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Abstract—For continuous-time multi-bit Delta-Sigma data con-
verters, mitigating the dynamic mismatch of the multi-bit digital-
to-analog converter (DAC) with the so-called ISI-shaping DAC-
encoder is a currently active research topic. ISI-shaper linearizes
both static and dynamic DAC mismatch via spectral shaping of
mismatch noise. However, such encoder may be too timing-, area-
or power-critical for Delta-Sigma analog-to-digital converters.
This paper proposes a novel approach viable for Delta-Sigma
analog-to-digital data conversion. Here, the static portion of
the DAC mismatch is linearized in the DAC feedback and the
dynamic portion will be linearized digitally. Measuring and
storing the ISI-error digitally requires error calibration for which
this paper suggests an online approach. The proposed digital ISI-
error correction can be used for both one- and multi-bit data
converters.

Index Terms—Data converters, Delta-Sigma modulation, DAC
mismatch, linearization, intersymbol interference.

I. INTRODUCTION

Data converters with Delta-Sigma (DS) modulation are
typically realized as discrete-time. Compared with continuous-
time, discrete-time converters have advantages in accuracy,
linearity, cut-off frequency scalability and insensitivity to both
clock jitter and memory effects. Recently, the demand for more
speed and less power consumption has increased the appeal
of continuous-time DS data conversion [1]-[8].

Particularly in high-speed continuous-time (CT) DS data
converters, the inherent problem in the digital-to-analog con-
verter (DAC) is the dynamic (time variant) mismatch. Asym-
metrical switching, clock skew and parasitic memory are the
main sources of dynamical DAC errors [2]. The resulting
dependence on present symbol error to the past is referred
to inter-symbol interference (ISI).

A well-known approach to cancel ISI-errors is to use
the Return-to-Zero (RZ) DAC output pulse shape for each
unit-DAC. RZ-coding has the drawbacks of increased power
dissipation and sensitivity to clock jitter (due to the extra clock
phase required). Furthermore, RZ-coded DAC has lower signal
power (due to zeroing).

DAC mismatch cancellation through a specific DAC encoder
is generally referred as dynamic element matching (DEM)
[9]. DEM encoder is a general term of any algorithm that
permutes the usage of parallel unit-DACs. Traditionally, DEM
has been used to attenuate the in-band mismatch noise caused
by the static multibit DAC mismatch. The DEM unit-DAC
element selection algorithm can either shape the mismatch
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noise spectrum or transform the static mismatch noise into
wideband noise.

An ISI-shaping DEM [1], [2] linearizes both static and
dynamic mismatch. ISI-DEM is based on a vectorized DEM
encoder by Schreier and Zhang [10], which is a parallel unit-
DAC selection algorithm based on DS-modulation, where the
order of static mismatch shaping function can be arbitrarily
high.

The idea by Risbo et al. [1], [2] was to merge an ISI-noise
shaping loop inside a vectorized DEM. Further development
of ISI-shapers is widely published e.g. Sanyal et al. proposed a
technique to highpass-shape both static and dynamic mismatch
in [3].

In theory, an ISI-shaping DEM algorithm is viable for
both types of multibit DS data converters: analog-to-digital
conversion in and digital-to-analog conversion. In practice,
such a complex encoder with parallel (vectorized) signal
processing may only be suited for the latter. For CT DS A/D
converter (ADC), a low-power and low-latency DAC encoder
is preferred.

This paper suggests a novel multibit DAC linearization
strategy for CT DS ADC that incorporates a low-complexity
DEM for static mismatch linearization. The dynamic DAC
mismatch is canceled by digital error correction.

Digital ISI-error correction is based on discrete-time ISI-
error model [2] presented in Sect. II. Prior art on linearizing
the feedback DAC in CT DS ADC [4]-[6] is discussed in
Sect. III and the proposed linearization technique is presented
in Sect. IV. Calibration techniques suited to digital ISI-error
correction are presented in Sect. V.

II. DISCRETE-TIME ISI-ERROR MODEL

The ISI-error linearization and calibration methods sug-
gested in this paper were constructed using the discrete-time
model of ISI-error developed by Risbo ez al. [1], [2]. Although
the model was originally developed for DS DAC, this model
is (according to [7]) particularly realistic for CT DS ADC,
where the feedback DAC output is integrated and sampled.

