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Abstract—5G radio at millimeter wave (mmWave) and beyond
5G concepts at 0.1–1 THz can exploit angle and delay mea-
surements for localization, by the virtue of increased bandwidth
and large antenna arrays but are limited in terms of blockage
caused by obstacles. Reconfigurable intelligent surfaces (RISs)
are seen as a transformative technology that can control the
physical propagation environment in which they are embedded by
passively reflecting radio waves in preferred directions, or actively
sense this environment in receive or transmit mode. Whereas such
RISs have been mainly intended for communication purposes,
they can have great benefits in terms of performance, energy
consumption, and cost for localization and mapping. These
benefits as well as associated challenges are the main topics of
this paper.

INTRODUCTION

The interaction between the digital and physical world
relies on high-definition situational awareness, i.e., the abil-
ity of a device to determine its own location, as well as
the location of objects and other devices in the operating
environment. Applications include automated vehicles and
robots in general, as well as healthcare, highly immersive
virtual and augmented reality, or new human-to-machine in-
terfaces. Situational awareness can be achieved by a variety of
technologies, depending on the application and requirements,
including lidars, inertial measurement units, or cameras, but
also radio-based technologies, such as satellite positioning,
radar, ultra wideband (UWB), cellular or WiFi. Radio-based
technologies are attractive as they can have dual communica-
tion and sensing functionalities and are often less susceptible
to environmental factors such as poor lighting. Since 4G,
dedicated localization reference signals have been considered
as part of communications system design and standardization.
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Figure 1. Example of a RIS, where a controller adjusts individual elements.
Depending on the technology, the RIS can change the direction of reflections
or refract the signal, similar to a lens.

These can enable location accuracy levels on the order of
10 m. With 5G, the use of larger bandwidths and higher
carrier frequencies in combination with antenna arrays at the
user equipment (UE) and base station (BS) is expected to
further improve the location accuracy to around 1 m. Within
Beyond 5G systems, the trend is to operate at much higher
frequencies (above 30 GHz, possibly up to 1 THz) benefit
from large available bandwidths and thus achieve even better
localization accuracy. Propagation at high carrier frequencies
suffers from obstructions due to objects blocking line-of-sight
(LoS) path between the transmitter and the receiver. The
reliance on the LoS path can be reduced through multipath-
aided localization by exploiting either a prior map information
or through joint localization and mapping [1]. Therein, the
locations of objects in the environment (surfaces and scatter
points) are determined simultaneously with the user’s location,
a process called radio-based simultaneous localization and
mapping (SLAM). Even if these solutions make use of the
multipath channel as a constructive source of information in
the localization problem geometry, the related electromagnetic
(EM) interactions (induced by the physical environment) still
remain uncontrolled and as such, largely sub-optimal from a
localization perspective.

Reconfigurable intelligent surfaces (RISs) represent a break-
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Figure 2. Application examples of RIS-based localization and mapping services (from left to right): (i) LoS blockages can be circumvented to improve
localization accuracy and continuity; (ii) wavefront curvature in the near-field of a large RIS receiver or transmitter can be exploited to solve for nuisance
parameters (e.g., clock biases); (iii) by creating strong and consistent multipath, RISs can support localization in very harsh indoor environment, dynamically
accounting for object movements; (iv) new delay-sensitive, ultra-accurate applications will be supported by the fact that RISs do not introduce processing
delays.

through technology whereby surfaces are endowed with the
capability to actively modify the impinging electromagnetic
wave [2], as visualized in Figure 1. A RIS can be implemented
using a variety of technologies as discussed below and can
provide significant benefits in terms of communication by
guaranteeing coverage when the LoS is blocked. A RIS can
operate as a reconfigurable mirror or as a reconfigurable lens
(see Figure 1). The RIS is controlled by a local control unit
that adjusts the phase profile or current distribution. Based
on these fundamental operating modes, a RIS can act as a
transmitter [2], receiver [3], or as an anomalous reflector,
where the direction of the reflected wave is no longer specular
according to natural reflection laws but steerable [4], [5]. The
RIS concept can be applied at different wavelengths, ranging
from low sub-6GHz bands, where the technology is well
understood and commercial systems are available, to 28 GHz
mmWave bands, where RISs can provide significant benefits
in terms of coverage but where the technology is less mature.
Finally, in the 0.1–1 THz regime, severe path loss, higher
susceptibility to blockages, atmospheric absorption, and rain
attenuation as well as significant hardware limitations make
RIS design challenging but can also lead to large performance
gains.

