

.



y(t, ω) = a · cos(ωt) + b · sin(ωt) + c (1)
{a, b, c} ∈ R

y = [y1, y2, · · · yN ]T (2)
X = (HTH)−1HTy (3)

The sinusoid fit is typically iterative where the estimated
frequency ω̂ is refined in few iterations. In the IEEE standard
4-parameter sinusoid fit, the iterative fit is based on the basis
function from the 2nd order Taylor series expansion with
respect to the frequency error ω̃ (4). For the real sinusoid
with offset, the parameter α in the Taylor expansion (5) is
presented in (6). The observation matrix of the 4-parameter
sinefit (H) has therefore four columns to accommodate the
frequency error ω̃. The 4-parameter sinefit is iterative i.e.
updates the values of X = [â, b̂, ĉ, ω̂]

T
extracted from the

previous iteration.

ω = ω̂ + ω̃ (4)
y(t, ω) ≈ y(t, ω̂) + ω̃ · α(t, ω̂) (5)
α(t, ω̂) = t · (b · cos(ω̂t)− a · sin(ω̂t)) (6)

To expand the IEEE standard sinusoid fit into complex
domain is very straightforward. A rectangular-form cisoid
defined in (7) and its Taylor expansion (8)-(9) are structurally
similar to the real counterparts (5)-(6), respectively. The fitted
estimates of A and B are complex.

yCR(t, ω) = A · cos(ωt) + jB · sin(ωt) + C (7)
{A,B,C} ∈ C, j =

√
−1

y(t, ω̂) ≈ y(t, ω̂) + αCR(t, ω̂) (8)
αCR(t, ω̂) = t · (j ·B · cos(ω̂t)−A · sin(ω̂t)) (9)

Another way to perform the 4-parameter cisoid fit is to use
the polar form (10) and its Taylor expansion in (11) and (12).

yCP (t, ω) = D · exp(jωt) + E · exp(−jωt) + F (10)
{D,E, F} ∈ C

yCP (t, ω̂) ≈ yCP (t, ω̂) + αCP (t, ω̂) (11)
αCP (t, ω̂) = +jt · (D · exp(jω̂t)− E · exp(−jω̂t)) (12)

Using the the polar form in the cisoid fit provides the
estimates of fundamental (D) and image (E) magnitude and
phase directly. The transformation between the two forms can
be found by trigonometric recursion formula, resulting in the
conversion formulas (14)-(15).

C = F (13)
A = D + E and B = D − E (14)

D = 0.5 · (A+B) and E = 0.5 · (A−B) (15)

A cisoid fit in polar form is fully equivalent to the fit in the
rectangular form, i.e. the fit results are identical. Moreover,
the least squares fit to rectangular or polar form with 3 or 4
parameters is in-line with the real least-squares fit as the fit
will cover both positive and negative frequencies (which is
also the case in real sinefit).

As the cisoid may contain noise and distortion, the fre-
quency error result from the least-squares fit ω̃ may turn
complex and result in unsuccessful convergence in the iterative
4-parameter fit. To avoid this, the imaginary part of the
observation matrix should be omitted.

To expand the least-squares sinefit or cisoid fit to cover
multiple tones is simply adding more columns into the obser-
vation matrix. For N-sized data vector y containing n tones,
the size of the 3-parameter observation matrix H would be
N-by-(1 + 2n) (offset, n fundamentals and n images). For
4-parameter multi-tone fit, the matrix size would be N-by-
(1 + 3n), where the extra column is for the estimates of the
frequency error.

From a multi-tone fit, there are several figures of merit to as-
sess the fit quality. From the fit residual (17), one can estimate
e.g. intermodulation distortion or simply the residual variance
(18). The latter is an important merit when studying the fit
solely with added Gaussian noise. The estimated variance σ̂2

should be quite close to the real variance σ̂2.