For a multibit DAC based on parallel unit-DACs, the input
to the DAC is thermometer-coded DS modulated data. For M
unit-DACs, the sum of thermometer code is the discrete-time
presentation of the analog feedback signal v:

M
vw[n] =Y diln] - (1+epat, ), di € {0,1}, (1)
k=1

where epnr, represents the static mismatch (differential non-
linearity) of the k** unit DAC. Corrupted by the static mis-



match, the feedback signal vg, has integral nonlinearity that
manifests into harmonic distortion.

For binary unit-DAC input di[n], there are four types
of symbol transitions between the present and the previous
symbols. These transitions can be presented as discrete time
functions I'y;, where a and b represent the binary transition.
For instance, I'y; and Ty for the k" unit-DAC are [1], [2]:

[ 1 fordgn—1] =0 and dig[n] =1
Loi,[n] = { 0 otherwise. )

| 1 fordgn—1]=1and dgn] =0
Tio,[n] = { 0 otherwise. )

As the memory depth of the ISI error model is one sym-
bol, the integral of errors (normalized by the clock period)
are approximated as a scalar value A,;, for each unit-DAC
element. Each sample is equal to the time integral of the error
normalized by the sampling rate f, [2]: for k*" unit-DAC
element, ISI-errors can be defined as

€ab;, = fs . Aabka {(L, b} S {07 ]-} (4)

The total ISI-noise for the k" unit-DAC element is formed

as:
1 1
€181, [n] = Z Z €aby,

The on-off and off-on transitions in (2) and (3) are crucial
ingredients to the nonlinear part of ISI-error. For the £*" unit-
DAC element, the ISI-error in (5) can be presented according
to [3] as:

“Lap, [n] ®)

ersty, [] = o + B - di[n] + i - di[n — 1]

+ € - To1, [n], where (6)
ay = eqo, @)
ﬁk = €11, — €104 ()
Yk = €105, — €00y, )

€k = €10, + €01, — €00, — €11, (10)

Equation (6) presents the ISI-noise as a sum of linear and
nonlinear parts, nonlinear part being € -1, [n]. The nonlinear
(2" order) ISI-noise is dependent on the mismatch between
rise and fall delays, i.e. asymmetrical switching. Based on
(6), the linear part of ISI-noise contributes to dc-gain (7) and
static error (8) [3]. The linear part of ISI is also related to the
delayed version of DAC input (9) which is rarely problematic
in mismatch-shaping applications [7].

The nonlinear effects of ISI can be avoided by good rise/fall
symmetry. In ideal case, an RZ-coded DAC eliminates the
nonlinear part of ISI in (10) by [7]:

(1)

Another way to model the nonlinear (dynamic) part of ISI
noise is to incorporate both on-off (fall) and off-on (rise)
transitions as in [5], see (12). As a comparison, modeling the
nonlinear part in (6) omits ['1(, but incorporates the difference
between rise and fall errors.

€11, — €01, = €10, — €00

M
asipn] = > Tor,[n] - eor, +Tro,[n] - €10, (12)
k=1

Traditionally, the static portion of the feedback DAC noise
ng[n] is described as:

M
emL[n] = Z dg[n] - epNLy» (13)
k=1
With the presence of ISI-error, the linear portion of ISI will
contribute to the DNL error.

The encoder’s capability to mitigate dynamic noise is in-
versely proportional to the average of the unit-DAC transition
rates. Unlike DEM, a thermometer encoder does not average
the element usage and individual unit-DAC transition rates
(14) differ between the unit DAC elements. Nevertheless, the
mean value of all M average transition rates §; (15) [2] will
be minimized in the thermometer encoder.

On the other hand, §; is maximized in the popular DEM
algorithm, DWA [16], [17]. DWA algorithm chooses the unit-
DAC elements cyclically, which averages the unit-DAC usage
quickly and performs 1%¢-order high-pass shaping of the static
mismatch noise. Cyclical element selection also maximizes the
transition rates for all unit elements. DWA algorithm has the
advantage of maximal simplicity in its realization and it is
used in most examples in this work.