The aforementioned properties and their close relation to the
environment geometry make RIS attractive for localization and
mapping. The potential of RIS for localization has received
only limited coverage in the literature, including preliminary
studies where the RIS operates in receive mode as a lens [6]
and in reflection mode [7]. Hence, it is timely to delve deeper
into the potential of RIS for localization and mapping, as well
as the main research questions that we should address in the
coming years. Possible applications of RIS for localization are
visualized in Figure 2.

This paper aims to take a broader view than the technical

contributions in [6], [7] by describing the core technical
challenges of applying RISs to localization and mapping,
along with a preliminary system vision, results, and solutions
recently put forward on related topics.

RADIO LOCALIZATION AND MAPPING

Basic Principles

Any radio localization and mapping system comprises three
essential parts: measurements, a reference system, and the
inference algorithms.

Measurements: The measurements are derived from the
radio signal between a transmitter and a receiver. They can
typically be obtained directly from the channel estimation
routine used for communication. Common location-dependent
metrics are based on received signal strength, time of arrival
(ToA), phase of arrival (PoA), angle of arrival (AoA), angle of
departure (AoD), and Doppler measurements. Measurements
can be characterized by their resolution and accuracy. The
resolution refers to the ability to distinguish two signals based
on their measurements and depends on the signal bandwidth
and duration, carrier frequency, the number of antennas, and
coherent integration time. The accuracy refers to the extent to
which we can determine the parameter of interest. It depends
also on the signal-to-noise ratio (SNR), as well as on the
detailed properties of the signal waveform such as the time-
frequency and spatial power allocation.

Reference System: All the measurements are taken in a
certain frame of reference, e.g., that of the receiver. Refer-
ences, sometimes called anchor points, have known states.
There may be multiple position references, as in cellular
localization or satellite positioning, which may in turn place
requirements in terms of synchronization, array calibration, as
well as dedicated control signals. The geometric placement
of the reference plays an important role in the accuracy of a
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localization system, an effect commonly measured through the
geometric dilution of precision (GDOP).

Localization and Mapping Algorithms: An important dis-
tinction between a communication and a localization algorithm
is how the multipath is treated. In communication, multipath is
used to provide diversity or spatial multiplexing, thus, decreas-
ing the error rate or increasing the data rate. In localization,
only the LoS has traditionally been used, as the measurements
associated with that path could directly be related to the
location of the user. Modern approaches also exploit mea-
surements from non-line-of-sight (NLoS) paths, corresponding
to scattered or reflected signal components [1]. A critical
component in SLAM is the association of measurements to
their sources, where a source can be a transmitter or a fixed
object in the environment, or clutter.

In the design aspects of the measurements, reference system,
and algorithms, fundamental performance bounds can play
an important role. They allow us to assess the localization
potential of signals or reference systems, guide the devel-
opment and benchmarking of algorithms, or can even be
used as approximated performance indicators or real-time
optimization/selection criteria.

Localization and Mapping with RIS

The inclusion of RIS affects the three above-mentioned parts
of radio localization. The measurements are in general tuples
of ToA, PoA, AoD, AoA, and the Doppler shift. The relation
between the measurements depends on the underlying channel
model, which is largely geometric: each path corresponds
to a cluster of rays, depending on the EM properties of
the objects. In other words, the locations and EM properties
of the environment impose a mapping from position space
to measurement space. Whether this mapping is resolvable
depends on the available bandwidth and number of antennas.
While RIS can be used at sub-6 GHz, the larger bandwidths at
frequencies beyond 28 GHz, combined with more dense pack-
ing of RIS elements are particularly conducive to localization
and mapping. The references include the BS and RIS, which
can reasonably be assumed to have a pre-programmed known
location and orientation in a common coordinate system, while
users and passive objects have an unknown or partially known
location and orientation information. The signal from the BS is
to a large extent controllable in the time, frequency, and spatial
domains. Therefore, it can be optimized in terms of power
allocation and beamforming to maximize the accuracy of the
measurements. The signals from the RIS can be shaped by the

RIS controller, to further improve accuracy, when the RIS is
acting as a transmitter or a reflector [6], [7]. The design may
however be less flexible than the signal from a conventional
BS, for obvious power and complexity considerations. In terms
of inference algorithms, RIS-based SLAM should harness the
flexibility of the BS signals and RIS controllability, to improve
not only localization and mapping coverage but also accuracy.

