
Unleashing GPUs for Network Function
Virtualization: an open architecture
based on Vulkan and Kubernetes

Juuso Haavisto∗‡, Thibault Cholez†, Jukka Riekki∗
∗Center for Ubiquitous Computing, University of Oulu, Oulu, Finland, {first.last}@oulu.fi

‡University of Oxford, Oxford, United Kingdom, {first.last}@cs.ox.ac.uk
†Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France, {first.last}@loria.fr

Abstract—General-purpose computing on graphics
processing units (GPGPU) is a promising way to speed
up computationally intensive network functions, such
as performing traffic classification based on machine
learning at line speed. Recent studies have focused on
integrated graphics units and various performance opti-
mizations to address bottlenecks such as latency. How-
ever, these approaches tend to produce architecture-
specific binaries and lack the orchestration of functions.
A complementary effort would be a GPGPU architec-
ture based on standard and open components, which
allows the creation of interoperable and orchestrable
network functions.

This study describes and evaluates such open ar-
chitecture based on the cross-platform Vulkan API,
in which we execute hand-written SPIR-V code as a
network function. We also demonstrate a multi-node
orchestration approach for our proposed architecture
using Kubernetes. We validate our architecture by
executing SPIR-V code performing traffic classification
with random forest inference. We test this application
both on discrete and integrated graphics cards and on
x86 and ARM. We find that in all cases the GPUs are
faster than the Cython code.

I. Introduction
The proliferation of programmable Software Defined

Networking (SDN) and Network Function Virtualization
(NFV) pipelines in networking has introduced commodity
hardware such as Graphics Processing Units (GPUs) to
parallel packet processing. However, several limitations
currently hinder the use of GPU for networking tasks.
First, there is a lack of NFV-compliant architecture to de-
ploy GPU-accelerated Network Functions (NFs) in a cross-
platform manner. Second, while GPUs are well-suited for
parallel applications because of multiple cores, the devices
have high latency when interfacing with CPUs. Recent
studies have addressed this performance issue by using,
e.g., integrated GPUs and optimization methods in work
scheduling using continuous threads and multi-buffering.
Related work detailed below has proven that GPUs can
speed up many packet processing applications. However,
solutions tend to be specific and reliant on proprietary
Application Programming Interface (API) or frameworks
that limit their adoption as orchestrated functions.

This study proposes an architecture based on the
Vulkan API, which allows fine-grained control over GPU
resources, but in a cross-compatible way. With Vulkan, it
is possible to test different GPU-accelerated approaches
for packet processing but keep compatibility over any
setup capable of using Vulkan. Notably, Vulkan com-
patible setups include integrated and discrete AMD and
Nvidia cards and host platforms on ARM and x86. The
originality of this work is double. To our knowledge,
we are the first to leverage the Vulkan API and SPIR-
V (Standard Portable Intermediate Representation) with
Kubernetes orchestration as a common ground to deploy
GPU-accelerated network functions. We demonstrate the
applicability and good performance of our architecture on
a real network processing use case and on three different
GPU architectures. We also open-source all the software
components constituting our architecture to the commu-
nity1.

The study is organized as follows: background on
general-purpose computing on graphics processing units
(GPGPU) technologies is introduced in Section II and the
related work is presented in Section III. We detail our
system framework with Vulkan and SPIR-V in Section IV
and how it can be deployed with Kubernetes microservice
architecture in Section V. In Section VI, we benchmark
different hardware on a machine learning application per-
forming network traffic classification and discuss possible
optimizations. Finally, Section VII concludes the paper.

II. Background on GPGPU technologies

The primary rationale to leverage GPUs is that parallel
computation tasks better match the properties of GPUs
and can be sped up when offloaded to one. This so-
called GPGPU paradigm has recently found its foothold
with machine learning applications, where, e.g., neural
networks can be sped up. Hence, GPGPU follows the
general direction of distributed state like container de-
ployments (MapReduce-like state synchronization) and

1https://github.com/jhvst/haavisto2021vulkan/



thread-granular parallelism principles of serverless appli-
cations (slow uniform memory enforces parallelism), but
within a single physical component. As such, GPUs can
also be thought of as a microservice runtime, especially
given support from an orchestrator such as Legate [1].

