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Abstract—In this paper, we propose a simple polynomial
linearisation technique for nonlinear phased arrays including
amplitude control. Due to the large number of antennas and thus
power amplifiers in the array, it is inefficient to linearise each
power amplifier individually. Therefore, it is demonstrated that
the array can be linearised over-the-air using single polynomial.
The simulations show that the linearisation is achieved by first
linearising the higher driven PAs at the precompression region
and then cancelling the compression by the heavily expanding
lower driven PAs. The proposed approach offers an alternative
way of re-thinking the concept of array linearisation over
multiple PAs.

Index Terms—digital predistortion, hybrid beamforming, poly-
nomial model, power amplifiers, 5G.

I. INTRODUCTION

Large antenna arrays and RF beamforming are becoming

common in sub-millimeter and millimeter-wave (mmWave)

communications. When increasing the number of antennas

and thus power amplifiers (PAs), the power per PA can be

decreased. This essentially means that a single PA is contribut-

ing less in terms of output power and power consumption.

Nevertheless, producing power in sub-mmWave and mmWave

regions with high efficiency is a major challenge.

Multiple parallel antennas and PAs enable over-the-air

(OTA) combining of signals also for linearisation purposes e.g

outphasing [1]. From digital-predistortion (DPD) perspective,

OTA-combining is scarely studied. In phased arrays, multiple

parallel analog transmitters complicate the DPD because one

cannot independently control the input-waveform of individual

PAs. In addition, amplitude control is used to reduce the

sidelobes and therefore PAs operate at different power levels.

In [2] and [3], the array DPD is adressed, but the experimental

setup uses a reference antenna in the array far field, which

might not be practical approach. Phased array DPD with

common feedback is presented in [4] by modelling each PA

independently. However, to the best of the author’s knowledge,

all the previously presented DPD approaches lack the effects

of amplitude control and the concept of directed distortion

presented in [5]. This paper aims to linearise amplitude-

controlled PA array in the array far field, allowing individual

PAs to distort more, but still achieve good linearity in the

desired beamforming direction

II. ARRAY MODELLING

The basic block chart of the RF beamforming system

utilising common DPD over the array is presented in Fig. 1.

Amplitude and phase of individual antenna/PA branches are
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Fig. 1. Block chart of the array DPD process.

controlled to enable beam steering, together with sidelobe-

reduction and interference mitigation. Taylor distribution for

16-element uniform linear array (ULA) achieving −30 dBc

sidelobe level (SLL) is shown in Fig. 2. A single feedback

receiver is used for measuring each PA output one-by-one.

As a PA model, we use a smoothly compressing memoryless

look-up table (LUT) -model, based on the extracted simulation

data of 15 GHz 45 nm 4-stack CMOS-SOI PA. Amplitude

modulation to amplitude modulation (AMAM), amplitude

modulation to phase modulation (AMPM) and power-added

efficiency (PAE) are exported and the model is presented in

Fig. 3. The model is interpolated and extrapolated to cover the

instantaneous levels of input waveform.
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Fig. 2. PA weights for achieving −30 dBc SLL in linear phased array.
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Fig. 3. LUT PA model based on the simulation data of 45-nm 4-stack CMOS
PA.

The output of kth PA can be written as

zout,k = FAM (wkx) exp(j(arg(wkx) + FPM (wkx))), (1)

where x denotes the input waveform, wk denotes the beam-

forming coefficient of kth antenna, FAM denotes the AMAM

and FPM the AMPM response of the PA, respectively. The

free-space combining can be modelled by array factor [6] for

given antenna spacing dA and observation direction (φ, θ). If

all the antenna elements are identical, the theoretical nonlinear

behaviour in the array far field can be expressed as

zA(φ, θ) = F
T
AM (wx)

exp(j(arg(wx) + FPM (wx) + k
T
r))FSE(φ, θ),

(2)

where w denotes the beamforming coefficients,

r = [rx, ry, rz]
T includes the antenna element

coordinates in cartesian coordinate system, k =
2π
λ
[sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] denotes the three-

dimensional wave vector, FSE(φ, θ) is the single antenna

pattern, and λ is the wavelength.

III. DPD OF RF BEAMFORMING ARRAY

DPD of the complete array is modelled as

yAin
=

Np∑

l=1

l:odd

h∗

l |x|
l−1x, (3)

where hl denotes the DPD coefficients and Nl is the order

of the polynomial. The model can be fitted over several PA

responses in least square (LS) sense, as in [4]. Two different

LS estimation approaches are compared. The first one is to

minimise the sum over LS errors of NA individual PAs as

min
h

NA∑

k=1

Nn∑

n=1

|
1

Kk

zout,k(n)− yAin
(n)|2, (4)

where Kk denotes the linear gain of the kth PA, h =
[h1, h2, ..., hNl

]T , and n denotes the time instant over Nn

time-domain samples [4]. Another approach proposed here is

to minimise the array error in the desired direction (φd, θd).

By using (2), minimisation of directive LS error can be written

as

min
h,φ=φd,θ=θd

Nn∑

n=1

|
1

KA

zA(n, φ, θ) − yAin
(n)|2, (5)

where KA denotes the linear gain of the array in the de-

sired direction, including both the power combining gain and

beamforming gain. One should note that in (4) the errors are

measured independently while in (5) we are modeling the

combined error in the array far field. This is crucial, due

to the fact that the errors can add up either constructively

or destructively over-the-air. Moreover, it can be proven by

Cauchy-Schwarz inequality, that in the desired direction (5)

≤ (4). Hence, by allowing the nonlinearities to cancel each

other, (5) gives always better or equal performance than (4).

