
Data Balancing Improves Self-Admitted Technical
Debt Detection

Murali Sridharan1, Mika Mantyla2, Leevi Rantala3, Maelick Claes4

M3S, ITEE
University of Oulu

Oulu, Finland
{murali.sridharan1,mika.mantyla2,leevi.rantala3,maelick.claes4}@oulu.fi

Abstract—A high imbalance exists between technical debt and
non-technical debt source code comments. Such imbalance affects
Self Admitted Technical Debt (SATD) detection performance,
and existing literature lacks empirical evidence on the choice of
balancing technique. In this work, we evaluate the impact of mul-
tiple balancing techniques, including Data level, Classifier level,
and Hybrid, for SATD detection in Within-Project and Cross-
Project setup. Our results show that the Data level balancing
technique SMOTE or Classifier level Ensemble approaches with
Random Forest or XGBoost are reasonable choices depending
on whether the goal is to maximize Precision, Recall, F1, or
AUC-ROC. We compared our best-performing model with the
previous SATD detection benchmark (cost-sensitive Convolution
Neural Network). Interestingly the top-performing XGBoost with
SMOTE sampling improved the Within-project F1 score by 10%
but fell short in Cross-Project set up by 9%. This supports
the higher generalization capability of deep learning in Cross-
project SATD detection, yet while working within individual
projects, classical machine learning algorithms can deliver better
performance. We also evaluate and quantify the impact of
duplicate source code comments in SATD detection performance.
Finally, we employ SHAP and discuss the interpreted SATD
features. We have included the replication package1 and shared a
web-based SATD prediction tool2 with the balancing techniques
in this study.

Index Terms—Self-Admitted Technical Debt, data imbalance,
classification, data sampling techniques, cost-sensitive technique,
ensemble techniques

I. INTRODUCTION

Software development is often hampered by time-pressure.
The quick-fix mentality that focuses merely on the immediate
goal and short-term benefit has been the norm [1]. The quick
fixes often turn out to be sub-optimal, as they lack a holistic
approach to software maintenance making the source code
more rigid without room for future enhancements. They incur
a substantial cost in terms of time and man-effort to refactor
the code at a later stage. Such accumulated debt by choosing
quick delivery over quality delivery is known as technical debt
in Software Engineering.

The early detection of such technical debt would be in-
strumental in reducing the increased software maintenance
cost. The established approach among the software practition-
ers have been to utilize static code analysis for improving

1https://figshare.com/s/87a4b5002c7488822e60
2https://balancing-technical-debt.herokuapp.com/

code quality. Often, the developer acknowledged or devel-
oper induced hacky patch/workaround goes unnoticed. Such
patch/workaround are expressed by the software developers
through source code comments. These are termed as Self-
Admitted Technical Debt comments by Potdar et al. [2]. Such
SATD comments from the source code has vital information
about the source code segments that needs refactoring.

The detection of technical debt from SATD source code
comments has gathered significant interest in the recent past.
A crucial challenge associated with technical debt detection
from source code comments is the imbalanced distribution
among SATD and non-SATD data instances. The supervised
machine learning approaches expect a uniform distribution
among the data samples for optimal prediction performance
but quite often end up with imbalanced data which will
affect the prediction capability. Longadge et al. [3] state that
imbalanced/skewed data increase the False Negatives (FN),
which will decrease the Recall of the minor class (SATD
comments in our context). Thabtah et al. [4] highlight the
varying effect of data imbalance for each evaluation metric
particularly Precision, Recall and ROC-AUC. The challenge
of generating more accurate results while accounting for the
class imbalance in the training data is paramount for reliable
inference. In reality, this data imbalance problem is very
common among multiple tasks in software engineering domain
and other domains as well. Previous work on technical debt
detection discusses different machine learning approaches but
very few have employed balancing techniques for addressing
the class imbalance. For example Pecorelli et al. [5] used data
sampling on code metrics for detecting code smells and Ren
et al. [6] used classifier level balancing technique COST to
improve SATD detection from source code comments.