Yet, historically the GPGPU standards and approaches
have been dispersed at best: it remains commonplace
to use graphics shading languages like OpenGL Shading
Language (GLSL), designed for display frame construc-
tion, for GPGPU by using no-display-producing graphics
pipelines. An alternative is Open Computing Language
(OpenCL) which is meant for computation workloads
but concentrates on homogeneousness over hardware plat-
forms, e.g., GPUs, CPUs, and Field Programmable Gate
Array (FPGA). Another option is the GPU manufacturer
Nvidia’s proprietary Intermediate Representation (IR)
called Parallel Thread Execution (PTX), which is pro-
duced by Nvidia’s Compute Unified Device Architecture
(CUDA) compiler. While performant and widely used,
PTX only works on Nvidia GPUs.

However, recent efforts for interoperability exist. The
open GPU standards working group called Khronos, which
is the organization behind GLSL and OpenCL, has re-
leased a new cross-platform graphics and compute API
focused on performance, called the Vulkan API. Vulkan’s
new capabilities include a cross-platform and formally
verified memory model called the Vulkan memory model
and a class of cross-platform single instruction, multiple
data (SIMD) operands for non-uniform group operations
called subgroups. Still, while released in 2016, the Vulkan
API has not seemingly yet become the leading API in
the GPGPU space, plausibly affected by a design decision
to only support a new open standard IR called SPIR-
V. Thus, any application which wishes to adopt Vulkan’s
features would first need to update all the GPU code
to SPIR-V. In practice, this is done via cross-compilers,
but translations may not necessarily produce the most
performant code nor be able to use the latest features.
E.g., the Vulkan memory model was released as recently
as September 2019 and adds new visibility semantics for
variables use, paramount for deterministic computation
results, but insofar languages that expose selection over
these visibility levels seem non-existent. As such, evalua-
tion of new Vulkan features tends to mean writing SPIR-V
by hand, which serves as partial motivation for this study
regarding to performance requirements.

III. Related work
Hardware acceleration of network processing workloads

is a vast subject. Here, we will focus on previous initiatives
that leverage GPGPU for specific network tasks in real-
time. While the idea of using GPUs to perform packet pro-
cessing tasks was introduced more than a decade ago with
PacketShader [2] and its GPU-accelerated implementation
of a software router, few initiatives have been proposed
since. The approaches mainly divide into two categories.

The first group of papers is focused on using GPGPU
for a specific packet processing application. Among those
applications, multi-field packet classification [3]–[6] and
packet filtering [7] have been by far the most researched
ones. Other security-oriented applications such as packet
indexing [8], deep packet inspection [9], packet signature
matching [10], or stateful packet processing for flow track-
ing [11] have also been proposed. Each paper proposes
efficient data structures and algorithms for their appli-
cation, optimized for execution on GPUs. Those papers
demonstrate that many packet processing applications can
benefit from GPU acceleration.

The second group of papers tackles the problem of
making GPGPU more efficient when interacting with
the network stack, in particular, by reducing the latency
overhead. [12] presents the framework Snap, based on the
Click modular router, that can offload computationally
expensive tasks to the GPU. [13] develops a full network
layer for GPUs that provides a socket abstraction and
high-level networking APIs to GPU programs for efficient
communication. [14] presents GPUrdma library to acceler-
ate access to memory between GPUs across the network,
and [15] optimizes the critical path for GPU to access the
network. [16] evaluates more specifically integrated GPUs
for packet processing and shows an interesting tradeoff
between latency and parallelism. [17] states that many
algorithms used in packet processing can benefit from
GPUs and that APUs (Accelerated Processing Unit) can
be a way to circumvent the latency added by discrete
GPUs. [18] even proposes to execute a program written
in P4 on GPUs, but the way GPUs kernel are written is
not described.

Finally, those previous works are orthogonal to ours
as they neither address the dynamic aspect of NFV nor
propose an open architecture to deploy GPU-accelerated
network functions as microservices. Further, they all rely
on vendor-specific APIs (mostly CUDA) or homemade
frameworks limiting their adoption. The closest related
work is our paper [19] that studied the Vulkan and SPIR-
V powered GPGPU paradigm in light of cold-start times
and interoperability. This study shows that the time for
starting GPGPU programs is on the millisecond scale,
which makes Vulkan-powered GPGPU microservice cold-
start latency similar to serverless applications and signifi-
cantly faster than containers.