CHALLENGES AND OPPORTUNITIES

When a RIS is used as a reflector, it could be interpreted
in two different ways: as part of the passive environment,
acting like any scatterer or reflector, or alternatively as part
of the infrastructure, playing a similar role as a global refer-
ence or anchor point. These two views lead to fundamental
challenges and opportunities (in terms of applications and
research directions) in incorporating RIS in radio localization
and mapping, as highlighted below. Many of these challenges
are interrelated, but are presented as separate for reasons of
clarity: RIS and channel modeling, near-field propagation,
channel estimation, system architecture and signaling, RIS
control, waveform and codebook design, and SLAM methods.
While our focus is mainly on reflecting RIS, many of the
opportunities and challenges are present also when the RIS is
employed as a transmitter or receiver.

RIS Modeling and Channel Modeling

Challenge: There are several different antenna technologies
and terminologies for RIS, including reflectarrays [8], transmit
arrays [9], smart, programmable, or software-defined metasur-
faces [10], large intelligent surfaces (LISs), etc. Making their
usage truly ubiquitous, programmable wireless environments
could be created [11]. Proper models of their functionality or
how they interact with EM waves still represent an active area
of research. As in the case of the beamforming, RISs could
be implemented as full-digital, hybrid or analog architectures
with both amplitude and phase or phase-only control. Quasi-
continuous phase quantization could be selected as a function
of the required complexity and power consumption specifica-
tions.

In the RIS model, the radiation pattern in azimuth and
elevation should account for the coupling among the RIS
elements, which are typically located on a regular or triangular
lattice with an inter-element distance ranging between one-
tenth and one-half wavelength. Impedance matching, reflection
and refraction losses can affect RIS performance. In the case
of reflect and transmit arrays, for example, the scattering



4

properties of the elements should be included in the model.
The impact of the oblique incidence on the element perfor-
mance is also an important parameter. More generally, this
RIS model should be defined according to the EM properties of
the chosen underlying technology (e.g., specific EM synthesis
tools are needed to calculate the impedance modulation in
case of metasurfaces). RIS geometry and periodicity, which
impact the mutual coupling between its constituting elements,
should also be taken into account. Finally, the method and
electronics used to control the RIS beam (e.g., single frequency
phase-shift, time delays, quasi-continuous phase vs. quantized
phase) should be properly developed, while considering related
hardware impairments (e.g., specific models for phase-shifters
and other building tunable devices, including RF losses and
limited resolution, active element performances). The model
of the radio channel to and from a RIS, including the beam
shape of signals, polarization effects, path loss, as well as joint
angular and delay spread and how to control these require
significant research efforts. Moreover, the interaction with
new BS technologies and radio stripes is poorly understood.
Hardware impairments will be more pronounced the higher
the carrier frequency, which in turn impacts the amount of
flexibility and control needed.

While a more in-depth overview of different technologies
can be found in the literature for reflectarrays [8], transmi-
tarrays [12], and phased arrays [13], a specific example of
RIS based on transmitarray technology is presented in Figure
3. This antenna is composed of a controllable flat lens with
20×20 elements, having an aperture size of 102×102 mm2 and
a spatial feed based on a 16-element substrate integrated wave-
guide (SIW) array [9], located at a distance of 30 mm from
the flat lens aperture. A beam can be electronically controlled
with 1-bit phase quantization at a commutation speed in the
range of 5− 10 ms. The aperture efficiency corresponds to a
realized gain between 20−23 dBi, which can be improved up
to 40% with 2-bit designs.

Opportunities: Determining proper models requires a com-
bination of skills, ranging from the EM theory to circuits.
Since there are multiple RIS technologies and a RIS can act
in transmit, receive, or reflect mode, there is no one-size-fits-
all model. What is common in all these models, however, is
the dependence on location, orientation, and extent of the RIS,
leading to clear opportunities to use the models for localization
purposes, where each specific model of RIS may present
different opportunities to improve localization and mapping. In
addition, if models are to be used for localization and mapping,

Figure 3. Ka-band RIS based on electronically steerable transmitarray
architecture. (Left) 20 × 20-element RIS with 800 p-i-n diodes and a
substrate integrated wave-guide (SIW) spatial feed [9]. (Right) Measured co-
polarization beams (gain in dBi) on the 0◦-azimuth cut-plane at broadside
direction and scan angle of −20◦ as a function of the elevation angle and
frequency.

they should be spatially and temporally consistent and account
for the locations and orientations of all relevant objects (both
passive and active). Models are likely to differ, depending on
the frequency band, but multi-band operation can benefit from
models that are consistent across a very wide frequency range.

