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Abstract- An application specific programmable processor 

is designed based on the analysis of a set of greedy recovery 

Compressive Sensing (CS) algorithms. The solution is 

flexible and customizable for a wide range of problem 

dimensions, as well as algorithms. The versatility of the 

approach is demonstrated by implementing Orthogonal 

Matching Pursuits, Approximate Messaging Passing and 

Normalized Iterative Hard Thresholding algorithms, all 

using a high-level language. Transported Triggered 

Architecture (TTA) framework is employed for the efficient 

implementation of macro operations shared by the 

algorithms. The performance of the CS algorithms on ARM 

Cortex-A15 and NIOS II processors has also been 

investigated, and empirical comparisons are presented. The 

flexible hardware design implemented on an FPGA achieves 

up to 7.80Ksample/s recovery at a power dissipation of 

42μJ/sample and beats both ARM and NIOS in total power 

consumption. 

Keywords—Compressive Sensing; Signal Reconstruction; 
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I. INTRODUCTION 

The Compressive Sensing (CS) theory has paved the way for 

efficient sparse signal techniques and instruments [1]. Based on 

the CS theory, the number of measurements needed for exact 

signal reconstruction depends on the sparsity degree rather than 

bandwidth. Analog to Information Convertors (AIC) [2] are 

examples of devices that exploit signal sparsity for reduced 

sampling rates in the context of the CS framework [3]. A major 

issue with the compressive sensing framework is the 

computational complexity of CS reconstruction. The recovery 

algorithms introduced so far have been shown to possess 

polynomial computational complexity [4] that can be a particular 

problem with embedded applications.   

A common assumption in CS based systems is that the 

recovery takes place in a remote cloud server, or a node in the 

sensor network with an unlimited supply of energy [5]. 

Unfortunately, this is not the case in many applications where 

the signal must be at least partially reconstructed locally for 

further decisions and adaptions. To tackle this challenge, 

application specific ASIC and FPGA based hardware designs 

have been proposed for CS recovery algorithms [6]–[8]. These 

hardware accelerator implementations usually reach satisfactory 

performance, but lack flexibility, which is a problem if further 

design iterations become necessary. Changing the reconstruction 

algorithm, updating it, or even modifying the reconstruction 

parameters, may require a major hardware redesign. 

Furthermore, the single purpose designs do not respond to other 

tasks required in an IoT node.  

These limitations have been partially answered, for example 

in [6], [9] and [7] which provide controls for changing some 

design parameters, such as the problem dimension, algorithm 

constraints, etc. However, these are lacking compared to the 

flexibility provided by software implementations. In addition, a 

sensor node is supposed to carry out other tasks as well, which 

require extra resources. Software implementations on general 

purpose processors, though providing excellent flexibility, being 

multi-purpose, lack efficiency and speed in comparison with 

specific hardware designs [10]. Concerning application specific 

programmable designs, it has been observed that the practical CS 

signal reconstruction algorithms share a great deal of common 

macro operations including sorting, min-max, and common 

algebraic operations, while each algorithm has been designed on 

the basis of a different set of assumption.  

In this paper, we utilize the above observation and propose an 

application specific CS reconstruction processor that is 

optimized for a variety of recovery algorithms. We also provide 

an empirical comparison of different algorithms on selected 

embedded platforms.  

The motivation for this investigation stems from the 

opportunity to replace conventional signal compression in some 

applications with CS based measurements [5]. In other words, 

the signal is captured by an ADC, and CS sampling is carried out 

for the sampled and quantized signal for compression. This has 

been shown to be a more efficient compression method (it only 

comprises one matrix-vector multiplication) in sensor nodes in 

some cases. The design presented in [11] is an example of a 

processor for this class of applications. Also in our design, a 

pseudo random number generator is included to support these 

purposes.  

The main contribution of this paper is a programmable, 

application specific embedded processor designed for sparse 

signal recovery. It enables pure software implementations of CS 

algorithms, hence supporting cost-effective software 

reconfigurability. We demonstrate the flexibility of the design by 

implementing different sparse recovery algorithms, and compare 

the resulting power consumptions and recovery rates to two other 

embedded processors  

II. BACKGROUND 

A. Compressive Sensing 

Sampling theory requires the (average) sampling rate to be at 

least as high as twice of the maximum frequency of the signal 

bandwidth (𝑓𝑠 > 2 × 𝑓𝑚𝑎𝑥), without considering the information 



content of the signal [1]. On the contrary, compressive sensing 

theory leverages signal sparsity (low information content) into 

reduced sampling rates and provides a framework for acquisition 

and recovery of sparse signals with a significantly reduced 

number of required samples. Based on CS theory, a length-N 

signal like 𝑋 ∈ ℝ𝑁×1 , with a sparsity degree of 𝑘, i.e. with only 

𝑘 significant values in the sampling or transform domain, 

requires only 𝑀 measurements (𝑀 <<  𝑁) to ensure exact 

recovery, with overwhelming probability.  