IV. Overview of the system framework
Our key contribution to the system framework is to

leverage the Vulkan API and the latest SPIR-V versions.
These technologies reduce the interoperability problems
of past GPGPU approaches because Vulkan, as an open-
source standard, facilitates integration. Regardless of the
platform of choice, each device and architecture under-
stands the same IR code in SPIR-V. In §V, we notice that
SPIR-V is a valid IR for another reason: the produced bi-
nary files are only a few kilobytes in size and can hence be



Fig. 1. Our proposed software stack of a GPU node.

inlined within configuration text files. We use this exciting
property to propose an efficient way to orchestrate GPU
Network Functions (NFs) on Kubernetes using Vulkan.

Our approach to writing the GPU implementation (in
SPIR-V) of network functions is not direct. We preferred
to use another language called APL (A Programming
Language) as a modeling language first. So, we first write
the implementation in APL and derive the SPIR-V code
from APL. This intermediate step is not mandatory,
but we further motivate the benefit of using a domain-
specific language for GPU-accelerated network processing
in Section VII. Fig. 1 depicts our software architecture
per a GPU node, and Fig. 2 shows how it situates and
integrates within a Kubernetes cluster. To elaborate, in
Fig. 1, the SPIR-V code translated manually from APL is
loaded on any GPU thanks to our Vulkan loader program.
In Fig. 2, we see how our approach processes the network
flows captured by the host through the Container Net-
work Interface (CNI) abstraction, preferably via Cilium or
other kernel-passthrough abstractions such as Data Plane
Development Kit (DPDK) to accelerate packet processing
further.

A. Program Loading and Execution
Like previous NFV approaches, such as Netbricks [20],

in this study, we run the NFs unvirtualized. Here, we
leverage low-level Vulkan API bindings to allow us to
refine the GPU computation pipeline to better accustom
to the performance of each hardware. To elaborate, we
declare static resources that exist along the complete
lifetime of the program, with other parts, such as program
loading, working dynamically.

Our Vulkan-based loader program uses a Rust-wrapper
library called ash2 to interface with the GPU. In the ab-
stract, ash provides conveniences, e.g., wrapping returned
structures in vectors and providing default values for all
API call structures. ash is considered low-level in the sense
that all operations are ”unsafe” in Rust, which means
that the programmer must consult the official Vulkan
API documentation to avoid undefined behavior. In turn,
the Rust compiler is less useful than usually on memory
safety: unsafe calls are meant as code blocks where the

2https://github.com/MaikKlein/ash

Fig. 2. Kubernetes integration. Here, four instances form the Ku-
bernetes abstraction. The bottom parts of the records enable the
abstraction on top, which, in turn, communicate with other nodes in
the cluster.

programmer surpasses the type system, and everything in
ash that interfaces with the GPU is unsafe.

The program flow of the loader is the following. We
start by declaring static variables, i.e., ones that extend
to the program’s complete lifetime. Once initiated, the
shader modules and pipeline layouts are retrieved from
Kubernetes via the CNI using a Rust client library to
Kubernetes called kube-rs3. This could be considered
analogous to pulling a container image from a registry for
deployment. After this initialization, we open the ports
specified by the Kubernetes Services and start waiting
for input to the functions. Once input is received, it goes
through a standard Vulkan compute pipeline (detailed in
our open-source code and illustrated step-by-step in Figure
3). In the final step, once the result is copied back to
CPU memory, the result is written back to the network
socket specified by the Kubernetes Service file. Here on, it
is the job of Kubernetes CNI to forward the response. As
such, it could be argued that this way, our approach yields
itself well to the working principles of chained NFs. This
allows such NFV chaining to be modeled in Kubernetes,
spanning many Services with GPU NFs and traditional
CPU containers complementing each other. However, we
yield to the fact that our Vulkan pipeline is not state-of-
the-art. Efficient use of Vulkan is a subject of many books,
thus out-of-scope of what could have been prepared for
this study. As such, further pipeline optimizations are left
for future studies. Nonetheless, the Vulkan loader is the
corner stone of our architecture and is highly technical.
We decided to distribute it as an open source library4.