Near-field Propagation

Challenge: Beyond the Fraunhofer distance, signals are in
far-field so that the plane wave assumption holds. The near-
field region is proportional to the surface area of the RIS,
so that a 20 cm × 20 cm RIS has an 8 meter near-field
region at a wavelength of 1 cm. Hence, even at moderate
distances to the RIS, near-field propagation occurs, leading
to wavefront curvature, which must be properly modeled and
accounted for in the communication system. This affects both
RIS and channel modeling as well as RIS channel estimation
and control.

Opportunities: The wavefront curvature (see also Figure
2) can be harnessed to reduce the need for infrastructure or
synchronization. The PoA from a near-field signal provides in-
formation about both the angle and distance to the RIS so that
in combination with ToA it is possible to determine unknown
clock biases. The PoA observable by an array of elements,
possibly asynchronous and non-coherent to the transmitter
itself, can also be exploited directly in terms of spherical
wave localization. This exploitation requires novel dedicated
signal processing methods, as well as possibly new signal
designs that can maximally harness the near-field properties.
The specific properties of different RISs (e.g., their size) can be
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used in near-field multipath-aided positioning and to simplify
data association in SLAM.

Channel Estimation

Challenge: In communication, for the purpose of detection,
phase adjustment, or precoding, RIS channel estimation is
needed in receive, reflect, or transmit mode, respectively. For
localization, the compound channel needs to be estimated at
the receiver side, in order to extract the AoA, AoD, and ToA of
each propagation path (or cluster), as well as their respective
spreads. As a RIS may have limited processing capabilities
and, under reflect mode, may have no or few RF chains, such
channel estimation to and from the RIS is challenging [3]. For
instance, in [14], a protocol is proposed to separately estimate
the LoS and RIS channels, by activating the RIS with different
phase patterns while sending pilots leading to delays. Channel
estimation in receive mode is arguably not well understood,
with, e.g., [15] analyzing the impact of channel estimation
errors, but not proposing a channel estimation routine.

Opportunities: At high carrier frequencies, the channel
response is sparse and depends mainly on the geometric
configuration of UE, BS, and the environment (including the
RIS). Hence, the sparse channel properties can be leveraged
in the process of channel parameter estimation by resorting to
compressive sensing (CS) methods [3]. The estimated channel
parameters in turn help to determine the user location via the
3D geometrical relationships. Prior location information of the
UE and the RIS location and orientation could be used as a
proxy for channel state information (CSI). In other words, the
geometric information could be converted to partial CSI or to
CSI statistics. For instance, the end-to-end compound channel
can be determined a priori as a function of the UE location
through machine learning techniques. As the UE location is
generally only statistically known, this uncertainty should be
reflected in the CSI uncertainty accordingly. Hence, suitable
Bayesian methods are needed to provide this mapping.

Signaling and System Architecture

Challenge: Localization can be performed in uplink, down-
link, or sidelink (i.e., between two UEs). Uplink localization
can benefit from richer measurements and more processing
power at the BS side, while downlink localization can reuse
high-power downlink pilots, localize multiple users simultane-
ously, and requires less UE power. Sidelink signals can be used
for relative localization, both in a bistatic and a monostatic
configuration. No matter which architecture is chosen, control

and feedback signals need to be provided among all network
entities. Calibration and synchronization signals are needed
for maintaining coherence among the position references. This
can be performed over the air or via wired links between the
infrastructure elements. Finally, fine a priori location and ori-
entation information of RIS is needed to support localization.
For static RIS, this can be achieved by a one-time surveying
step or by the use of GPS signals when available. For mobile
RIS, the architecture should support RIS tracking methods.
Tracking multiple users with multiple RIS requires additional
inter-RIS coordination and control signaling.

Opportunities: The design of signaling protocols and the
trade-offs of uplink, downlink, and sidelink RIS-aided local-
ization are still unknown and remain largely unexplored in the
research community. A possible architecture with the corre-
sponding signal flow is depicted in Figure 4. The estimated UE
location information can be re-injected to refine the RIS setting
and selection to further improve the next localization steps.
As RISs are expected to often operate with obstructed LoS,
localization and mapping methods can support communication
by providing the system with a prediction of the future LoS
conditions. While physical RIS placement will be limited by
the environment and legal restrictions, RISs can still be down-
selected, activated, and optimized jointly for communication
and localization performance.