In compressive sensing, the measurements are obtained 

through multiplying an 𝑀 × 𝑁  matrix (𝛷 matrix or 

measurement matrix) in the signal vector X, which results in an 

incomplete set as follows: 

𝑌𝑀×1 = 𝛷𝑀×𝑁𝑋𝑁×1 (1) 

where, 𝑌 ∈ 𝑅𝑀×1 is the measurements vector (Fig. 1).  
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Fig. 1. Measurement of the sparse signal 

Since (𝑀 << 𝑁), the above is an underdetermined system, so an 

infinite number of solutions exists that satisfy (1). However, 

when the sparsity assumption is introduced, a solution �̂� can be 

recovered through solving the following 𝑙1 norm minimization 

problem [1]:  

𝑋′̂ = arg min‖�̂�′‖
1

  subject  to  𝑌 = 𝛷𝑋′̂ (2) 

This recovery process is illustrated in Fig. 2. Please note that it 

is not necessary for the original signal 𝑋 to be sparse in the 

sampling domain. The CS sampling framework still applies if 

there exists a sparse representation of 𝑋 in a transform domain, 

i.e., 𝑋 =  𝛹−1𝑎, where 𝑎 is the sparse transformed 

representation of 𝑋 and 𝛹 is the transform matrix. An essential 

condition in CS is low incoherence between sampling matrix 𝛷, 

and the transform matrix 𝛹. In such a case, Eq. (2) should be 

modified to the following to solve for 𝑎 instead of X. 

�̂� = arg min‖�̂�‖1 subject  to   𝑌 = 𝛷𝛹−1�̂� (3) 

Once �̂� is known, �̂� is recovered through �̂� = 𝛹−1 �̂� . 

Incoherence of Φ and 𝛹 matrices is necessary, which requires Φ 

matrix to be random in practice [4]. 

 
Fig. 2. CS based recovery process 

The computational challenge in CS signal recovery is in solving 

an 𝑙1-norm minimization problem. This was originally tackled 

through convex optimization methods. However, a family of 

greedy algorithms has been introduced that are much  less 

demanding in terms of computational complexity and memory 

requirement. Our CS signal recovery processor design targets 

these algorithms. 

B. Recovery Algorithms 

In this section, we briefly outline the CS reconstruction 

algorithms of interest to give a background for further discussion 

on the design choices. We only consider greedy algorithms due 

to their practicality in our considered application domain.  

We implemented three popular greedy algorithms: Orthogonal 

Matching Pursuit (OMP) [12] , Approximate Messaging Passing 

(AMP) [13], and Normalized Iterative Hard Thresholding (N-

IHT) [14]. All implementations were written in C programming 

language. The algorithms were run on three embedded 

processors: Altera NIOS II-f core, ARM cortex-1,5 and our 

proposed Transport-Triggered Architecture (TTA) [15], [16] 

template based design. It should be noticed that the first and the 

last processors were implemented on an FPGA, while the ARM 

was included in a system chip. 

OMP is a greedy algorithm introduced as an extension to the 

well-established Matching Pursuit algorithm [17]. The OMP 

algorithm iteratively finds the best matrix columns that 

correspond to the non-zero coefficients of the sparse signal, and 

then performs a least squares (LS) optimization in the subspace 

formed from current and previously selected columns. 

 AMP and the IHT algorithms do not require LS in each 

iteration, and instead perform simple vector truncation, which 

results in an iterative completion of the sparse signal. The 

parameters, such as step size and threshold, are critical in the 

performance of AMP and IHT algorithms. The optimum 

parameters of AMP are chosen based on the experimental results 

of [13] . In the case of the IHT algorithm, a different flavor of 

algorithm called Normalized-IHT was implemented, where the 

step size is automatically determined in each iteration.  

The recovery algorithms share a great deal of common 

operations, which we exploit in our design. Our aim has been to 

have an attractive combination of performance, energy 

efficiency, and design flexibility. This should allow for making 

algorithmic and parameter changes after the deployment of the 

design. 

In this work, to solve overdetermined systems of equations, the 

QR decomposition (QRD) [18] method was employed for the 

OMP algorithm. AMP and NIHT algorithms are basically 

different from OMP in the sense that these algorithms refine the 

residue and estimate the signal in a greedy thresholding manner. 

III. IMPLEMENTATION 

The TTA application specific processor framework has a low 

programmability overhead, and generally achieves a close to 

ASIC performance [19]. TTA is somewhat similar to Very Long 

Instruction Word (VLIW) architecture, but its bypass network is 

exposed to the programmer. In comparison to VLIW, it enjoys 

better scalability, i.e. design complexity grows linearly with the 

increasing number of functional units and register files. 