ŷ = X ·H (16)
ỹ = y − ŷ (17)
σ̂2 = var(ỹ) (18)

The actual fit errors are presented in (22)-(24). Here (and
throughout this paper), it is assumed that the fundamental and
image tones (and their estimates) are represented as arrays as
in (19) and (20), respectively. In (22), ⊘ denotes element-wise
division.

As the focus in this paper will be on the 4-parameter fit,
the frequency estimates in the array ŵ will contain error w̃
(21). The frequency error from (23) is normalized by 2π · fs,
where fs is the sampling frequency.

D = [D1, D2, · · · , Dn]
T (19)

E = [E1, E2, · · · , En]
T (20)

w = [ω1, ω2, · · · , ωn]
T
= 2πf = ŵ + w̃ (21)

|D̃| = (|D| − |D̂|)⊘ |D| (22)

f̃ = (f − f̂)/fs = (w − ŵ)/(2π · fs) (23)

∠D̃ = ∠D− ∠D̂ (24)

The complex multi-tone fit in the polar form enables a direct
way to assess IQ-imbalance. For a known magnitude imbal-
ance Γ(dB) and phase skew θ (degrees/radians), the expected
image response rejection ratio (IMRR) can be calculated by
(26) [9]. From the multi-tone fit, the estimate of IMRR can
be obtained from D̂ and Ê by (27).
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Fig. 1. 4-parameter sinefit (7 iterations) for 14-tone cisoid fit with Gaussian
noise σ2 = −100dB: a) sps=1, b) sps=2 and c) sps=4.

γ = 10Γ/20 (25)

IMRR = (γ2+1−2γ·cos(θ))
(γ2+1+2γ·cos(θ)) (26)

ˆIMRR = ÊHÊ
D̂HD̂

(27)

III. MINIMUM NUMBER OF ITERATIONS

The challenging part of fitting multiple sinusoids or cisoids
is to declare an n-tone stimulus whose (often noisy and
distorted) system response can be fitted. The examples in Fig.
1 are cisoid n-tones with n=14. In Fig. 1, the frequency spacing
is equidistant and the bandwidth in (28) is defined by the
sampling frequency fs and samples per symbol i.e. sps (28).

BW =
fs

2 · sps
Hz (28)

Figure 1 displays the fit residual variance σ̂2 (18), which
is in-line with the added Gaussian noise σ2 = −100dB. The
fit residual (17) represents the noisy and/or distorted part of
the multi-tone 4-parameter fit (with a small initial frequency
error). A non-ideal fit also contains some fit error which is
proportional to the added noise. As can be seen from Fig. 1,
there are image tones below the -100dB noise floor: the added
Gaussian noise restricts the accuracy of the tone frequencies.

The number of samples N is 65·sps in Fig. 1. As the tone
spacing relative to N/sps remains constant in Figures 1a-1c,
doubling or quadrupling N has very little difference in residual
variances σ̂2. In other words, the variances σ̂2 are independent
on the bandwidth.

Increasing N by the multiplicand sps decreases the fit errors
(22)-(24), which are further discussed in Sect. VI. Proper tone
spacing is further discussed in Sect. IV.

For the multi-tone fit results shown in Fig. 1, the number
if iterations is fixed to 7. The proper condition of 4-parameter
sinefit convergence has many opinions in the literature. The
IEEE standard [1], [2] proposes stopping the iteration, when
the maximum change in [â, b̂, ĉ] is lower than a predefined
tolerance TOL (29). Another version is to stop the iterations
when the change in ω̂ is lower than TOL (30) [3]. Also a fixed
number of 4 iterations has bee proposed in [4] (31).
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Fig. 2. Sweep of sps with maximum σ̂2 deviation limited to < 3dB: the
error based on classic tolerance limits: magnitude (29) and frequency (30).

|max([âi, b̂i, ĉi]− [âi−1, b̂i−1, ĉi−1])| < TOL (29)
|ω̃i − ω̃i−1| < TOL (30)

iter = 4 (31)

Let’s sweep Gaussian noise for the examples in Fig. 1. In
the following σ2 sweep, three cases of sps ∈ [1, 2, 4] are fitted
initially by two iterations. If the three values of σ̂2 differ by
more than 3 dB, the number of iterations is incremented until
all σ̂2 are within the 3 dB range.