To the best of our knowledge, we have performed the
first extensive empirical study on evaluating multiple bal-
ancing techniques for technical debt detection from source
code comments. These include data-level balancing techniques
(SMOTE, ADASYN, BorderLine SMOTE and SVMSMOTE),
classifier-level balancing techniques (COST and Ensemble)
and hybrid balancing techniques that combine either data-level
and classifier-level balancing techniques or employ customised
combined algorithms, for example COST based ensemble
algorithm or sampling based ensemble, for handling data
imbalance scenarios.

ar
X

iv
:2

10
3.

13
16

5v
1

 [
cs

.S
E

]
 2

4
M

ar
 2

02
1

We empirically evaluate three categories of balancing tech-
niques and their impact on technical debt detection from
source code comments using regression, bagging and boosting
classifiers. More specifically, we compare the performance, in
terms of precision, recall, F1 score and area under the ROC
curve (ROC-AUC), against the BASELINE approach which
employs the same classifier without COST or data sampling
balancing techniques. Our results enable software engineering
researchers and practitioners to choose relevant balancing
technique depending on the use case and the evaluation metric
in focus.

In this paper, we answer the following research questions:
• Balancing the Imbalanced Data: Main RQ Which

balancing technique contribute to better Technical Debt
Detection in highly imbalanced source code comments
data?

– RQ 1 Precise detection of SATD comments: Which
balancing technique consistently contribute to better
precision in classifying SATD comments?

– RQ 2 Extensive detection of SATD comments:
Which balancing technique consistently contribute to
better recall while classifying SATD comments?

– RQ 3 Improving distinction capability of classifier
for SATD detection: Which balancing technique
consistently improve the distinction capability of the
machine learning model (ROC-AUC) to distinguish
between SATD and non-SATD comments?

– RQ 4 Balancing Precision and Recall for SATD
Detection: Which balancing technique consistently
improve the overall classification performance (F1)
for detecting SATD comments?

Our main contributions in this paper include:
• Evaluation of multiple balancing schemes for SATD

detection from highly imbalanced source code comments
data.

• Recommendations for choosing a balancing technique for
SATD detection through source code comments, depend-
ing on the evaluation metric in focus.

• Impact analysis of data level, classifier level and hybrid
balancing techniques on evaluation metrics such as Pre-
cision, Recall, F1 and ROC-AUC scores.

• Web-based SATD detection tool in batch and online
modes based on the data from 10 open source projects.

• Replication package of our experiments for verification
and further extension.

The rest of this paper is organized as follows. First, in
Section II, we discuss the evolution of TD and the past works
associated with the detection of technical debt. In Section III,
we discuss the classifiers, data characteristics, and the different
balancing techniques studied in this work. We tabulated and
discussed our experimental results in Section IV. In Section V,
we discuss the technique used for feature interpretation and the
impact of balancing techniques on features. We discuss the
implications associated with choosing an appropriate balanc-
ing technique in Section VI. The potential factors that could

mine the validity of our results are elaborated in Section VII.
We conclude with our main findings from this study in
Section VIII followed by acknowledgements.

II. BACKGROUND

A. Technical Debt

The Technical Debt (TD) metaphor originates from the early
90’s, when Cunningham said that shipping immature code
resembles like taking a debt [7]. TD as a category does not
represent a uniform type of debt. Previous study by Alves
et al. [8] lists 13 categories for TD including architectural
debt, code debt, design debt and people debt. The most recent
definition for TD can be found from Avgeriou et al.’s. [9]
work, where it is defined as:

In software-intensive systems, technical debt is a
collection of design or implementation constructs
that are expedient in the short term, but set up a
technical context that can make future changes more
costly or impossible. Technical debt presents an
actual or contingent liability whose impact is limited
to internal system qualities, primarily maintainability
and evolvability.