3https://github.com/clux/kube-rs
4https://github.com/periferia-labs/rivi-loader



Instance

Devices

Queue

Set Layout

Pipeline Layout

Shader Module

Memory Allocator

Command Pool Command Buffers

Descriptor Pool

Descriptor Set

Mapped Memory
Creation

Descriptor Set
Binding Buffers

Command Buffer
Creation Memory Copy to GPU

Pipeline Barrier
Creation

Command Buffer
Pipeline Binding IN

Command Buffer
Descriptor Set

Binding

Command Buffer
Dispatch

Command Buffer
Pipeline Binding OUT

Buffer Memory copy
to CPU

Command Buffer End

Fence Creation

Queue Submit

Fence Wait

Memory Mapping
from GPU to CPU

Type Conversion from
1D Array

Destruction of
Buffers, Fence,
Descriptor Pool

Write to network
socket

Static

Inlined SPIR-V
Set Layout Bindings

Services

API Server

kube-rs

Dynamic

Poll Network
Port

Runtime

Push Network
Port

Fig. 3. Vulkan loader step-by-step

B. Orchestration

As mentioned, Kubernetes [21] is an orchestrator system
for containers and can be considered as a system that con-
glomerates many physical servers into a single abstracted
computing unit. Kubernetes is designed to schedule soft-
ware packaged into containers, but it can be retrofitted
to serve other purposes due to its modular design. We
propose a way to retrofit Kubernetes to orchestrate GPU
microservices in a container cluster. The GPU instances
use the networking infrastructure to communicate SPIR-
V binaries. This way, the GPU programs are managed
as Kubernetes Services, and further, the SPIR-V binaries
correspond to GPU containers. We may consider our ap-
proach ”non-invasive,” as we do not limit the functionality
of the standard Kubernetes.

Next, to allow GPU NFs to be orchestrated, we inte-
grate our Rust-loader application with Kubernetes Ser-
vice abstractions (see: Fig. 4). In particular, the novelty
of our approach here comes from the fact that SPIR-
V programs can be inlined within Kubernetes Service
abstraction as string-valued metadata. This is possible
because SPIR-V kernels are small in size: our example of
random forest prediction algorithm weights 2kb without
compression. Furthermore, we achieve a non-virtualized
and non-container approach while still managing to lever-
age Kubernetes APIs by defining the GPU nodes as non-

schedulable (by not having Container Runtime Interface
(CRI) installed, see: Fig. 2) and the Service abstractions
as services without selectors. This way, we achieve two
things: 1) Kubernetes does not try to schedule any existing
worker nodes to spawn containers for the GPU Services as
the Service declarations lack selectors, and 2) the Services
are still exposing as a cluster-wide Domain Name System
(DNS) entry via CNI. This keeps our proposed approach
non-invasive to existing Kubernetes installations. Hence,
our proposal to orchestrate GPU NFs this way can be
viable for existing Kubernetes setups. The primary ben-
efit of integrating with the standard Kubernetes schedul-
ing workflow, oriented around the Service abstraction,
is that the GPU Services in our proposed architecture
are visible, routed, and exposed within the cluster as
any other standard container-based Service. This way,
we can simplify our loader program: CNI handles the
networking to the primary node where CoreDNS handles
Service discovery. As mentioned above, for better network-
ing performance, CNI integrations like Cilium can lever-
age kernel-passthrough technologies like Berkeley Packet
Filter (BPF) and DPDK. Such an approach might be
helpful when running the GPU NFs on the network’s edge,
providing even lower latency to data inference and higher
packet throughput.



V. Practical deployment and orchestration of
GPU compute resources with Kubernetes

Due to Kubernetes’ modular design, the architecture of
each installation may vary. Here, we propose a barebone
installation without many assumptions on the underlying
modules. To illustrate our idea, we consider a network
of a four-node system with one primary node and three
secondaries (pictured in Fig. 2). Here, of the three secon-
daries, two are container hosts, whereas one is a GPU host.
We propose that the GPU host remains non-schedulable
for containers, per arguments on NF performance (e.g.,
see [20]). On the cluster level, we do not cordon the
GPU hosts, but instead, never install a CRI on the host.
This is a possible solution when the Kubernetes cluster
installation is done modularly, e.g., per instructions on
[22]. I.e., even though the GPU instance cannot schedule
containers, it remains cluster-accessible when the CNI is
installed adequately. The CNI is just another module on
the Kubernetes stack and can be, e.g., flannel. The CNIs
then rely on etcd, a distributed kv-storage and one of the
most basic requirements for a Kubernetes instance. The
hierarchy in Fig. 2 is bottom-up: the bottom part enables
the use of higher abstractions, situated higher on the
stack, which then interface cluster-wide. We insist that the
CNI (networking), CRI (container runtime), and the GPU
host operating system may be whatever in our proposed
architecture. The independence is achieved by relying on
the already modular interfaces provided by Kubernetes.