 

Fig. 3. A partial view of implemented processor architecture in the design software

The operations (instructions) are defined as  data transports 

through common data paths (buses) between Function Units 

(FU) and Register Files (RF). The execution of an operation 

happens as a side effect of data transportation to the FUs. When 

data is written to the input registers of an FU, the FU is 

triggered, and after defined latency, the result is available in the 

output register of the FU, and can be directly moved to an input 

register of the same or another FU. These direct moves help to 

avoid the register files from becoming hotspots. Energy is also 

saved, because power-hungry multi-ported register files may 

not be needed at all. 

In this work, the TCE toolchain (TTA-based Co-design 

Environment [20]) was employed for design and optimization 

of the processor. The processor was later implemented and 

tested for verification on an FPGA.  

The number of connections to the FUs in the TTA 

architecture was optimized based on profiling the target 

algorithms to reduce the instruction word length. This also leads  

to lower power consumption of the instruction memory and the 

interconnections. As our goal was to optimize the processor for 

a variety of CS reconstruction algorithms that share many  

macro operations, we focused on optimizing for those macro 

operations rather any specific algorithm.  

Using the TCE toolchain, the optimization comprised of 

counting the number of times each functional unit is triggered. 

Starting from a basic TTA processor with integer and floating-

point function units, the algorithms of interest were profiled, 

identifying hotspots. For instance, the substantial number of 

integer operations from address calculations in matrix 

operations indicated respective optimization potential and 

guided both the processor and software design.  

CS measurement and recovery requires the generating of a 

random matrix. To address this need, a pseudo-random number 

generator FU, using Linear Feedback Shift Register, was 

designed and added to the base processor. The list of function 

units in the designed TTA is given in Table 1. 

Table 1. Details of designed processor 
FUNCTIONAL UNIT QUANTITY 

FLOAT- MULTIPLIER 4 

FLOAT- DIVIDER 1 

INTEGER-MULTIPLIER 4 
INTEGER UNIT  4 

FLOAT SQRT 1 

RANDOM GENERATOR 1 
SUBTRACTOR 4 

INSTRUCION MEMORY 76.7KB  

DATA MEMORY 1 (256 KB) 

The designed processor is partly depicted in Fig. 3. Based on 

analysis, floating point multiplications were found to be the 

most common micro operation in each considered algorithm. 

On the other hand, the multiplications are rarely simple scalar 

multiplications, rather they are often vector by matrix or matrix 

by matrix operations. Consequently, performance can be 

boosted by vectorizing the code and respective support at the 

hardware level. Special care was taken in designing the matrix 

multiplication function to exploit instruction level parallelism 

as far as possible.  

IV. RESULTS AND DISCUSSION 

The designed TTA processor and NIOS II-f core [21] were 

implemented on a Cyclone IV-EP4CE115F29C7 FPGA. The 

NIOS II-f is a rather advanced 32-bit RISC pipelined processor, 

equipped with dynamic branch prediction and instruction, and 

data memory caches. The detailed FPGA synthesis results are 

presented in the following table for NIOS II and the designed 

TTA processor. Moreover, an ODROID XU3 board [22] was 

used to perform the same CS algorithms on the ARM Cortex-

15 processor. The system chip is provided with power 

consumption sensors that can be employed to read power 

dissipation at processor cores, DRAM and GPU.  

Table 2. FPGA synthesis report for Cyclone IV-EP4CE115F29C7 

 TTA NIOS II-f 

(Customized) 

Total Logic 

Elements 23,505 (21%) 9,495 (8%) 

Total Registers 7057 2914 

Total Memory bits 2,726,357 (68%) 2,931,328 (74%) 

DSP Blocks 20  11 

Max. Clock 62.92 MHz 79.61 MHz 

 for signal window size (max) = 256  

Since the base NIOS II is an integer processor, it is very slow 

for our application (2,20s for OMP). Therefore, a custom 

floating-point instructions unit (including floating-point 

division) was added to the processor [23]. A great deal of logic 

elements is consumed for the floating-point functional units. In 

TTA, we have four floating point multipliers, whereas in NIOS 

II, we only use one. 

For consistency and fair comparison, window sizes of 256, 

with 25% of Nyquist rate sampling were used in every test. The 

power consumptions for the TTA and NIOS processors were 

measured in vivo through measuring the board power 

difference (dynamic power), and through gate level simulation 

in Model Sim and Quartus software. In the case of the ARM 



processor, power consumption was measured through querying 

the internal sensors.   

Fig. 4 presents the times needed by the recovery algorithms 

to achieve given Signal to Noise ratios (SNR) on the designed 

TTA processor. Since the OMP algorithm converges earlier that 

the other two algorithms for highly sparse signals, less sparse 

signals were used for this experiment. As we can observe, if 

exact recovery is not the goal, but lower SNR results can be 

used, the reconstruction rate can be increased.  

