
An Embedded Programmable Processor for Compressive

Sensing Applications

Mehdi Safarpour, Ilkka Hautala, Olli Silvén

Center for Machine Vision and Signal Analysis

 University of Oulu, Oulu, Finland

mehdi.safarpour [AT] oulu.fi

Abstract- An application specific programmable processor

is designed based on the analysis of a set of greedy recovery

Compressive Sensing (CS) algorithms. The solution is

flexible and customizable for a wide range of problem

dimensions, as well as algorithms. The versatility of the

approach is demonstrated by implementing Orthogonal

Matching Pursuits, Approximate Messaging Passing and

Normalized Iterative Hard Thresholding algorithms, all

using a high-level language. Transported Triggered

Architecture (TTA) framework is employed for the efficient

implementation of macro operations shared by the

algorithms. The performance of the CS algorithms on ARM

Cortex-A15 and NIOS II processors has also been

investigated, and empirical comparisons are presented. The

flexible hardware design implemented on an FPGA achieves

up to 7.80Ksample/s recovery at a power dissipation of

42μJ/sample and beats both ARM and NIOS in total power

consumption.

Keywords—Compressive Sensing; Signal Reconstruction;

Embedded Processor; IoT.

I. INTRODUCTION

The Compressive Sensing (CS) theory has paved the way for

efficient sparse signal techniques and instruments [1]. Based on

the CS theory, the number of measurements needed for exact

signal reconstruction depends on the sparsity degree rather than

bandwidth. Analog to Information Convertors (AIC) [2] are

examples of devices that exploit signal sparsity for reduced

sampling rates in the context of the CS framework [3]. A major

issue with the compressive sensing framework is the

computational complexity of CS reconstruction. The recovery

algorithms introduced so far have been shown to possess

polynomial computational complexity [4] that can be a particular

problem with embedded applications.

A common assumption in CS based systems is that the

recovery takes place in a remote cloud server, or a node in the

sensor network with an unlimited supply of energy [5].

Unfortunately, this is not the case in many applications where

the signal must be at least partially reconstructed locally for

further decisions and adaptions. To tackle this challenge,

application specific ASIC and FPGA based hardware designs

have been proposed for CS recovery algorithms [6]–[8]. These

hardware accelerator implementations usually reach satisfactory

performance, but lack flexibility, which is a problem if further

design iterations become necessary. Changing the reconstruction

algorithm, updating it, or even modifying the reconstruction

parameters, may require a major hardware redesign.

Furthermore, the single purpose designs do not respond to other

tasks required in an IoT node.

These limitations have been partially answered, for example

in [6], [9] and [7] which provide controls for changing some

design parameters, such as the problem dimension, algorithm

constraints, etc. However, these are lacking compared to the

flexibility provided by software implementations. In addition, a

sensor node is supposed to carry out other tasks as well, which

require extra resources. Software implementations on general

purpose processors, though providing excellent flexibility, being

multi-purpose, lack efficiency and speed in comparison with

specific hardware designs [10]. Concerning application specific

programmable designs, it has been observed that the practical CS

signal reconstruction algorithms share a great deal of common

macro operations including sorting, min-max, and common

algebraic operations, while each algorithm has been designed on

the basis of a different set of assumption.

In this paper, we utilize the above observation and propose an

application specific CS reconstruction processor that is

optimized for a variety of recovery algorithms. We also provide

an empirical comparison of different algorithms on selected

embedded platforms.

The motivation for this investigation stems from the

opportunity to replace conventional signal compression in some

applications with CS based measurements [5]. In other words,

the signal is captured by an ADC, and CS sampling is carried out

for the sampled and quantized signal for compression. This has

been shown to be a more efficient compression method (it only

comprises one matrix-vector multiplication) in sensor nodes in

some cases. The design presented in [11] is an example of a

processor for this class of applications. Also in our design, a

pseudo random number generator is included to support these

purposes.