Once these essential services are installed on each node,
a DNS layer for adequately addressing the cluster is
needed. Usually, this is done via CoreDNS as it has a
Kubernetes integration, but it may also be some other
DNS server. In our proposal, the DNS server is required
to route traffic to GPU-based Kubernetes Services. To
quote the Kubernetes documentation, a Service is ”an
abstraction which defines a logical set of Pods and a policy
by which to access them (sometimes this pattern is called a
micro-service).” In other words, Service is the Kubernetes-
native way of defining a microservice. With the proper
abstractions detailed above, this promotes the GPU-based
NFs to microservices. As such, it is logical for our proposal
on the orchestration of GPU NFs as microservices to
interface with the Service abstraction.

However, we do not use the standard declaration of
Service because we do not want to run the GPU NF
microservices inside a container. To elaborate, using con-
tainers for GPU applications is tricky and opinionated. For
reference, the Kubernetes documentation on using GPUs5

lists that to use, e.g., Nvidia GPUs, the cluster has to:
1) have Nvidia drivers pre-installed, 2) have nvidia-docker
installed (which only works on Linux), 3) use Docker as
the CRI. The steps include similar tweaks for AMD, in-
cluding allowing the nodes to run in a privileged mode. In

5https://kubernetes.io/docs/tasks/manage-gpus/
scheduling-gpus/

apiVersion : v1
kind : Service
metadata :

name : my−serv i c e
spec :

s e l e c t o r :
app : MyApp

ports :
− protocol : TCP

port : 80
targetPort : 9376

apiVersion : v1
kind : Service
metadata :

name : my−serv i c e
spirv : AwIjBwAFAQA. . .

spec :
ports :

− protocol : TCP
port : 80
targetPort : 9376

− − −

apiVersion : v1
kind : Endpoints
metadata :

name : my−serv i c e
subsets :

− addresses :
− ip : 192 .0 .2 .42

ports :
− port : 9376

Fig. 4. Kubernetes Service declarations. On the left, one with
selectors, which would spawn container image MyApp. On the right,
a Service without a selector, which would not spawn any containers.
Our proposal uses the right-hand side version to spawn GPU NFs as
microservices.

essence, these approaches limit the flexibility of the GPU
node installations and require elevated execution modes
for containers, which are usually meant to run unprivi-
leged. Instead, we prefer declaring the Service abstraction
without a node selector. To compare these declarations,
consider Fig. 4. To avoid the Service becoming an orphan,
we must declare an Endpoint abstraction. This can be
done in a single command by separating the configuration
declarations with three dashes, as shown in Fig. 4. We note
that in our proposal, drivers still have to be installed to
support Vulkan, but our proposal allows the GPU nodes
to remain operating system agnostic while not relying on
containers.

As can be seen in Fig. 4, our proposal for declaring
GPU microservices within Kubernetes requires the SPIR-
V binary file to be inlined within the metadata description.
The binaries are encoded in base64. After the creation of
the Service file, CoreDNS triggers a CNAME entry cre-
ation for the Service. We clarify that this is a standard pro-
cedure in Kubernetes, triggered by the orchestrator on Ser-
vice creation. By default, this would expose an endpoint by
name my-service.default.svc.cluster.local in each
of the cluster’s nodes’ CNI routing table. In our proposal,
what follows is that the Service creation events must
be listened to by the GPU nodes using a Kubernetes
client-wrapper, e.g., kube-rs. This means that each GPU
node listens to the primary Kubernetes node to announce
changes in the cluster Service entries. One such is found,
the GPU nodes would pull the declarations using the
kube-apiserver API. This would communicate the SPIR-V
binaries required to load the particular GPU microservice
into memory. Finally, if the Endpoints match the GPU
node’s local IP address, the microservice is provisioned



Apple M1

GPU

Queue Families 1 2 3 4

Queues [1] [1] [1] [1]

Fences [1] [1] [1] [1]