RIS Control

Challenge: RIS control refers to adjusting the surface
impedances to steer the beams. Efficient RIS control depends
on the connection to other network elements and related
communication latency constraints. The material and hardware
properties will set practical limits to the accuracy and speed
of the phase shift control, which is in practice often quantized
to finite accuracy. This may easily lead to combinatorial
optimization problems. The control mechanisms and material
properties have an impact on the RIS power consumption
and thereby the overall system energy efficiency. All this
raises research questions on how frequent the control can and
should be updated (e.g., frame-level or symbol-level). This is
further compounded by the possible mobility of RIS, which
requires dedicated tracking routines. The RIS can operate as a
transmitter, a receiver, or a reflector, where each mode poses its
own control challenges. For instance, a RIS lens must control
both RIS phases and switches for optimal performance.

Opportunities: In contrast to communication, localization
and mapping applications can be supported with low update
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Figure 4. Possible flowchart of signaling for downlink RIS-aided localization and mapping. A priori user location information is used to determine which
RIS to activate and how to set its phases. The downlink (DL) pilot signal, reflected by the RIS, is optimized given the current UE and environment conditions,
and is used by the UE to estimate the channel parameters. These are fed to the SLAM algorithm, which determines the UE location and local map. Maps
from different UEs can be fused to provide global situational awareness.

rates, related to physical movements of the UE and environ-
ment, and hence infrequent RIS control. Each RIS with known
a priori location provides an additional source of information,
though RIS signals should consider multipath resolvability
to avoid harmful self-interference of the controlled multipath
components from the RIS. A priori map information, in
combination with the UE location, can be leveraged to decide
which RIS to activate and control, while forcing other RIS to
direct signals away from the UE. Allowing limited feedback
from the UE or BS helps the RIS design, e.g., phase and/or
amplitude, based on predetermined codebooks at the RIS [7].
The control decisions for communication will be different from
those for localization, since for communication the SNR and
data rate are the main metrics, while for localization accuracy
and continuity are the most important. To this end, RISs can be
controlled to optimize the GDOP or other localization-relevant
metrics. RIS control also allows reflecting an incoming signal
towards multiple directions simultaneously, providing multi-
user localization support from a single base station, as well
independent reflections using different polarizations, frequency
band, or sub-array architectures. Finally, the RIS activation
schedule can be a tool to dim or illuminate (and thus map)
parts of the environment that are not accessible by the BS.

Waveform and RIS Codebook Design

Challenge: The CSI or its proxy via location information
needs to be used for the design of beamforming at the BS, RIS,
and UE. As in standard mmWave communication, the design
should be robust to account for location estimation errors,
which include both position and orientation. In addition, finite
quantization of the RIS phases, which enables low-power low-
complexity control as mentioned above, adversely limits the

flexibility of the codebooks that can be used. The waveform
design at the BS should also account for the presence of the
RIS and availability of the LoS path [5], [14].

Opportunities: Similar to standard position reference sig-
nals in LTE and 5G, dedicated waveforms can be designed for
localization with or without RIS. Such joint designs involve
both waveforms at the BS as well as the codebooks at the
RIS and should be sufficiently flexible to support accurate
angle or delay estimation. The uncertainty in the map and UE
location can be accounted for through robust designs, which
may explicitly encode different levels of location uncertainty.
For a RIS transmitter, waveform design remains an unexplored
area, while for a RIS reflector, preliminary results [7] indicate
the potential of dedicated designs. In particular, for the near-
field, the RIS codebook can be configured to direct (or receive)
power to (from) a certain location, rather than to a certain di-
rection in far-field. Figure 5 shows the performance of different
codebooks at the UE and RIS, where a hierarchical codebook
brings promising performance in terms of mean squared error
(MSE) with low training overhead and approaches that of the
exhaustive search with the highest resolution codebook even
in the low SNR regime.

Localization and Mapping Algorithms

Challenge: Recovery of the user’s position and the map of
the environment is based on the multipath signal information.
As signal paths parameterized by their angles and delays have
no identifier of the corresponding source, this process also
involves a data association of the detected paths to RIS as
well as passive objects in the environment. In the presence of
clutter measurements and missed detections due to directional
beamforming, this is not an easy task. As the state of the user
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Figure 5. Comparison on localization performance in terms of position error
and orientation error with codebook-based schemes [7]: hierarchical codebook
at both UE and RIS, exhaustive search with highest-resolution codebooks at
both UE and RIS, Random phase at RIS and highest-resolution codebook at
UE. Parameters: BS located at [0, 0], RIS located at [40, 60], and MS located
at [60, 45]. The number of antennas at BS and MS are 64 and 16, respectively,
while the RIS has 16 units. The orientation of UE is π/10 and the LoS path
between BS and UE is blocked.

contains both the 3D position and 3D orientation, as well as a
clock bias, a sufficient number of resolvable signal paths must
be available, which must be enabled by proper RIS control.
When the user and possibly also the RIS is mobile, dedicated
tracking routines that include mobility models must be applied.
For RIS receivers, separating different users and objects, as
well as associating landmarks across different RIS receivers
will be computationally challenging.