The main contribution of this paper is a programmable,

application specific embedded processor designed for sparse

signal recovery. It enables pure software implementations of CS

algorithms, hence supporting cost-effective software

reconfigurability. We demonstrate the flexibility of the design by

implementing different sparse recovery algorithms, and compare

the resulting power consumptions and recovery rates to two other

embedded processors

II. BACKGROUND

A. Compressive Sensing

Sampling theory requires the (average) sampling rate to be at

least as high as twice of the maximum frequency of the signal

bandwidth (𝑓𝑠 > 2 × 𝑓𝑚𝑎𝑥), without considering the information

content of the signal [1]. On the contrary, compressive sensing

theory leverages signal sparsity (low information content) into

reduced sampling rates and provides a framework for acquisition

and recovery of sparse signals with a significantly reduced

number of required samples. Based on CS theory, a length-N

signal like 𝑋 ∈ ℝ𝑁×1 , with a sparsity degree of 𝑘, i.e. with only

𝑘 significant values in the sampling or transform domain,

requires only 𝑀 measurements (𝑀 << 𝑁) to ensure exact

recovery, with overwhelming probability.

In compressive sensing, the measurements are obtained

through multiplying an 𝑀 × 𝑁 matrix (𝛷 matrix or

measurement matrix) in the signal vector X, which results in an

incomplete set as follows:

𝑌𝑀×1 = 𝛷𝑀×𝑁𝑋𝑁×1 (1)

where, 𝑌 ∈ 𝑅𝑀×1 is the measurements vector (Fig. 1).

=

Sparse Signal

X

Measurement MatrixMeasurements Vector

×

Fig. 1. Measurement of the sparse signal

Since (𝑀 << 𝑁), the above is an underdetermined system, so an

infinite number of solutions exists that satisfy (1). However,

when the sparsity assumption is introduced, a solution �̂� can be

recovered through solving the following 𝑙1 norm minimization

problem [1]:

𝑋′̂ = arg min‖�̂�′‖
1

 subject to 𝑌 = 𝛷𝑋′̂ (2)

This recovery process is illustrated in Fig. 2. Please note that it

is not necessary for the original signal 𝑋 to be sparse in the

sampling domain. The CS sampling framework still applies if

there exists a sparse representation of 𝑋 in a transform domain,

i.e., 𝑋 = 𝛹−1𝑎, where 𝑎 is the sparse transformed

representation of 𝑋 and 𝛹 is the transform matrix. An essential

condition in CS is low incoherence between sampling matrix 𝛷,

and the transform matrix 𝛹. In such a case, Eq. (2) should be

modified to the following to solve for 𝑎 instead of X.

�̂� = arg min‖�̂�‖1 subject to 𝑌 = 𝛷𝛹−1�̂� (3)

Once �̂� is known, �̂� is recovered through �̂� = 𝛹−1 �̂� .

Incoherence of Φ and 𝛹 matrices is necessary, which requires Φ

matrix to be random in practice [4].

Fig. 2. CS based recovery process

The computational challenge in CS signal recovery is in solving

an 𝑙1-norm minimization problem. This was originally tackled

through convex optimization methods. However, a family of

greedy algorithms has been introduced that are much less

demanding in terms of computational complexity and memory

requirement. Our CS signal recovery processor design targets

these algorithms.

B. Recovery Algorithms

In this section, we briefly outline the CS reconstruction

algorithms of interest to give a background for further discussion

on the design choices. We only consider greedy algorithms due

to their practicality in our considered application domain.

We implemented three popular greedy algorithms: Orthogonal

Matching Pursuit (OMP) [12] , Approximate Messaging Passing

(AMP) [13], and Normalized Iterative Hard Thresholding (N-

IHT) [14]. All implementations were written in C programming

language. The algorithms were run on three embedded

processors: Altera NIOS II-f core, ARM cortex-1,5 and our

proposed Transport-Triggered Architecture (TTA) [15], [16]

template based design. It should be noticed that the first and the

last processors were implemented on an FPGA, while the ARM

was included in a system chip.

OMP is a greedy algorithm introduced as an extension to the

well-established Matching Pursuit algorithm [17]. The OMP

algorithm iteratively finds the best matrix columns that

correspond to the non-zero coefficients of the sparse signal, and

then performs a least squares (LS) optimization in the subspace

formed from current and previously selected columns.