CPU

Command Buffers

Fig. 5. Example of two GPU architectures layout leading to different
optimizations

using Vulkan. Once the microservice is initialized, the cor-
responding port found in the Service declaration is opened
on the node by CNI. When the port receives packets, the
contents are unmarshaled in Rust and passed to the GPU.
Once done, the result is written back to the connection
from which it came. As such, it is the responsibility of the
Kubernetes CNI to route data in and out. Such reliance
cuts two ways: on the one hand, our proposal only works
with Kubernetes. But, we do not make assumptions about
what the Kubernetes installation has to be like. I.e., it
is possible to leverage Kubernetes abstractions on top
of the GPU NFs, such as LoadBalancer, to balance the
load among many GPU nodes or any other networking
constructs. For example, to create a function chain of
NFs, we would encourage the chaining to be declared
on the Kubernetes level. This way, the function-chain
may mix both GPU NFs and CPU NFs by interfacing
via CNAME entries. By this reasoning, we consider our
proposal capable of introducing GPU NFs as part of a
heterogeneous system consisting of CPU and GPU nodes.

VI. Evaluation
A. Use case description

The empirical part of the work is a development to
[23], in which Random Forest (RF) prediction is used
to label encrypted hypertext data. We use the paper’s
application in this study by extracting the prediction
algorithm as a GPU microservice, using the well opti-
mized CPU implementation of scikit-learn RF (written in
Cython) execution time as the baseline. We choose this
application also because the binary decision tree traversed
by RF algorithms can be parallelized as each three is

data-independent. Further, the number of trees to traverse
is usually well above the usual logical threads that a
CPU may have. As a thesis, such workload should see
performance increase on GPUs, as GPUs can have up to
thousands of cores. To elaborate, the physical processor
of GPU is less likely to get throttled by its physical
capabilities compared to its CPU counterpart, assuming
that the program’s execution time takes long enough time.

For the sake of reproducibility and to allow the commu-
nity to further build upon our proposed architecture, all
software components have been released in open-source on
GitHub6. This includes:

• the Vulkan bootloader library written in Rust and
used to load the SPIR-V code7;

• Kubernetes configuration files to orchestrate a set of
GPU-compute nodes;

• the SPIR-V assembly code of our network flow clas-
sifier to serve as an example (and the related but
optional APL model).

B. Results
The benchmarks’ (Table I) baseline was run on an Intel

Core i7-9700 processor (8 cores). As introduced before,
the application was a RF prediction over 150x6000x300
dimensional trees. As shown in Table I, the Cython code
on OpenMP resulted in the baseline of 380ms. The results
are gathered independently of the Kubernetes workflow as
neither did the baseline run within Kubernetes. Yet, we do
not expect any particular bottleneck to be introduced by
Kubernetes itself. On the GPU side, all devices executed
the identical SPIR-V code, which is possible thanks to
the Vulkan-based architecture. To evaluate this aspect, we
used different GPU manufacturers (Nvidia, AMD, Apple)
and different processor architectures (x86, ARM). And
while not evaluated at this time, the same architecture also
allows different GPUs to be mixed on a single computer
to achieve manufacturer-independent multi-GPU support.

Regarding the numerical results, the main point is that
in all cases the GPUs are faster than the Cython code
despite the delay of memory copies (especially for discrete
GPUs), which proves the potential of our architecture. If
we look more precisely at the different GPUs results, they
are easily justifiable. The AMD card is the most powerful
of the three and it also performs the best in our tests.
On the other hand, the M1, while initially expected to
lack in computation power in comparison, for example, to
the GTX 1080 Ti, performs however significantly better
than the latter. This can be explained because the chip’s
memory is integrated with the CPU thus what is lost in
raw performance is gained in memory copy latency. We
stipulate that with other more complex applications, such
as neural networks, the M1 would start falling behind in
performance as the memory copying becomes less relevant

6https://github.com/jhvst/haavisto2021vulkan/
7https://github.com/periferia-labs/rivi-loader



TABLE I
Runtime comparison of random forest model of 150x6000x300 trees between Cython and SPIR-V.

Device name Runtime
CPU Intel Core i7-9700 380ms

(Cython)
NVIDIA GeForce GTX 1080 Ti 318ms

GPU AMD Radeon RX 6900 XT 136ms
(SPIR-V) Apple M1 201ms

compared to core count and other physical properties. We
remind that the purpose of this paper was not to optimize
the memory copy delay but that this topic is already
covered in related works.