O, = E(To1,[n]) = E(T10,[n]) (14)
M
o =1/M - Zétk (1)

k=1

An ISI-shaping DEM controls the transition rate J; in (15).
A traditional DEM encoder does not have such control, but has
an inherent §; that is dependent on the input signal magnitude.
This work does not concentrate on this property, but it is
noteworthy that second-order vectorized encoder [10] encoder
and a modified DWA with 1 — z~2 spectral shaping [18], [19]
have nearly the same ¢;, more than 30% lower than that of
the regular 1+ z—! DWA.

III. PRIOR ART ON THE ISI-MITIGATION OF DS ADC

The classic DS ADC digital error correction [11]-[13] uses
the measured estimate for the DNL error (13) to cancel the
static mismatch using a lookup-table (LUT), see Fig. la. The
ETF-block in Fig. 1a [13] emulates the the transfer function
from the DAC feedback to DS output. In Fig. 1 and throughout
this paper, the hat notation & refers to an estimate of x and
the overline notation 7 refers to a vector, e.g.:

T10 = [T10,, 105, Ti0p)-

Moreover, the thick lines in Fig. 1 emphasize parallel (vector-
ized) data.

In [5], Runge and Gerfers suggested correcting both static
and dynamic errors digitally from the CT DS ADC output,
see Fig. 1b. The correction suggested by Runge and Gerfers



[5] emulates the discrete-time model of dynamic noise (12)
a}nd Astatic nqise (13) requiring 3M correction coefficients in
€o1,e10 and epnr..

Correcting both static and dynamic mismatch by digital
error correction in [5] simplifies the design of CT DS loop as
there will be no burden of extra latency or power consumption
from the DEM algorithm. However, measuring i.e. calibrating
both types of mismatch simultaneously may prove an in-
tractable problem as it requires simultaneous digital calibration
for both static and dynamic errors. An error calibration is
easier and more viable to construct if either of the mismatch
noise types are already attenuated. Moreover, a traditional
static digital error correction [11]-[13] utilizes a thermometer
encoder which has an inherently low transition rate, which
partially cancels dynamic portion of DAC noise. For this
reason, the fully digital error correction with 3M correction
coefficients by Runge and Gerfers [5] may be an overly
complicated idea.

In [6], Jain and Pavan suggested correcting ISI-error of a
single-bit feedback DAC by calibrating the gain mismatch and
the ISI error in a CT DS ADC with time-interleaved FIR feed-
back. A single-bit ADC does not require static error correction
and Jain and Pavan used a single coefficient to mitigate the
difference between rise and fall delays. The correction [6]
omits either summation terms in (12). Expanding this idea
to [5] means that the fully digital error correction by Runge
and Gerfers can be realized by 2M correction coefficients.
The two-stage correction scheme proposed in Sect. IV is
partially based on [6] and seeks to find a solution with maximal
simplicity: M or even single coefficient(s) for the case of
multibit DAC.

The two-stage error correction proposed in Sect. IV has an
interesting rival patented by Melanson et al. in [4]. Melanson
et al. proposed linearizing the ISI-error by a DAC encoder,
whose DEM algorithm is described as “thermometer-like
scrambler”. The static errors in [4] are corrected digitally as
in [11]. The difference between classic digital error correction
Fig. la [11] and [4] is that the function of Melanson’s
thermometer-like encoder is to increase the calibration speed
by averaging the full usage of all unit elements.

The “thermometer-likeness” in the Melanson’s encoder is
related to the inherently low transition transition rate of
the thermometer encoder. Unlike the thermometer encoder,
Melanson’s encoder averages the unit-DAC usage. To achieve
low transition rate, such averaging is slower compared with
a traditional mismatch-shaping DEM. The solution suggested
in Sect. IV utilizes a combination of traditional DEM encoder
and digital ISI error correction. The calibration of correction
coefficient(s) is therefore faster, and the ISI error correction
will more comprehensive.

IV. PROPOSED TWO-STAGE CORRECTION SCHEME

In the digital error correction of ISI-noise, omitting either of
the summation terms in (12) reduces the number of required
correction terms from 3M (Fig. 1b) to 2M. For instance, using
(16) as the estimate for the dynamic mismatch noise can be
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Fig. 1. Digital error correction: a) static DNL correction, b) ISI-error
correction with 3 - M correction coefficients [5] and c) proposed ISI-error
correction with single or M coefficients.

optimal, but the optimal correction coefficient estimates in €,
do not comply with the true ISI-errors in €1¢: the estimates
comply with € in (10). The estimate for the dynamic portion
of the ISI-noise would therefore be a product of I'jg-vector
and the estimate for €1 as shown in (16).