 AMP and the IHT algorithms do not require LS in each

iteration, and instead perform simple vector truncation, which

results in an iterative completion of the sparse signal. The

parameters, such as step size and threshold, are critical in the

performance of AMP and IHT algorithms. The optimum

parameters of AMP are chosen based on the experimental results

of [13] . In the case of the IHT algorithm, a different flavor of

algorithm called Normalized-IHT was implemented, where the

step size is automatically determined in each iteration.

The recovery algorithms share a great deal of common

operations, which we exploit in our design. Our aim has been to

have an attractive combination of performance, energy

efficiency, and design flexibility. This should allow for making

algorithmic and parameter changes after the deployment of the

design.

In this work, to solve overdetermined systems of equations, the

QR decomposition (QRD) [18] method was employed for the

OMP algorithm. AMP and NIHT algorithms are basically

different from OMP in the sense that these algorithms refine the

residue and estimate the signal in a greedy thresholding manner.

III. IMPLEMENTATION

The TTA application specific processor framework has a low

programmability overhead, and generally achieves a close to

ASIC performance [19]. TTA is somewhat similar to Very Long

Instruction Word (VLIW) architecture, but its bypass network is

exposed to the programmer. In comparison to VLIW, it enjoys

better scalability, i.e. design complexity grows linearly with the

increasing number of functional units and register files.

Fig. 3. A partial view of implemented processor architecture in the design software

The operations (instructions) are defined as data transports

through common data paths (buses) between Function Units

(FU) and Register Files (RF). The execution of an operation

happens as a side effect of data transportation to the FUs. When

data is written to the input registers of an FU, the FU is

triggered, and after defined latency, the result is available in the

output register of the FU, and can be directly moved to an input

register of the same or another FU. These direct moves help to

avoid the register files from becoming hotspots. Energy is also

saved, because power-hungry multi-ported register files may

not be needed at all.

In this work, the TCE toolchain (TTA-based Co-design

Environment [20]) was employed for design and optimization

of the processor. The processor was later implemented and

tested for verification on an FPGA.

The number of connections to the FUs in the TTA

architecture was optimized based on profiling the target

algorithms to reduce the instruction word length. This also leads

to lower power consumption of the instruction memory and the

interconnections. As our goal was to optimize the processor for

a variety of CS reconstruction algorithms that share many

macro operations, we focused on optimizing for those macro

operations rather any specific algorithm.

Using the TCE toolchain, the optimization comprised of

counting the number of times each functional unit is triggered.

Starting from a basic TTA processor with integer and floating-

point function units, the algorithms of interest were profiled,

identifying hotspots. For instance, the substantial number of

integer operations from address calculations in matrix

operations indicated respective optimization potential and

guided both the processor and software design.

CS measurement and recovery requires the generating of a

random matrix. To address this need, a pseudo-random number

generator FU, using Linear Feedback Shift Register, was

designed and added to the base processor. The list of function

units in the designed TTA is given in Table 1.

Table 1. Details of designed processor
FUNCTIONAL UNIT QUANTITY

FLOAT- MULTIPLIER 4

FLOAT- DIVIDER 1

INTEGER-MULTIPLIER 4
INTEGER UNIT 4

FLOAT SQRT 1

RANDOM GENERATOR 1
SUBTRACTOR 4

INSTRUCION MEMORY 76.7KB

DATA MEMORY 1 (256 KB)

The designed processor is partly depicted in Fig. 3. Based on

analysis, floating point multiplications were found to be the

most common micro operation in each considered algorithm.

On the other hand, the multiplications are rarely simple scalar

multiplications, rather they are often vector by matrix or matrix

by matrix operations. Consequently, performance can be

boosted by vectorizing the code and respective support at the

hardware level. Special care was taken in designing the matrix

multiplication function to exploit instruction level parallelism

as far as possible.