The common convergence conditions (cost functions) in
(30) or (29) are illustrated in Fig. 2. The stairs-like curves
represent the actual tolerance limits that would result in
the displayed number of iterations. As the bandwidth inde-
pendence requirement forces the residual variances to vary
less than 3dB, the number of iterations is clearly inversely
dependent on σ2. Without a priori information on σ2, the cost
functions (30) and (29) are quite useless.

The observations from Fig. 2 favor using fixed number of
iterations. In a practical system response measurement result,
the noise floor level of the measured data is typically σ2 >
−100dB, where the number of iterations can be fixed to e.g. 5.
As the cost of extra iterations is in the range of milliseconds,
it would be prudent to add a safety margin to the number of
iterations.

IV. MULTI-TONE SPACING

The tone spacing can be either linear or nonlinear, i.e.
equidistant or non-equidistant. The minimum frequency differ-
ence (33) normalized to Fourier resolution i.e. bin, is presented
in (34): binNyq=1 is the Fourier (or Rayleigh) resolution.
In addition to Fourier-normalization, (34) is also bandwidth-
normalized, hence the subscript ”Nyq”. For instance, halving
the bandwidth doubles N and halves ∆fmin.

∆ωmin = 2π∆fmin (32)
∆fmin = min(|fi − fi−1|), i = {2, 3, ..., n} (33)
binNyq = N · ∆fmin

fs
(34)

A. Equidistant Tones

For equidistant (linearly spaced) tone spacing, the
bandwidth-independent tone-spacing parameter in (34) can be



presented as a function of n (the number of tones). From
such parameter, the number of samples can be expressed.
Here, the fundamental frequencies are assumed to have the
same sign to accommodate both real and complex multi-tones.
A complex fundamental cisoids may have both negative and
positive frequencies, which is discussed in Sect. IV-B

Let’s define an auxiliary n-sized array k in (35). The
intended tone frequencies in the array f are generated by
k in (37). Equidistant tone spacing is a common strategy
in generating an n-tone stimulus. Linearly spaced array k is
defined in (36), where parameter κ in (41) defines the step
∆k.

For the optimal equidistant tones (n>1), the frequency
difference normalized to Fourier resolution i.e. bin can be
expressed as (38). Normalized to Nyquist band, the corre-
sponding Fourier resolution is (39).

k = [k1, k2, · · · , kn]T ∈]0, 1[ (35)
= [κ, κ+∆k, κ+ 2∆k, · · · 1− κ]T (36)

f = k · fs
2·sps (Hz) (37)

bin = ∆k · N
2 (38)

binNyq = ∆k · N
2·sps (39)

From (39), the minimum number of samples N that satisfies
the parameter bin can therefore be expressed as in (40).

N = sps · ⌈
binNyq

∆k
⌉ (40)

To reach minimum N in (44), the value of κ in (41) ensures
that the minimum frequency difference between fundamental
and image tones is equal to ∆k in (42). The bandwidth- and
Fourier-normalized frequency difference and the number of
samples will be (43) and (44).

κ = 0.5
n (41)

∆k = 1
n (42)

binNyq = N
2n·sps (43)

N = sps · ⌈binNyq · 2n⌉ (44)

For a multi-tone, the linearly spaced tone frequencies de-
fined by (41) and (42) result in the minimal number of samples
for given {n,sps,binNyq}. However, if the inter-modulation
distortion (IMD) is the merit of interest, some issues need
to be considered.

For a complex multi-tone defined in full Nyquist band
(sps=1) and κ in (41) results in IMD tones exactly at the
image frequencies. In an ideal case, this would result in IMD
magnitudes and phases directly in the image fit result E (20).
This may seem appealing, but there are two disadvantages.
Firstly, if the measurement system contributes dynamic error,
some IMD tones may not be fitted as image frequencies.