The number of ISI-correction coefficients in the LUT can
be further reduced from M to unity as in (18). This is based
on the observation that the main key merit in nonlinear ISI
error is the average mismatch e,,, = FE(€;0) between rise and
fall delays. Such observations for non-constant ISI-errors are
presented later in this Section. One LUT correction coefficient
would utilize a scalar estimate (17) of the average of ISI-
error. This would simplify the calibration of the ISI-errors
immensely.

— AT

éisip 1] =T - €19 (16)
av = E(€10). (17)
éisip[n] = T1o - €aw - [1,1, ... 50, (18)

Digital ISI-error correction is not viable with the presence of
static DAC mismatch noise: The feedback DAC has to contain
a DEM algorithm to linearize static DAC mismatch. Figure
1c represents the digital error correction of such system. The
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Fig. 2. Decimated simulation examples of DS ADC with DWA-ISI-LUT: a)
Single LUT coefficient and b) M-sized LUT.

thermometer code is permuted by a DEM algorithm and the
transition function (3) or (2) is generated accordingly.

The approach in this work enables the use of any known
DEM-algorithm, such as data weighted averaging (DWA) [17].
To obtain first-order static mismatch shaping, DWA is known
to be the simplest and the most popular realization. DWA also
averages the unit-DAC usage at maximal speed and therefore
the calibration of ISI-errors will be quicker in comparison
with a thermometer (or a thermometer-like [4]) encoder. The
other advantage is that as the actual ISI-error measurement
may require a built-in error calibration, using one instead of
M correction coefficients is power-efficient. As the proposed
two-stage mismatch correction scheme uses DEM, it also has
the well-known restriction: If the oversampling ratio is low
and the DS converter order is high, the required order (thus
complexity) of the mismatch shaping DEM may be too high.
In such case, the correction scheme in [4] may be the most
viable option.

The important question is whether using one coefficient is
sufficient. This is demonstrated in Fig. 2. Here, the stimulus
is a single-tone with the amplitude of 72% full-scale and the
frequency is 6- f5 /15, where fp is the is the edge of the signal
band (fg = fs/(2 - OSR)). In the behavioral model, DAC
mismatch is the only modeled nonlinearity. The loop filter
model is the generic baseband feed-forward type [14]. The
number of samples used in simulations are fixed to results in
256 FFT bins in the signal band. The power spectral density
(PSD) figures are not normalized to full scale but to M/2.
Hann-window used in the PSDs.

In Fig. 2, the DS ADC order, oversampling ratio (OSR) and
M are 3, 16 and 7, respectively. In Fig. 2, the data is decimated
and fp is the passband edge. As can be seen from Fig. 2,
the combination of DEM (here DWA) and single-coefficient
digital ISI-correction is capable of linearizing DAC mismatch,
whose standard deviation is op. To what extent, depends
on two factors. First and foremost, DEM has to be capable
of linearizing most of the static error. The second factor is
actual dynamic mismatch, whose deviation and asymmetry are
studied next.

To determine the conditions in which one correction coeffi-
cient is sufficient, the following parameter sweeps were made.
All ISI-errors eqp, contain a zero-mean gaussian random
parameter Kqp,, Whose standard deviation op is swept from
10~ to 10~2. The static mismatch standard deviation og is
fixed to 10~2. Similarly, the average rise/fall asymmetry error
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Fig. 3. M-coefficient ISI-correction, SFDR (dB) contour for {OSR,B}: a)
{32.2}, b) {32,3} and ¢) {16,4}.

eav = E(€) is swept from 10~ to 10~2. For each value of o p,
the simulation is repeated 16 times with different randomly
generated values.