C. Possible optimizations and discussion
Enhancing the GPU pipeline can be considered to con-

sist of two factors: 1) Vulkan-based work scheduling and
2) SPIR-V code vectorization. For Vulkan, we stipulate
the most significant area of improvement to depend on
effective use of queues, as shown in Fig. 5 for Apple M1
and Nvidia GTX 1080 Ti. Other improvements on the
Vulkan side include use of transfer-only queues, prevalent
in discrete graphics cards. Transfer-only queues should
improve memory copy times on discrete GPUs. Yet, proper
application of these approaches is non-trivial: it requires
concurrent software architecture and a high level of static
information about the program.

On the SPIR-V side, SIMD instructions should be used
where possible. Another approach, specific to our applica-
tion, is refactoring the data structures. Here, the binary
decision tree could be transformed into an indexed path
matrix [24]. Such a parallel data structure would allow
the GPU to also traverse the tree in parallel, avoiding
the sequential while loop within the random forest tree
traversal that currently limits GPUs performance in our
use case. This comes at the cost of larger memory foot-
print of the dataset. Application of these approaches is
also non-trivial, and a proper Domain-Specific Language
(DSL) would be required. With a DSL, the language
programming model could steer the programmer to avoid
sequential or accumalative-style programming approaches
in the first place. P4 did it for packet processing so we
legitimately call for a new DSL that compile to SPIR-
V to write efficient network functions that can benefit
from GPU-accelerated NFV infrastructures thanks to the
architecture we proposed in this paper.

We consider that producing highly parallelizable code
with a low-level API still remains challenging. This chal-
lenge is two-fold: scheduling on the API side and efficient
GPU code. It could be said that capturing the efficiency
of the physical properties of GPUs is non-trivial because
dynamic memory allocation is not possible. Thus an auto-
matic system for static memory allocation is required. This
way, more information about the program beforehand
translates to wider applicability of performance tweaks.
If achieved, such information could also provide novel

yet practical features to NFV, notably, verifiable memory
consumption policies.

That is why we leveraged rank polymorphic program-
ming language APL as a parallel modeling language for
SPIR-V IR GPU code in the first place. We identify a
clear relation between restricted domain-specific languages
and performance: the more we can statically know about
programs, the better we can schedule them while lever-
aging hardware capabilities. This is especially true with
GPUs, which have no shared stack memory and cannot
allocate memory at runtime. As such, the property of
static memory management as a language feature (for a
review, see: [25]) is interesting to encourage using physical
capabilities such as multiple queues. We remark that the
GPGPU scene is approaching this paradigm already via
languages such as NumPy and Julia, which, if integrated
with novel type systems from dependent type theory, could
capture static memory management via a property called
static rank polymoprhism.

VII. Conclusion
We proposed in this paper a whole architecture to imple-

ment, deploy and orchestrate NFs on any GPGPU capable
device using a combination of open and standardized
technologies that are SPIR-V, Vulkan, and Kubernetes.
We provided design guidelines to use this architecture
and proved its applicability with an actual use case and
our successful evaluation performed on different hardware.
Our contribution is supported by software made available
for the community, in particular, 1) our compute shader
Vulkan loader library (in Rust), 2) Kubernetes configura-
tion files to orchestrate a set of GPU-compute nodes, and
3) the APL code and its translation into SPIR-V assembly
code of our network flow classifier example. Given the
proof-of-concept work done in this study, we consider
platform-independent GPGPU based network functions
prosperous in the future.

Regarding future work, an integration of array pro-
gramming and advanced type systems could address our
undeveloped features on optimal scheduling by using de-
pendent types to apply the most efficient GPU scheduling
by exploiting the restrictiveness of the programming model
of array languages.



References
[1] M. Bauer and M. Garland, “Legate numpy: Accelerated

and distributed array computing,” in Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2019, pp. 1–23.

[2] S. Han, K. Jang, K. Park, and S. Moon, “Packet-
shader: A gpu-accelerated software router,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 4,
pp. 195–206, 2010.

[3] A. Nottingham and B. Irwin, “Parallel packet classifica-
tion using GPU co-processors,” in SAICSIT 2010, ACM,
2010, pp. 231–241.

[4] ——, “Towards a GPU accelerated virtual machine for
massively parallel packet classification and filtering,” in
SAICSIT ’13, ACM, 2013, pp. 27–36.

[5] C.-L. Hsieh and N. Weng, “Many-field packet classi-
fication for software-defined networking switches,” in
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), 2016, pp. 13–24.