Secondly, it can be deduced from [7], that the fit error
magnitude at ωi is proportional to the magnitude at −ωi (and
vice versa). Basically, the image tones contains some distortion

from the fit itself, so it may be prudent to separate IMD tones
from image tones.

To ensure that the IMD tones will not be fitted as image
tones, the following procedure shifts the frequency spacing.
For the linearly spaced vector k in (36), the parameter dimen-
sioning {κ,∆k} can be represented as (45)-(47). In (45), λ = 2
results in (41) and (42). For 0 < λ < 2, the minimal distance
between image and fundamental is larger than the fundamental
frequency difference. As a result, IMD tones will not appear
at image or fundamental frequencies.

β = n
2+λ·(n−1) , λ ∈]0, 2] (45)

κ = β/n (46)

∆k = (1−2β)/n
n−1 (47)

For an example, if λ = 1, κ and ∆k in (36) would be
(48). The tone spacing based on (48) results in the number
of samples presented in (49), i.e. the increase for the required
number of samples is quite small compared to (44).

κ = ∆k = 1
n+1 for λ = 1 (48)

N = sps · ⌈binNyq · 2(n+ 1)⌉ for λ = 1 (49)

B. Other Types of Multi-Tone Stimuli

For sps>1, the equidistant frequencies in (37) can be shifted
from baseband to e.g. fs/4 without any changes to tone
spacing or minimum required number of samples. Moreover,
the recommended minimum binNyq for various n suggested
Sect. VI are unaffected by the center frequency shift.

A complex multi-tone can have both negative and positive
fundamental frequencies. If the fundamental tones cover the
both positive and negative frequencies within the bandwidth,
the image tones can be placed between fundamental tones
by converting (41) and (42) by (50) and (51). As a result,
the required number of samples remains the same as in (44),
because the tone spacing in a cluster of fundamental and image
tones will be defined by (42).

k → 2k− 1− κ (50)
∆k → 2∆k (51)

If the n-tone (real or complex) has non-equidistant tones,
the minimum difference in the non-linearly spaced array k
defines ∆k in (40). Moreover, ∆k between fundamental and
image tones should be verified.

V. UNCERTAINTY OF THE INITIAL GUESS

The initial error of the tone frequency ω̃0 can be expressed
as a function of normalized to Fourier resolution, see (52).
From (52), the normalized initial frequency error binerr can be
expressed as in (53).

Here, ω̃0 (and binerr) should be perceived as the maximum
absolute initial frequency error. In the behavioral studies
performed in this study, the added error has only the two



extreme values ±ω̃0, where the sign of the error is uniformly
distributed. As a consequence, the range of initial guess error
is 2 · binerr.

ω̃0 = 2π · f̃0 = 2π · fs · binerr/N (52)
binerr =

ω̃0·N
2π·fs (53)

The 3-parameter fit relies on known frequencies. The term
”known” can be translated to a tiny error proportional to
the noise variance σ2. Increasing σ2 naturally decreases the
accuracy of the fit.

In [7], Andersson and Händel suggested the initial frequency
error upper boundary (54), under which the 3-parameter sinefit
should be favored (with Gaussian noise assumption). The
right-hand side of (54) is exactly the Cramér-Rao lower bound
on the parameter ω [7].

Let’s expand (54) to complex domain. The expansion to
complex rectangular and polar forms (for single-tone) are
shown in (55) and (56), respectively. The polar form in (56)
was created by the conversion rule (14).

ω̃2
0 = 24σ2

(a2+b2)N3 (54)

ω̃2
0 = 24σ2

(AHA+BHB)N3 (55)

ω̃2
0 = 12σ2

(DHD+EHE)N3 (56)

Replacing ω̃0 in (56) by (52) results in (57). Replacing N
by (44) results in the boundary of binerr as a function of multi-
tone parameters n and binNyq.