In 2014, Potdar et al. [2] coined the term self-admitted
technical debt (SATD). SATD is a subset of TD, where the
developers have left a note admitting that they intentionally
incurred TD. The software practitioners leave comments in the
source code which is crucial for detecting SATD in the source
code. These have two significant benefits, firstly, it is easier
and more efficient to detect SATD from source code, and it
also does not need to rely on predefined metrics which are
difficult to determine as suggested by Maldonado et al. [10].

B. Machine Learning in SATD Detection

Zampetti et al. [11] studied how five machine learning
techniques were able to recommend the software practitioners
when to admit design debt using structural and readability
metrics from source code and warnings from static analysis
tools. They achieved an average precision 0.5 and recall
0.52 for SATD detection within project. For cross-project
SATD detection they achieved 0.67 precision and 0.55 recall.
Unlike them, we do not study different code metrics, but
rather evaluate the impact of multiple balancing schemes using
different machine learning techniques when detecting SATD
from source code comments.

Maldonado et al. [10], developed a maximum entropy clas-
sifier for detecting design and requirement SATD from code
comments. The classifier builds a maximum entropy model,
which is described to be equivalent to multi-class regression
model. Their data set consist of 10 projects, which represent
different application domains. They used leave-one-out cross-
project validation, which means that the classifier was trained
on 9 projects and tested against the one which was left out.
They achieved an average F1 of 0.620 (min. 0.470, max.
0.814) for design SATD, and F1 of 0.403 (min. 0.154, max.
0.804) for requirement SATD.

In another related work by Huang et al. [12], they de-
veloped a machine learning model, which relied on several
sub-classifiers. Each of the sub-classifiers used Naive Bayes
(NB) multinomial with feature selection technique, and the
classification of whether a code comment has SATD or not
was based on majority voting done by these classifiers. The
data set consisted of 8 different open source projects. Each
sub-classifier was trained with leave-one-out cross-project
validation, where they used 7 projects for training, and left one
project out for testing. Each sub-classifier left out a different
project. They achieved an average F1 of 0.737 (min. 0.518,
max. 0.841).

Ren et al. [6], trained a Convolution Neural Network (CNN)
for SATD detection from source code comments using data
from of 10 open source Java projects. They evaluated their
approach in Within and Cross-project setup. For Within-
project they obtained an average F1 of 0.752 (min. 0.445,
max. 0.932), and for Cross-Project the average F1 was 0.766
(min. 0.599, max. 0.878).

C. Imbalanced Data

Technical Debt detection through source code comments
suffers from imbalanced data problem. Besides SATD detec-
tion [6], it has also been investigated on code smell detec-
tion [5], [13].

Ren et al. [6], in their work experiment with normal and
weighted cross-entropy loss functions. For addressing imbal-
ance in data, they employed COST (assigning class weight).
For weight calculation, n represent the total number of SATD
comments, and m the total amount of non-SATD comments

• SATD Comment Weight = n
n+m

• Non-SATD Comment Weight = m
n+m

The CNN with weighted cross-entropy loss function pro-
duced better results than the CNN using normal cross-entropy
loss function. The authors note that the effectiveness of the
weighted cross-entropy loss function increased based on the
imbalance in the data [6].

Huang et al. [12] employed feature selection technique to
extract features from source code comments during training.
They extracted features from 8 open source projects and
combined multiple classifiers into a composite classifier for
SATD comments detection task. They claimed a performance
improvement of 409% over the work by Potdar et al. [2].