For the rest of the paper, DPD with condition (5) is denoted

as Array DPD and with condition (4) as Sum DPD.

IV. NUMERICAL EXAMPLE

In system level simulations, the antenna array was hori-

zontally aligned 16-element ULA with a patch antenna and

the spacing of λ/2 at 15 GHz. Taylor amplitude exitation

presented in Fig. 2 and 30◦ steering direction were assumed,
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Fig. 4. Observed spectrums in (a) individual PA outputs and in (b) the array
far field in the desired direction with and without DPDs.
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Fig. 5. AMAM and AMPM relative to common input signal without DPD and with two different DPD methods.

and each PA followed the model presented in Fig. 3. Input

waveform was 500 MHz wide 256-QAM modulated signal

with raised cosine pulse-shaping, and 4x oversampling were

assumed from the feedback receiver. The DPD training was

done over 1024 symbols utilising LS estimation.

The power spectral densities (PSDs) at each PA output and

the combined PSDs in the desired direction with and without

DPDs are presented in Fig. 4. Both DPD methods make

smaller power PAs more nonlinear, but the overall response is

linearised in the desired direction compared with the case w/o

DPD. Furthermore, it is observed that Array DPD outperforms

the Sum DPD in the array far field.

To explain the behaviour, the AMAM and AMPM of 8/16

PAs and the normalised array output with given beamformer

and DPDs are presented in Fig. 5. The rest of the PA weights

are symmetrical with the first eight. Figs. 5a and d show that

the PAs have different nonlinear curves, but the shape of the

array AMAM and AMPM is smooth in the desired direction.

This indicates that the array can be modelled using single

polynomial. In Figs. 5b and e, the DPD is calculated based

on the condition (4). Because the errors of individual PAs

are weighted as powers, the Sum DPD linearises mostly the

PAs with higher power levels. In Sum DPD, the expansion

of lower driven PAs increases the total error, decreasing the

linearity in higher power levels. Figs. 5c and f presents the

DPD with condition (5). The Array DPD linearises the array

by two main mechanisms. In weakly compressing region, the

DPD linearises the response of higher driven PAs. For larger

signal levels, the DPD makes lower driven PAs to expand

for canceling the compression of higher driven PAs (denoted

as OTA-combining in Figs. 5c and f). Because of the power

difference, more PAs (10/16) are expanding than compressing

(6/16). As expected, Array DPD gives better linearity than

Sum DPD.

In the simulations, it was noted that the nonlinearity changes

the original amplitude tapering which was presented in Fig.

2. This will have significant effect for the sidelobes of the

array beam. Fig. 6 shows the rms power weights of each

antenna element in the phased array. The PAs are operating

in different power levels which affects to the instantaneous

levels of the waveform in each individual antenna input. For

the higher driven PAs, the rms power is reduced compared to

the PAs driven with lower signal levels. Even though both

DPD methods expands the lower driven PAs, they are not

significantly changing the rms powers.

Fig. 7 presents the beam pattern in the array far field over

the azimuth half plane. DPDs do not affect significantly to the

shape of the main lobe and hence only one channel power

beam is presented. As expected based on Fig. 6, the SLL

is increased to −20 dBc as it was −30 dBc with linear PA

array. For illustrating the nonlinear behaviour of the array,

adjacent channel powers (ACPs) in the array far field are

calculated. The presented ACP is the maximum between lower

(ACPL) and upper (ACPU) in each spatial direction. ACPs are

observed to be direction dependent, especially if any amplitude

variations between the PA branches are present. Both DPD
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methods improve the ACP in the desired direction while they

are not having impact to beamforming itself. Because the

Array DPD takes the beamforming direction into account, it

outperforms the Sum DPD.

In practice, the array DPD training should be adaptive also

for different beamforming coefficients. In Fig. 8, the DPD is

trained to 30◦ angle, and the steering angle of the array is

varied ±10◦ away from the training direction. It can be seen

that Array DPD is beneficial when the steering angle is around

±5◦ different than the DPD training angle. On the contrary,

Sum DPD has almost constant ACP over the simulated steering

angles, indicating that it is more robust for adaptive beam

steering.

V. CONCLUSION

We proposed a DPD technique for linearising the RF beam-

forming array with common DPD in a certain spatial direction.

In mathematical analysis, it was concluded that the nonlinear

behaviour should be modelled in the array far field instead

of only at each PA output. The proposed DPD linearises the
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array in two main mechanisms. In lower signal levels, the

DPD is linearising mainly the higher driven PAs. At higher

signal levels, the lower driven PAs are heavily expanding

which cancels some of the compression of higher driven PAs.

The proposed DPD minimises the ACP in the beamforming

direction while it has no impact on the main lobe power.

The practical array DPD must not only tolerate the beam-

forming, but also standard phenomena such as memory effects,

adaptive load modulation etc. must be addressed with more

complex models. However, many of these problems are rather

well studied and do not depend on the array behaviour. In order

to apply the presented approach in practice, major effort must

be addressed in the practical feedback strategy and adaptive

DPD training.
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