(2π · fs · binerr/N)2 = 12σ2

(D′D+E′E)N3 (57)

bin2
err =

3·σ2

sps·2nπ2·binNyq·(D′D+E′E) (58)

The analytical boundary for binerr is visualized in Fig. 3.
In Fig. 3a, the number of tones n and the Gaussian noise
variance σ2 are swept with fixed binNyq=2.5. For logarith-
mically decreasing noise variance, the boundary for binerr
decreases proportionally. It is logical to conclude that using
a 3-parameter fit may prove unfeasible if the n-tone contains
any measurement noise.

In Fig. 3b, σ2 is fixed to the level of -50 dB and {n, binNyq}
are swept. Again, the the lower bound of binerr is quite tiny.

To demonstrate how binerr and bandwidth (term sps) affects
the multi-tone fit success of a 4-parameter fit, Fig. 4 shows
how the frequency error (23) changes as a function of n and
binerr at full, half and quarter Nyquist bandwidth in Fig. 4a -
4c, respectively. Here, binNyq is fixed to 2.5 and the number
of tones n is swept from 2 to 31.

All three types of fit errors in (22)-(24) were also assessed
similarly as in Fig. 4 and with different values of σ2. The
different errors have different dynamics, but the boundary
of successful fit for all three types of error (22)-(24) are
quite similar at fixed {binNyq, sps}. In other words, increasing
σ2 changes fit the error magnitudes, but not the success-
boundaries.
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Fig. 3. Maximum binerr eligible to 3-parameter sinefit for sps=1: a) binerr
versus {σ2, n} with fixed binNyq = 3 and b) binerr versus {binNyq, n} with
fixed σ2 ≡ −50 dB.

Fig. 4. Frequency error (23) versus {n, binerr} at σ2 = −50 dB: a) sps = 1
(Nyquist bandwidth), b) sps = 2 and c) sps = 4.

According to Fig. 4, the maximum binerr for all n is around
half of Fourier resolution. This will be further specified in the
next Section.

VI. PRACTICAL TONE SPACING LIMITS OF THE
4-PARAMETER MULTI-TONE FIT

In [6], Anderson and Händel discussed the performance of
multi-tone methods as follows: ”If detection and initialization
are performed in a correct and successful way the error
variance of the overall method is expected to be close to the
Cramér-Rao bound (CRB). If the spectral components are well
separated in frequency each parameter estimate is expected to
reach its corresponding CRB, that for the frequency approxi-
mately coincides with the single tone CRB in (59). However,
if two sinewaves are closely located in frequency the single
tone assumption is not valid. In [8], it is shown that if the
frequency separation ∆ω is larger than about 1.5 times the
Fourier resolution then the CRB in the dual tone case basically
coincides with (59).” [6]

Var(ω̂) ≥ 24σ2

(a2i + b2i ) ·N
,N → ∞, i ∈ [1, 2] (59)

Here, the goal is to find binNyq for a 4-parameter fit that
guarantees σ̂2 ≈ σ2 with any bandwidth for multi-tones with
added Gaussian noise. The number of 4-parameter fit iterations
was fixed to 9.

In the following test, the normalized frequency error binerr,
sps, n and the noise variance σ2 are swept to find values
of binNyq in (43) that ensure that the fit error residual σ̂2

is independent on bandwidth (term sps). The test has the
following seven steps for a certain values of {n, binerr, σ

2}:
1) Set binNyq to 1
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Fig. 5. Lower limit for the bandwidth independent binNyq for n ∈ [2, 31].

2) For sps ∈ {1,2,4,8} (28), tabulate all σ̂2 from n-tone
fits.

3) From the four sps-values, record the maximum deviation
of between all σ̂2.

4) If the maximum deviation is > 3 dB, increase binNyq by
0.1 and go to step 2.

5) If the absolute deviation is ≤ 3 dB, the bandwidth-
independence is fulfilled.