 
Fig. 4. Comparison of required time for given reconstruction quality (8% 

signal occupation) 

Our measured estimated and simulated dynamic power 

consumptions almost match. Consequently, we hypothesize 

that even the simulated static power consumption is close to the 

actual figure. Unfortunately, we were unable to measure it with 

our experimentation board.  

Table 3 summarizes the results for all algorithms and 

platforms. The data and instruction memory power 

consumptions in our proposed design are 18mW and 43mW, 

respectively.  

Table 3. Performance for different algorithms and platforms 

 
NIOS II-f 

Customized 
Proposed 

TTA  

ARM 

Cortex-A15 

 SNR 

     Reconstruction 

Time a 

OMP  70dB 260ms 33ms 1.45ms 

AMP 70dB 2.5s 350ms 5.0ms 

  N-IHT 50dB 6.2s 730ms 23.8ms 

Power 

Consumption 

    Dynamic 
Mes. 195 mW 174 mW 1.7W 

Sim. 220 mW 194 mW - 

Static 99 mW 101 mW N/A  

 Total b 

351 mW 327 mW 2.7W 

Clock Frequency 50MHz 50MHz 2GHz 
Energy per Sample (Best)  391 μJ/S 42 μJ/S  15 μJ/S 
Implementation Platform FPGA FPGA Chip  
Approximate GEs (Core) ~39807 ~95656 - 

Total Memory 

 (Instruction + Data) 
350 KBs 337KB 2 GB 

a 
2% signal occupation, 256 samples and 64 CS measurements 

b 30mW for I/O is reported for all FPGA implementations 

The static power is almost constant since the used FPGA and 

tools lack support of power gating of unused blocks. Note that 

the NIOS and TTA processors are both on FPGA platforms, 

while the ARM is included in a system chip. The energy per 

recovered sample was lowest for the ARM in our experiments. 

However, assuming an implementation using  28nm CMOS 

technology, we can speculate the energy consumption of the 

proposed TTA to be around 130mW at a 1.2GHz clock rate. 

This would result in 1.3ms reconstruction time  for the OMP 

algorithm, and 630nJ/s energy per sample. The energy 

efficiency is almost 20 times that of the ARM-A15 core. This 

speculation is based on the results for the processor 

implemented in [24], with similar architecture, and roughly the 

same number of gate elements for each core as in our proposed 

design. 

CS recovery algorithms are sequential by nature but include 

steps that can be fully parallelized. Depending on 

implementation, it might be necessary to transfer data between 

different GPU kernels, which will introduce a data transfer 

overhead. Although, the reported results of GPU 

implementations are promising for long signals [25], in an 

embedded setting, we are generally looking for small length 

signal recovery. The reported FPGA implementations in the 

literature show superior efficiency over ours; for example, 

reference [26] reports a recovery time of 23.27μs (at 110MHz) 

on a Virtex-5 FPGA with 530mW dynamic power consumption 

for reconstruction of a signal with the same number of 

measurements and length as ours, but, as discussed earlier, 

these implementations are single purpose. To the best 

knowledge of authors, no application specific programmable 

processor is reported for CS recovery applications. 

 For fair comparison of the algorithms, one must take into 

consideration the window length of the signal, the sparsity 

degree of the test signal, the hyperparameters of the algorithms, 

such as termination criteria and desired reconstruction quality. 

From Fig. 4, we observed that the OMP algorithm is fastest in 

reconstruction, whereas the AMP and IHT algorithms that are 

known to be computationally cheaper, appear to be slower. This 

is  due to the low sparsity degree and short signal length. The 

OMP algorithm gives better performance for less sparse signals 

[27], and here the experiments were done with signals with less 

than 10% occupancy. The IHT algorithm’s performance is 

relatively independent from the sparsity degree, and the 

performance of AMP is less sensitive to sparsity degree than the 

OMP [27], [28]. These issues are rather strong practical 

arguments for flexible designs. 

Although CS specific implementations [6], [7], [9] provide 

high efficiency, they suffer from a low degree of flexibility and 

customization, which hinders exploring the design space for a 

variety of parameters for each specific algorithm. For the highly 

varying applications of IoT nodes, single purpose hardware for 

each task is not always affordable, but flexibility is preferred 

without sacrificed performance and energy efficiency. 

V. SUMMARY  

The proposed TTA based CS recovery processor demonstrates 

satisfactory Energy per Sample performance already on an 

FPGA platform. As a fully programmable design, it can be 

utilized for other tasks, too. All three well-known CS 

algorithms were written completely in a high-level language, 

showing the versatility of the toolchain used. Based on the 



results, and considering embedded systems design constraints, 

the OMP algorithm seems to be the best option for short length 

signal recovery in embedded settings. 
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