IV. RESULTS AND DISCUSSION

The designed TTA processor and NIOS II-f core [21] were

implemented on a Cyclone IV-EP4CE115F29C7 FPGA. The

NIOS II-f is a rather advanced 32-bit RISC pipelined processor,

equipped with dynamic branch prediction and instruction, and

data memory caches. The detailed FPGA synthesis results are

presented in the following table for NIOS II and the designed

TTA processor. Moreover, an ODROID XU3 board [22] was

used to perform the same CS algorithms on the ARM Cortex-

15 processor. The system chip is provided with power

consumption sensors that can be employed to read power

dissipation at processor cores, DRAM and GPU.

Table 2. FPGA synthesis report for Cyclone IV-EP4CE115F29C7

 TTA NIOS II-f

(Customized)

Total Logic

Elements 23,505 (21%) 9,495 (8%)

Total Registers 7057 2914

Total Memory bits 2,726,357 (68%) 2,931,328 (74%)

DSP Blocks 20 11

Max. Clock 62.92 MHz 79.61 MHz

 for signal window size (max) = 256

Since the base NIOS II is an integer processor, it is very slow

for our application (2,20s for OMP). Therefore, a custom

floating-point instructions unit (including floating-point

division) was added to the processor [23]. A great deal of logic

elements is consumed for the floating-point functional units. In

TTA, we have four floating point multipliers, whereas in NIOS

II, we only use one.

For consistency and fair comparison, window sizes of 256,

with 25% of Nyquist rate sampling were used in every test. The

power consumptions for the TTA and NIOS processors were

measured in vivo through measuring the board power

difference (dynamic power), and through gate level simulation

in Model Sim and Quartus software. In the case of the ARM

processor, power consumption was measured through querying

the internal sensors.

Fig. 4 presents the times needed by the recovery algorithms

to achieve given Signal to Noise ratios (SNR) on the designed

TTA processor. Since the OMP algorithm converges earlier that

the other two algorithms for highly sparse signals, less sparse

signals were used for this experiment. As we can observe, if

exact recovery is not the goal, but lower SNR results can be

used, the reconstruction rate can be increased.

Fig. 4. Comparison of required time for given reconstruction quality (8%

signal occupation)

Our measured estimated and simulated dynamic power

consumptions almost match. Consequently, we hypothesize

that even the simulated static power consumption is close to the

actual figure. Unfortunately, we were unable to measure it with

our experimentation board.

Table 3 summarizes the results for all algorithms and

platforms. The data and instruction memory power

consumptions in our proposed design are 18mW and 43mW,

respectively.

Table 3. Performance for different algorithms and platforms

NIOS II-f

Customized
Proposed

TTA

ARM

Cortex-A15

 SNR

 Reconstruction

Time a

OMP 70dB 260ms 33ms 1.45ms

AMP 70dB 2.5s 350ms 5.0ms

 N-IHT 50dB 6.2s 730ms 23.8ms

Power

Consumption

 Dynamic
Mes. 195 mW 174 mW 1.7W

Sim. 220 mW 194 mW -

Static 99 mW 101 mW N/A

 Total b

351 mW 327 mW 2.7W

Clock Frequency 50MHz 50MHz 2GHz
Energy per Sample (Best) 391 μJ/S 42 μJ/S 15 μJ/S
Implementation Platform FPGA FPGA Chip
Approximate GEs (Core) ~39807 ~95656 -

Total Memory

 (Instruction + Data)
350 KBs 337KB 2 GB

a
2% signal occupation, 256 samples and 64 CS measurements

b 30mW for I/O is reported for all FPGA implementations

The static power is almost constant since the used FPGA and

tools lack support of power gating of unused blocks. Note that

the NIOS and TTA processors are both on FPGA platforms,

while the ARM is included in a system chip. The energy per

recovered sample was lowest for the ARM in our experiments.

However, assuming an implementation using 28nm CMOS

technology, we can speculate the energy consumption of the

proposed TTA to be around 130mW at a 1.2GHz clock rate.

This would result in 1.3ms reconstruction time for the OMP

algorithm, and 630nJ/s energy per sample. The energy

efficiency is almost 20 times that of the ARM-A15 core. This

speculation is based on the results for the processor

implemented in [24], with similar architecture, and roughly the

same number of gate elements for each core as in our proposed

design.