The above test was conducted for real and complex domain
and λ ∈ {1, 2} (45). The following parameters were swept:

• n ∈ [2, 3, 4, · · · , 31].
• binerr ∈ 2−X , where X ∈ [−6, · · · ,−0.5], step-size 0.25.
• σ2 ∈ [−300, · · · , 0] dB, step-size 20 dB.
The following observation was made for each case of {n, λ,

real/complex}: binNyq is a constant within −240dB < σ2 <
−60dB and binerr < 2−1.5. The constant value binNyq depends
heavily on λ and whether the multi-tone is real or complex,
as can be seen from Fig. 5. According to Fig. 5, increasing
n changes the lower limit of binNyq, especially in the case of
real multi-tone.

For the real multi-tones in Fig. 5, the lower limit of binNyq
is higher compared with the complex case. This is due to
the fact that the two-sided spectrum of a real sinusoid has an
image tone with the fundamental magnitude. As was assumed
in Sect. IV-A, the magnitudes at {ω,−ω} contribute to each
other’s fit error. Such fit-induced distortion explains the higher
values of binNyq.

For the complex multi-tones and λ = 2, binNyq is higher
than in the case of λ = 1. Even though the results presented
in Fig. 5 do not contain nonlinear distortion (only Gaussian
noise), the fit-inflicted tones are statistically larger at λ = 2,
compared with λ = 1.

The lowest binNyq limits can be obtained with complex
multi-tones and λ = 1, where the safe lower limit in Gaussian
environment is binNyq ≈ 1.7. This is quite close to the
analytical prediction of 1.5 [8] (ref. [6]).

The maximum absolute fit error based on (22)-(24) with sps
∈ [1, 2, 4, 8] can be approximated from the sweep results and
fitting the worst-case absolute error versus {σ2, sps}. Fit errors
versus the {σ2, sps} are nearly a flat surface in the logarithmic
scale of all 3 dimensions, so the fit errors can be approximated
via a linear two-dimensional least-squares fit.

The estimates for complex case and λ = 1 are shown in
(60)-(62). The parameter values (multiplicands and exponen-

tials) are averaged from parameters obtained from n ∈ [8, 31].
The value of N Nyq is calculated by the binNyq values in Fig.
5.

max(|f̃ |) ≈ 1.3

√
(σ2)1.0)

N3
Nyq·sps3.0 (60)

max(|D̃|) ≈ 2.4
√

(σ2)1.0)
NNyq·sps1.0 (61)

max(|∠D̃|) ≈ 170
√

(σ2)1.0)
NNyq·sps0.9 (deg) (62)

The two-dimensioal fit results are the multiplicand and the
exponents of σ2 and sps in (60)-(62). The exponents in (60)-
(62) are very well in-line with the proportionals based on
Cramér-Rao lower bound on the error variances presented in
[7]: Var(f̃) ∝ σ2

N3 , Var(|̃D|) ∝ σ2

N and Var(∠D̃) ∝ σ2

N .

VII. CONCLUSIONS

The focus on this work is on how to optimize a multi-tone
stimulus so that the response can be fitted. The IEEE standard
sinefit [1], [2] was here expanded to real and complex multi-
tones without any additional algorithms. The functions used
in this work are available in [10].

To generate a proper multi-tone stimulus, this work suggests
using tone frequency parameters that are independent on the
number of tones and bandwidth.

For a real or complex multi-tone with n tones, the
bandwidth-independent tone-spacing parameters were here
used to find:

• The expression of number of samples as a function of n.
• The analytical upper boundary of the frequency error in

3-parameter fit based on [7].
• The tone spacing for a reliable 4-parameter fit result.
• The upper limit for initial frequency errors.
• The distortion contribution of a 4-parameter fit.
• The coarse maximal fit error expressions (magnitude,

phase, frequency), which share the proportionals of ana-
lytical results in [7].
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[3] P. Händel and P. Zetterberg ”Receiver I/Q Imbalance: Tone Test,
Sensitivity Analysis, and the Universal Software Radio Peripheral, ” in
IEEE Trans. Instrumentation and Measurement, Vol. 59, No. 3, March
2010.
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