In a behavioral model, the non-zero average value of each
ISI error e, (4) models the average DAC error in the
symbol clock period Agp. ISI-errors are generated according
to a certain nominal A,,,,, and a specific rise/fall deviation
Ay, Each ISI-error vector also has the zero-mean random
component Ky, Whose standard deviation op can be swept.
With these specifications, the behavioral model of ISI-error
can be modeled e.g. as:

Ay, = —Ao1, = —Aoo, = Anom, (19)
AlOk = 14nom;C + Afrk (20)
€aby, = Kaby + Aaby * [s {a,b} €{0,1} 21

With the setup in (19)-(21), the average rise/fall asymmetry
error e,,, = F(€) is exactly the on-off asymmetry error €19 =
Zfr - fs. To model only the nonlinear part of the ISI, Ao,
can be zeroed.

In Figures 3 and 4 we have example sweeps of M- and
1-coefficient correction with optimal (precisely correct) ¢ and
E(€). The ideal SFDR values for the cases in subfigures a
to ¢ in Fig. 3 and 3 are 85, 109 and 100 dB, respectively.
The SFDR sweep results are based on the power average of
16 random shapes of €,; (vector that contains M ISI-errors).
With no ISI-correction (not depicted here), even the tiniest
ISI-error ruins the performance.

In Fig. 3, optimal M -coefficient ISI-correction is applied.
Apparently, the correction is close to ideal as there is less than
6 dB variation in the SFDR. The maximal SFDR in Figures
3 is limited to around 100 dB as the static mismatch standard
deviation o is fixed to 1072.

In Fig. 4, only one correction coefficient is used. Clearly,
there is more variation in the SFDR results, especially in Fig.
4b and Fig. 4c. Comparing Figures 3 and 4, using only one
correction coefficient is adequate if the ISI error deviation is
expected to be smaller than the bias. The average bias and the
expected variation of the ISI-errors can be coarsely predicted
by the layout process and technique.

V. DEVICE-LEVEL ISI-LUT CALIBRATION

The ISI-LUT can be initially trimmed in a laboratory envi-
ronment for maximal linearity. This was performed for a one-
bit DS ADC in [6]. A device-level self-calibration is required
if the environmental changes such as temperature and aging
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Fig. 4. Single-coefficient ISI-correction, SFDR (dB) contour for {OSR,B}:
a) {322}, b) {32,3} and ¢) {16.4}.

change the ISI-errors substantially. The required word lengths
of the ISI-LUT error estimates are proportional to the required
DS ADC performance. The more linear the DS ADC, the
more sensitive the ISI-correction is to environmental changes.
In that sense, it is likely that the one-parameter approach is
less sensitive to the environment given that the nonlinear ISI
error average remains approximately the same. Nevertheless, if
the average of ISI-errors diverts from the estimate, the overall
linearity suffers and recalibration is required.

A. Offline ISI-Calibration

In the classic offline digital error calibration [11]-[13], static
unit-DAC errors are measured one-by-one by a dc-reference
and stored digitally in a lookup-table. The calibration of
dynamic ISI-errors (or their average) cannot be based on dc-
reference. For this reason, the offline calibration for ISI-errors
(or their average) may prove unviable.

In the original art of offline calibration for static errors [11],
the calibration mode was realized by a one-bit DS ADC. Such
calibration setup utilizes on-chip components and the required
number of samples in the calibration of single unit-DAC would
be 2PNOB plus the settling, where ENOB is the effective
number of bits of the multibit ADC. In the ISI-correction
case, we cannot have such trade-off between resolution and
calibration speed: the calibration time would be fixed to M
and the required word size of the required high-speed ADC
would have to be more than the effective number of bits of
the DS ADC.

B. Adaptive ISI-Calibration

A more suited approach would be the so-called blind on-line
calibration [12]. This technique was also originally created to
linearize static mismatch. This technique corrects for mismatch
by minimizing the noise error variance in a dedicated measure-
ment band through least-squares linear parameter estimation
[12].

Transforming the online calibration to ISI-correction is
extremely simple: the only difference is that the input to
the LUT is the binary T'[n] function instead of the binary
thermometer code d[n] (as such or scrambled by the DEM
algorithm).

The measure of the error are the spurious tones. For the
least mean squares (LMS) filter to converge, the ISI-noise to
be measured cannot be under the quantization noise. This is
why a portion of the signal band must be reserved to the
LMS error reference. The wider the error measurement band,
the faster and more accurate the adaptation is. For instance,

25% of the signal band would be an adequate sacrifice for the
adaptive ISI-correction. To generate the error reference, the
decimated output must be steeply high-pass filtered in order
to filter the fundamental out. The stop-band attenuation must
be high enough to bury the fundamental signal below pass-
band. Here, an elliptic high-pass filter was used (HPF in Fig.
5a).