CS recovery algorithms are sequential by nature but include

steps that can be fully parallelized. Depending on

implementation, it might be necessary to transfer data between

different GPU kernels, which will introduce a data transfer

overhead. Although, the reported results of GPU

implementations are promising for long signals [25], in an

embedded setting, we are generally looking for small length

signal recovery. The reported FPGA implementations in the

literature show superior efficiency over ours; for example,

reference [26] reports a recovery time of 23.27μs (at 110MHz)

on a Virtex-5 FPGA with 530mW dynamic power consumption

for reconstruction of a signal with the same number of

measurements and length as ours, but, as discussed earlier,

these implementations are single purpose. To the best

knowledge of authors, no application specific programmable

processor is reported for CS recovery applications.

 For fair comparison of the algorithms, one must take into

consideration the window length of the signal, the sparsity

degree of the test signal, the hyperparameters of the algorithms,

such as termination criteria and desired reconstruction quality.

From Fig. 4, we observed that the OMP algorithm is fastest in

reconstruction, whereas the AMP and IHT algorithms that are

known to be computationally cheaper, appear to be slower. This

is due to the low sparsity degree and short signal length. The

OMP algorithm gives better performance for less sparse signals

[27], and here the experiments were done with signals with less

than 10% occupancy. The IHT algorithm’s performance is

relatively independent from the sparsity degree, and the

performance of AMP is less sensitive to sparsity degree than the

OMP [27], [28]. These issues are rather strong practical

arguments for flexible designs.

Although CS specific implementations [6], [7], [9] provide

high efficiency, they suffer from a low degree of flexibility and

customization, which hinders exploring the design space for a

variety of parameters for each specific algorithm. For the highly

varying applications of IoT nodes, single purpose hardware for

each task is not always affordable, but flexibility is preferred

without sacrificed performance and energy efficiency.

V. SUMMARY

The proposed TTA based CS recovery processor demonstrates

satisfactory Energy per Sample performance already on an

FPGA platform. As a fully programmable design, it can be

utilized for other tasks, too. All three well-known CS

algorithms were written completely in a high-level language,

showing the versatility of the toolchain used. Based on the

results, and considering embedded systems design constraints,

the OMP algorithm seems to be the best option for short length

signal recovery in embedded settings.

VI. ACKNOWLEDGMENTS

The support of the Academy of Finland for the ICONICAL

project is gratefully acknowledged.

REFERENCES

[1] E. J. Candès and M. B. Wakin, “An introduction to

compressive sampling,” IEEE Signal Process. Mag., vol.

25, no. 2, pp. 21–30, 2008.

[2] S. Kirolos et al., “Analog-to-information conversion via

random demodulation,” in Design, Applications,

Integration and Software, 2006 IEEE Dallas/CAS

Workshop on, 2006, pp. 71–74.

[3] M. Safarpour, R. Inanlou, M. Charmi, O. Shoaei, and O.

Silvén, “ADC-Assisted Random Sampler Architecture for

Efficient Sparse Signal Acquisition,” IEEE Trans. Very

Large Scale Integr. VLSI Syst., 2018.

[4] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal

recovery from incomplete and inaccurate samples,” Appl.

Comput. Harmon. Anal., vol. 26, no. 3, pp. 301–321, 2009.

[5] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic,

“Design and analysis of a hardware-efficient compressed

sensing architecture for data compression in wireless

sensors,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp.

744–756, 2012.

[6] P. Maechler et al., “VLSI design of approximate message

passing for signal restoration and compressive sensing,”

IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, no. 3, pp.

579–590, 2012.

[7] F. Ren and D. Markovic, “A Configurable 12-237 kS/s

12.8 mW Sparse-Approximation Engine for Mobile Data

Aggregation of Compressively Sampled Physiological

Signals.,” J Solid-State Circuits, vol. 51, no. 1, pp. 68–78,

2016.

[8] M. Mayer, N. Görtz, and J. Kaitovic, “RFID tag

acquisition via compressed sensing,” in RFID Technology

and Applications Conference (RFID-TA), 2014 IEEE,

2014, pp. 26–31.