In [13], the authors investigated five different data balancing
methods when detecting code smells with source code metrics.
They examined 125 releases from 13 open source systems
from a dataset introduced in previous study [5]. The dataset
contained over 8,500 manually validated code smells. Even
with such high sounding number, the code smells formed a
very small minority in the data. One example is the instance of
God Class smell, which at its highest count in a release formed
only around 1% of all the classes present in that release [5].
To overcome this problem, the authors in [13] tried five
different data balancing methods, which were Class Balancer,
resampling with balancing the dataset, SMOTE, Cost Sensitive
Classifier and One Class Classifier. When compared to the

BASELINE of no data balancing, the authors report highest
performance overall with SMOTE, although there were differ-
ences between different smells. Our work is the first extensive
empirical study to address the data imbalance for NLP-based
SATD detection. We extend Pecorelli et al., [13] by evaluating
multiple variants of SMOTE and include COST, Bagging,
Boosting (classifier level ensemble techniques), and hybrid
techniques for SATD detection from source code comments.
We focus on the impact of balancing technique on evaluation
metrics and provide a recommendation for each metric for
both Within-Project and Cross-Project SATD detection from
empirical results.

III. METHODOLOGY

In this section we describe the dataset used, discussed the
various balancing techniques employed in our empirical study
along with the experiment set up and evaluation criteria.

A. Machine learning classifiers
Cruz et al. [14] empirically evaluated seven different ma-

chine learning algorithms for bad smell detection and found
Random Forest and XGBoost achieved better overall perfor-
mance. They have acknowledged the imbalanced data dis-
tribution in their data but have not employed explicit data
balancing technique. This created undue advantage for the
machine learning ensemble algorithms Random Forest and
XGBoost which employ implicit balancing and are categorized
under algorithm level (classifier level) balancing techniques,
refer in III-B2. In our study, we include three machine learning
classifiers: Regression (Logistic Regression), Bagging (Ran-
dom Forest) and Boosting (XGBoost). We choose Logistic
regression for its superior performance in binary classification
and its widespread usage in the past for NLP related tasks
in software engineering [14]–[17]. Random Forest [18], is
an ensemble algorithm (classifier level balancing technique
explained in III-B2), based on the Bagging concept proposed
by Breiman et al. [19]. It is aimed at reducing the variance
associated with a model to increase the prediction capability.
Random Forest has shown significant performance improve-
ment in many software engineering tasks [11], [14], [20]–[22].
XGBoost, proposed by [23] is a scalable, tree-based ensemble
algorithm based on the Boosting concept proposed by Freung
and Shapire [24].

B. Balancing Techniques
The balancing techniques could be broadly categorized into

three groups which include Data Level techniques, Classifier
Level techniques and Hybrid techniques, see Figure 1.

Fig. 1. Balancing Techniques

1) Data Level Techniques: These techniques primarily fo-
cus on different data sampling schemes to reduce the skewness
ratio in a dataset. Data Sampling is a host of techniques that
transforms the distribution of the dataset with the objective
of reducing the imbalance ratio in the dataset. Such schemes
could be grouped into two categories, Oversampling and
Undersampling. Oversampling is creating new samples from
minority class either by mere duplication or by synthesizing
samples. Undersampling is reducing the data samples from
majority class by removing or selecting a subset of data
samples. Multiple research including [25]–[27] establish the
significance of oversampling over undersampling techniques.
We include multiple variants of oversampling technique in our
study.

a) SMOTE: One of the widely used oversampling tech-
nique, Synthetic Minority Oversampling Technique (SMOTE)
[28]. In this, the minority class is over-sampled and new
samples are formed based on randomly chosen samples that
are close to each other. At first, random neighbours that are
close to each other in the minority class are identified, then
new samples are synthesized between any two neighbours and
the same is replicated with other chosen neighbours. SMOTE
has received a lot of success in data mining community.
This success has been attributed to four factors, which are
its simplicity, adaptability, generalizability and performance
improvements [29].

b) Borderline SMOTE: Another variant of SMOTE,
wherein data samples are not synthesized from the minority
class randomly but with a specific target scheme. Borderline
SMOTE (BLINE) was developed [30] with the focus to reduce
the misclassification rate. The focus is on those data samples
that are incorrectly classified and are lying near the ambiguous
decision boundary of any two class X and Y. The target scheme
is such that the data samples are synthesized near the decision
boundary which segregates a class X from another class Y.