[6] S. Zhou, S. G. Singapura, and V. K. Prasanna,
“High-performance packet classification on GPU,” in
IEEE High Performance Extreme Computing Confer-
ence, HPEC 2014, IEEE, 2014, pp. 1–6.

[7] C. Hung, C. Lin, and P. Wu, “An efficient gpu-based
multiple pattern matching algorithm for packet filter-
ing,” J. Signal Process. Syst., vol. 86, no. 2-3, pp. 347–
358, 2017.

[8] F. Fusco, M. Vlachos, X. A. Dimitropoulos, and L. Deri,
“Indexing million of packets per second using gpus,” in
Proceedings of the 2013 Internet Measurement Confer-
ence, IMC 2013, ACM, 2013, pp. 327–332.

[9] Q. Gong, W. Wu, and P. DeMar, “Goldeneye: Stream-
based network packet inspection using gpus,” in 43rd
IEEE Conference on Local Computer Networks, LCN
2018, IEEE, 2018, pp. 632–639.

[10] C. Hung, C. Lin, H. Wang, and C. Chang, “Efficient
packet pattern matching for gigabit network intrusion
detection using gpus,” in 14th IEEE International Con-
ference on High Performance Computing and Communi-
cation, HPCC-ICESS 2012, IEEE, 2012, pp. 1612–1617.

[11] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S.
Ioannidis, “Design and implementation of a stateful
network packet processing framework for gpus,” ACM
Trans. Netw., vol. 25, no. 1, pp. 610–623, 2017.

[12] W. Sun and R. Ricci, “Fast and flexible: Parallel packet
processing with gpus and click,” in Symposium on Ar-
chitecture for Networking and Communications Systems,
ANCS 2013, IEEE, 2013, pp. 25–35.

[13] M. Silberstein, S. Kim, S. Huh, et al., “Gpunet: Net-
working abstractions for GPU programs,” ACM Trans.
Comput. Syst., vol. 34, no. 3, 9:1–9:31, 2016.

[14] F. Daoud, A. Wated, and M. Silberstein, “Gpurdma:
Gpu-side library for high performance networking from
GPU kernels,” in 6th International Workshop on Runtime
and Operating Systems for Supercomputers, ACM, 2016,
6:1–6:8.

[15] M. LeBeane, K. Hamidouche, B. Benton, M. Breter-
nitz, S. K. Reinhardt, and L. K. John, “GPU triggered
networking for intra-kernel communications,” in Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2017, ACM, 2017,
22:1–22:12.

[16] J. Tseng, R. Wang, J. Tsai, et al., “Exploiting integrated
gpus for network packet processing workloads,” in IEEE
NetSoft Conference, 2016, pp. 161–165.

[17] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K.
Park, “Apunet: Revitalizing GPU as packet processing
accelerator,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), Boston,
MA: USENIX, Mar. 2017, pp. 83–96.

[18] P. Li and Y. Luo, “P4GPU: accelerate packet processing
of a P4 program with a CPU-GPU heterogeneous ar-
chitecture,” in Symposium on Architectures for Network-
ing and Communications Systems, ANCS, ACM, 2016,
pp. 125–126.

[19] J. Haavisto and J. Riekki, “Interoperable gpu kernels
as latency improver for mec,” in 2020 2nd 6G Wireless
Summit (6G SUMMIT), IEEE, 2020, pp. 1–5.

[20] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker, “NetBricks: Taking the V out of NFV,” in
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 203–216.

[21] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J.
Wilkes, “Borg, omega, and kubernetes,” Queue, vol. 14,
no. 1, pp. 70–93, 2016.

[22] K. Hightower, Kubernetes The Hard Way, Bootstrap
Kubernetes the hard way on Google Cloud Platform.
No scripts. [Online]. Available: https : / / github . com /
kelseyhightower/kubernetes-the-hard-way.

[23] P.-O. Brissaud, J. Francçis, I. Chrisment, T. Cholez, and
O. Bettan, “Transparent and service-agnostic monitoring
of encrypted web traffic,” IEEE Transactions on Network
and Service Management, vol. 16, no. 3, pp. 842–856,
2019.

[24] A. W. Hsu, “The key to a data parallel compiler,” in
Proceedings of the 3rd ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for
Array Programming, 2016, pp. 32–40.

[25] R. L. Proust, “Asap: As static as possible memory man-
agement,” University of Cambridge, Computer Labora-
tory, Tech. Rep., 2017.