[9] Z. P. Ang and A. Kumar, “Real-time and low power

embedded ℓ 1-optimization solver design,” in Field-

Programmable Technology (FPT), 2013 International

Conference on, 2013, pp. 168–175.

[10] J. D. Blanchard and J. Tanner, “Performance comparisons

of greedy algorithms in compressed sensing,” Numer.

Linear Algebra Appl., vol. 22, no. 2, pp. 254–282, 2015.

[11] J. Constantin et al., “TamaRISC-CS: An ultra-low-power

application-specific processor for compressed sensing,” in

VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP

20th International Conference on, 2012, pp. 159–164.

[12] J. A. Tropp and A. C. Gilbert, “Signal recovery from

random measurements via orthogonal matching pursuit,”

IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666,

2007.

[13] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From

denoising to compressed sensing,” IEEE Trans. Inf.

Theory, vol. 62, no. 9, pp. 5117–5144, 2016.

[14] A. Kyrillidis and V. Cevher, “Recipes on hard thresholding

methods,” in Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), 2011 4th IEEE

International Workshop on, 2011, pp. 353–356.

[15] H. Corporaal, “Microprocessor Architectures: from VLIW

to TTA,” 1997.

[16] J. Boutellier, O. Silven, and M. Raulet, “Automatic

synthesis of TTA processor networks from RVC-CAL

dataflow programs,” in Signal Processing Systems (SiPS),

2011 IEEE Workshop on, 2011, pp. 25–30.

[17] S. Mallat and Z. Zhang, “Matching pursuit with time-

frequency dictionaries,” Courant Institute of Mathematical

Sciences New York United States, 1993.

[18] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA

implementation of matrix inversion using QRD-RLS

algorithm,” in Asilomar Conference on Signals, Systems,

and Computers, 2005.

[19] P. Jääskeläinen, V. Guzma, A. Cilio, T. Pitkänen, and J.

Takala, “Codesign toolset for application-specific

instruction-set processors,” in Multimedia on Mobile

Devices 2007, 2007, vol. 6507, p. 65070X.

[20] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg,

“HW/SW Co-design Toolset for Customization of

Exposed Datapath Processors,” in Computing Platforms

for Software-Defined Radio, Springer, 2017, pp. 147–164.

[21] P. P. Chu, Embedded SOPC design with NIOS II processor

and VHDL examples. John Wiley & Sons, 2011.

[22] J. Ivković, A. Veljović, B. Ranđelović, and V. Veljović,

“ODROID-XU4 as a desktop PC and microcontroller

development boards alternative,” in Proc. 6th Int.

Conf.(TIO), 2016.

[23] D. Etiemble, S. Bouaziz, and L. Lacassagne, “Customizing

16-bit floating point instructions on a NIOS II processor

for FPGA image and media processing,” in Embedded

Systems for Real-Time Multimedia, 2005. 3rd Workshop

on, 2005, pp. 61–66.

[24] I. Hautala, J. Boutellier, and O. Silven, “Programmable

28nm coprocessor for HEVC/H. 265 in-loop filters,” in

Circuits and Systems (ISCAS), 2016 IEEE International

Symposium on, 2016, pp. 1570–1573.

[25] M. Andrecut, “Fast GPU implementation of sparse signal

recovery from random projections,” ArXiv Prepr.

ArXiv08091833, 2008.

[26] Ö. Polat and S. K. Kayhan, “High-speed FPGA

implementation of orthogonal matching pursuit for

compressive sensing signal reconstruction,” Comput.

Electr. Eng., vol. 71, pp. 173–190, 2018.

[27] I. L. M. Gutierrez, H. A. Fuentes, and K. Winbladh,

“Implementation of imaging compressive sensing

algorithms on mobile handset devices,” in Broadband,

Wireless Computing, Communication and Applications

(BWCCA), 2012 Seventh International Conference on,

2012, pp. 252–259.

[28] J. A. Tropp, “Greed is good: Algorithmic results for sparse

approximation,” IEEE Trans. Inf. Theory, vol. 50, no. 10,

pp. 2231–2242, 2004.