c) ADASYN: Adaptive Synthetic (ADASYN) sampling is
a SMOTE-based over-sampling technique. The target scheme
for this sampling technique is such that the new samples
are synthesized in those areas where the density of the data
samples is sparse, or where they are very few instances. The
data samples in the high density regions are left undisturbed.
This technique [31] has claimed to account for correct classifi-
cation of difficult instances as it adaptively shifts the decision
boundary.

d) SVMSMOTE: SVMSMOTE(SVMSMT) is another
SMOTE based over-sampling technique which employs SVM
algorithm [32] to generate synthetic samples. The target
scheme for synthesizing new samples of SVMSMOTE algo-
rithm is focused around the hyperplane that separates each
class.

2) Classifier Level Techniques: Typically, the balancing
schemes implemented inherently in the classification algo-
rithms are referred to as classifier-level balancing techniques.
Such techniques include, COST (assigning class weight) and
a group of homogeneous classifiers (Bagging and Boosting)
collectively working on the data samples for classification or

prediction task. The ensemble algorithms Random Forest and
XGBoost are explored as balancing techniques in [33]–[36].
Another classifier level technique is COST (or class weighted)
in which higher weights are assigned to the class samples
which are less in the training set so that it would penalize
the model more during training for every incorrect prediction
of the less represented class. This technique is simpler and
efficient as it does not involve additional step of sample
synthesis as in data sampling techniques.

3) Hybrid Techniques: The hybrid balancing technique
combines multiple balancing techniques to effectively handle
the imbalance scenario. The ensemble technique which can
handle the imbalance scenario is further augmented with
either sampling or cost balancing techniques. In our study,
we explore, Random Forest and XGBoost ensemble classifiers
augmented with sampling and cost techniques.

C. Dataset

For our experiments, we use the dataset created with 10
open source Java projects from Maldonado et al. [10]. In their
work, they extract and filter the source code comments from
the 10 open source projects using heuristics including removal
of license comments, task annotations, Javadoc comments
and automatically-generated comments. The filtered comments
were manually labelled and grouped into the following cate-
gories: Requirement Debt, Design Debt, Implementation Debt,
Test Debt, Documentation Debt and Non-Technical Debt. We
consolidated all the types of TD into a single TD class to
facilitate binary classification. We have two classes: SATD
and non-SATD class for simplicity and easier evaluation across
several balancing techniques. Table I lists the statistics of the
source code comments data.

TABLE I
DATASET STATISTICS

Project Release # of
Cmnts [6]

of
Cmnts* SATD % of

SATD
% of

Non-SATD
Apache Ant 1.7.0 4,137 2,992 123 4.11 95.89
ArgoUML 0.34 9,548 4,725 1,137 24.06 75.94
Columba 1.4 6,478 3,842 158 4.11 95.89
EMF 2.4.1 4,401 2,382 81 3.40 96.60
Hibernate 3.3.2 2,968 2,458 423 17.21 82.79
JEdit 4.2 10,322 4,506 228 5.06 94.94
JFreeChart 1.0.19 4,423 2,280 106 4.65 95.35
JMeter 2.10 8,162 4,029 314 7.79 92.21
JRuby 1.4.0 4,897 2,991 458 15.31 84.69
Squirrel 3.0.3 7,230 4,219 216 5.12 94.88
Average 6,257 3,442 324 9.08 90.91
*After Duplicate Removal and Pre-processing in our study

D. Processing Code Comments

We processed the code comments using following steps:
• Duplicate removal: Duplicate comments are those that

appear more than once in the training data. Example: ’//
Need to calculate this... just fudging here for now’ source
code comment appear three times in the training data. We
identified such duplicates and removed 23,511 (37.75%)
duplicate source code comments from the training data

used in Ren et al.’s [6] neural network based SATD
detection.

• Special Character and Hyperlink Removal:
We removed special characters including #,
@,&, /,’,”, (), [], , ,!, removed hyperlink references,
truncated multiple spaces into single space and removed
newline character.