The LMS filter structures in Fig. 5b and Fig. 5c¢ describe the
adaptation of M and single correction coefficient, respectively.
The LMS filter is harnessed to seek the coefficients that
minimize the measurement band data. Instead of classic tapped
delay line, the LMS adaptive linear combiner consists of the
binary transition (I') vector and the error reference is the up-
sampled content of the measurement band. The output is the
linearly predicted ISI-noise.

As in previous figures, thick lines represent parallel data
paths. The LMS step size p in Figures 5b and 5c is less
than unity due the fact that the error (err) correlates with the
stimulus. An ad-hoc-optimal p is roughly e, /k, where k is
a small integer.

The convergence speed is proportional to OSR and the width
of the measurement band. Unlike in the case of thermometer
encoder, the DEM ensures that all the unit DAC elements
usage is averaged quickly. Nevertheless, the convergence in
samples is also dependent on the input signal magnitude and
frequency as the dynamic mismatch noise correlates with the
stimulus.

For M correction coefficients, the converged coefficient
weights in do not comply with the true ISI error, but the
average of the errors. Therefore, M correction coefficients
in the blind adaptive LMS calibration do not provide any
advantage over one correction coefficient. The culprit behind
the LMS inaccuracy in the case of M coefficients is the non-
perfect static error attenuation by DEM (here DWA).

Applying the model used in the single-simulation examples
shown in Fig. 2, the calibration results from both M- and
single-coefficient cases were practically identical: SNDR =
75dB and SFDR ~ 84dB. The convergence was reached in
around 30,000 samples.

The advantage of using a traditional DEM in the online-
calibration is that the unit-element usage will be averaged
quickly. As long as there is some harmonic distortion in the
measurement band, the calibration will be successful. This can
be seen in the amplitude sweep shown in Fig. 6. Here, the DS
ADC order, oversampling ratio (OSR) and M are 3, 16 and 7
as in Fig. 2.

As can be seen from the “no ISI-correction” case in Fig.
6, the dynamic noise begins to dominate at certain level of
amplitude. Clearly this noise can be digitally corrected: the
calibration with one correction coefficient follows the optimal
1-coefficient curve. Here, the calibration consisted of 216
samples and the calibration was reset for each amplitude. In
Fig. 6, the accurate (not calibrated) M coefficients surpass the
one-coefficient performance. M -coefficient calibration result is
not shown as its curve is extremely close to the 1-coefficient
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calibration result. This due to the aforementioned LMS filter
inaccuracy with DWA encoder in the feedback.

As mentioned in the introduction, the ISI lookup-table
correction and calibration is also viable for single-bit DS
ADCs. For a single unit-DAC, a single correction coefficient
models the exact ISI-error.

VI. CONCLUSION

This work proposed a lookup-table based DAC ISI-error
correction mitigation method viable to a CT DS ADC. The

method is based on discrete-time ISI-error model [2] and
inspired by prior art on ISI-mitigation for single-bit [6] and
multibit systems [4], [5].

The proposed ISI-error correction method is suited for
single- and multibit systems. The dynamic portion of the DAC
noise (the ISI-error) will be linearized from the digital ADC
output. For multibit feedback DAC, both static and dynamic
portion of the DAC mismatch has to be linearized. Here, static
linearization is performed by a DEM-algorithm in the DAC
feedback.

It was found that if the DEM is capable of linearizing the
static portion of DAC-errors, the nonlinear ISI-noise can be
effectively canceled by only one correction parameter instead
of a full lookup-table. The idea is based on the fact that the
main contributing factor for nonlinear ISI-noise is the average
timing mismatch between switching the DAC on and off.

The suggested offline and online (blind adaptive) ISI-error
calibration techniques are deeply based on the prior art on
digital error correction of static DAC errors. The offline ISI-
calibration technique may prove too complex to realize, but
the realization of the online counterpart has potential. The
blind online correction requires a mismatch-noise measure-
ment band, but the adaptive ISI-correction does not require
parallel signal processing for the error weight adaptation.

The behavioral models used in this work are available in
Mathworks’ User Exchange web-site [20].
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