Opportunities: The use of RIS has clear benefits for lo-
calization and mapping algorithms since their location and
orientation are known a priori. While data association is still
needed to separate RIS signal paths from non-RIS signal paths,
a priori information reduces the number of data association
hypotheses and allows better localization of passive landmarks
and users. These benefits are present in monostatic as well
as bistatic configurations, not only in terms of localization
accuracy but also in service coverage. As for algorithm design,
various solutions have been put forward for multipath-aided
localization or channel-SLAM. Those could be extended to
the multi-RIS context. Among such algorithmic proposals,
the solutions based on Bayesian inference over factor graphs
and message-passing techniques look particularly suitable and
promising, given the complexity of the new RIS-based SLAM
problem (i.e., with the necessity to revolve and process signal
contributions from multiple heterogeneous sources, possibly
within strongly asymmetric and/or cooperative system set-

tings) [1]. Finally, proper algorithm design should include all
aforementioned challenges in RIS localization and mapping to
reap the full potential of the RIS.

Comparison of RIS and Passive Objects

To conclude this section, we compare in Figure 6 the
theoretical error bounds for ToA-based localization over a
canonical scene as a function of the actual UE location in
five distinct scenarios: one BS and one “natural” scatter point,
one BS and one passive reflecting surface, two BSs (each with
50% of the bandwidth), 1 RIS with a scatter-like model per
element (Model 1), and 1 RIS with a reflector-like model per
element (Model 2). Both RIS models are considered in the
far-field regime, for simplicity. Despite the use of a single
RIS in our example, it is shown that the RIS exhibiting a
behavior according to Model 1 already provides limited – yet
interesting – gains in terms of both coverage, compared to a
passive reflector, and localization error, when compared to a
passive scatterer. The use of a more advanced RIS according
to Model 2 could even lead to much better performance in
terms of both coverage and errors, comparable to 2 active
BSs. Another major expected benefit from using RISs instead
of passive objects (not illustrated herein for brevity), lies in
the capability to ensure service continuity and service-adaptive
localization quality, even in case of a blocked LoS link.

CONCLUSIONS AND OUTLOOK

We have argued that RISs can be beneficial for localization
and mapping in terms of improved accuracy or extended
physical coverage, provided the appropriate models and algo-
rithms can be developed. Progress in this area is somewhat
hampered by the immaturity of working assumptions and
models, which would need further investigation and valida-
tions. Different visions of the RIS coexist today, depending
on their technological maturity, leading to distinct physical
behaviors (typically, in terms of end-to-end power loss over
reflected paths), and, thus, distinct advantages and drawbacks
with respect to localization and mapping. Beyond this, the
actual feasibility of integrating and controlling the RIS at a low
monetary cost, low power, low complexity, and low overhead,
and, possibly, the necessity to acquire side channels or prior
UE location for optimal control, are still challenged by more
conventional approaches such as deploying additional BSs or
relays.

The overall aim of this paper was to provide the reader
with an up-to-date overview of RIS-based localization and
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Figure 6. Comparison of far-field localization performance in terms of position error bound (shown in colors, with numbers expressed in meters) for 5
scenarios: 1 BS + 1 scatter point, 1 BS + 1 passive reflecting surface, 2 BS (each with 50% of the bandwidth), 1 RIS with a scatter-like path loss model
per element (model 1), and 1 RIS with a reflector-like path loss model per element (model 2). Parameters: BS located as [0, 0], 28 GHz carrier, 200 MHz
bandwidth, 1 mW transmit power, RIS located at [1.3, 10] with a phased-array structure comprising 100 elements spaced by λ/2, scatter point with RCS of
0.01 m2, reflecting surface with 30% reflectivity.

mapping. We have also described the main challenges in this
field. Moreover, we provide a large number of prominent
research questions, along with potential avenues of research to
answer these questions. As we usher in the era of beyond 5G
communications, we believe it is time to also consider beyond
5G or 6G localization. The RIS concept can be a game-changer
for next-generation localization and mapping applications and
deserves attention from the communication, signal processing,
propagation, and antenna communities.
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