• Stop word removal: We lower-cased the entire corpus,
then stop-words including ’is’, ’was’, ’the’, ’of’, etc.,
which were very high in numbers and did not contribute
to SATD feature detection were removed. We utilized the
NLTK package [37] for removing the stop words from the
dataset.

• Lemmatization: We employed WordNet Lemmatizer to
convert the words to its respective base form depending
on the context.

• Restricting hollow comments: We removed comments
with only words such as ’ff’, ’hhh’, etc., that does not
convey any meaning and included only those comments
whose length is greater than 3 characters.

The actual dataset employed by Ren et. al, [6] for SATD
classification had 62,566 source code comments. After per-
forming all the pre-processing as discussed previously, the
dataset used in our study consists of 34,424 source code
comments, from which 3,248 were categorized as SATD. The
percentage of SATD instances across projects ranges between
3.40% to 24.06%. On average each project has 3,442 source
code comments, of which 324 (9.08%) are SATD comments.

E. Experiment Configuration

a) System Setup: Logistic Regression, Random Forest
and XGBoost models are implemented with Python based
Scikit-Learn [38] library. All the oversampling algorithm im-
plementation is based on python based imbalanced-learn API
[39] with the sampling rate as 1.0 to ensure even class split
between SATD and non-SATD classes. All experiments are
executed as batch jobs in a HPC environment equipped with
NVIDIA Tesla V100 GPU with 16 GB of memory.

b) Experiment Setup: We replicated the experiment set
up from Ren et al. [6] to evaluate and compare with COST
based Convolutional Neural Network. They used 90% of
stratified data samples from each open source project for
training. Further, from the 90% data, a stratified split of 10%
of data are used for cross-validation and 80% is used for
training the model. The data instances were stratified based
on their label indicating SATD instances or not. The trained
model is evaluated on the remaining 10% unseen test data in
each open source project. The same experiment configuration
is replicated for all the classifiers studied in this paper for
Within-Project setup. For Cross-Project, for each of the 10
target projects, we used data from 9 projects as training data
and evaluated the trained model on the target project which
serves as the test data. We performed 10 fold cross-validation
for both Within and Cross project setup.

F. Evaluation Criteria

We include four evaluation metrics for all our experiments,
which include Precision, Recall, F1 and ROC-AUC scores.
All the mentioned metrics are calculated based on the number
of True Positive (TP), True Negative (TN), False Positve
(FP) and False Negative (FN). TP indicate the number of
correctly classified SATD comments, TN indicate the number
of correctly classified non-SATD comments, FP indicate the
number of incorrectly classified non-SATD comments, and FN
indicate the number of incorrectly classified SATD comments.

a) Precision: In our experimental context, this metric
represents the ratio of those comments that are precisely clas-
sifed as SATD comments among all the comments subjected
to prediction including both SATD and non-SATD comments.
It is calculated as:

Precision = TP
TP+FP

b) Recall: This metric represents the ratio of actual
SATD comments that are correctly classified as SATD com-
ments. It is also known as the true positive rate or sensitivity
of the classifier. It is calculated as:

Recall = TP
TP+FN

c) F1: This metric represents the accuracy of the clas-
sifier based on the both precision and recall. It is calculated
as:

F1 = 2× P×R
P+R

It is the harmonic mean of precision and recall which would
account for the variance of each metric respectively.

d) ROC-AUC: This metric represents the overall ability
of the classifier to differentiate between SATD and non-SATD
comments. This value represents the area under the Receiver
Operating Characteristic curve which is based on the True
Positive Rate and False Positive rate of the classifier. Typically,
the value ranges between 0.5, being the lowest and 1.0, being
the highest. The higher the ROC-AUC value, the better is the
classifier ability to differentiate between SATD and non-SATD
comments.

IV. STUDY RESULTS

Here we tabulate and evaluate the impact of multiple bal-
ancing techniques for each metric, including Precision, Recall,
ROC-AUC, and F1. We compare the balancing techniques
against the BASELINE method with the same classifier with-
out COST or Sampling balancing techniques. The data used
for all these evaluations are based on clean data after duplicates
removal as mentioned in section III-D.

A. RQ 1 Precise detection of SATD comments

Here, our objective is to determine the balancing technique
that consistently contribute to more precise detection of SATD
comments in highly imbalanced data. Tables II lists the
Precision scores for both Within and Cross-Project set up
respectively.

TABLE II
CONSOLIDATED RESULTS: WITHIN-PROJECT AND CROSS-PROJECT

PRECISION SCORES

SCHEME
Within-Project HYBRID

METHOD LR RF XGB Avg.
BASELINE 0.710 0.898 0.839w 0.816

COST
SENSITIVE WEIGHTED 0.743b 0.904 0.788 0.812

DATA
SAMPLING

SMOTE 0.779 0.904 0.851w 0.845
BLINE 0.825bw 0.902 0.816 0.848
ADASYN 0.776 0.905 0.804 0.828
SVMSMT 0.850bw 0.895 0.835w 0.860
Avg. 0.780 0.901 0.822

Cross-Project
BASELINE 0.885ws 0.893s 0.863ws 0.880

COST
SENSITIVE WEIGHTED 0.623 0.881s 0.713 0.739

DATA
SAMPLING

SMOTE 0.690 0.788 0.764 0.747
BLINE 0.724w 0.825 0.810 0.786
ADASYN 0.683 0.744 0.793 0.740
SVMSMT 0.719w 0.854 0.811 0.795
Avg. 0.721 0.831 0.788

Highest score is bolded and lowest score is underlined.
b,w,s - Statistically significant change from baseline, weighted, and sampling
respectively based on Wilcoxon-Signed Rank test with 95% confidence level

In Within-Project set up, the data sampling balancing tech-
nique SVMSMT/BLINE has improved the BASELINE and
COST overall. However, the BASELINE ensemble classifier
Random Forest has significantly improved precision scores
of COST and Sampling techniques of other classifiers. For
cross-project SATD detection, the BASELINE has achieved
the highest precision score while the COST and the data
sampling techniques decreases the precision. Although the
BASELINE scores appear almost equivalent, the ensemble
classifier Random Forest has the lowest number of FP per TP
with 0.11, followed by Logistic Regression with 0.13. Overall,
neither COST nor Sampling consistently improve the precision
scores over BASELINE across classifiers. The BASELINE
ensemble classifier Random Forest contributes more to the
precise detection of SATD comments in both Within and
Cross-Project setup. However, between COST and sampling
technique, the sampling techniques SVMSMT/BLINE has
significantly improved the precision scores across all the
classifiers over COST, in both Within and Cross-Project setup.

Recommendation: For consistent precise detection of
SATD comments from imbalanced data, use classifier
level Bagging ensemble technique (Random Forest).

B. RQ 2 Extensive detection of SATD comments

Our motivation is to determine the balancing technique
that consistently contribute to extensive detection of SATD
comments in highly skewed data. Tables III lists the Recall
scores for both Within and Cross-Project set up respectively.

The Logistic Regression with COST balancing technique
achieved the highest Recall scores in both Within and Cross-
Project setup with 0.735 and 0.754 respectively. The sampling

TABLE III
CONSOLIDATED RESULTS: WITHIN-PROJECT AND CROSS-PROJECT

RECALL SCORES

SCHEME
Within-Project HYBRID

METHOD LR RF XGB Avg.
BASELINE 0.277 0.580 0.611 0.489

COST
SENSITIVE WEIGHTED 0.735b 0.586 0.730bs 0.684

DATA
SAMPLING

SMOTE 0.726b 0.653bw 0.688b 0.689
BLINE 0.704 0.619 0.641 0.655
ADASYN 0.731b 0.609b 0.678b 0.673
SVMSMT 0.658 0.644 0.644 0.649
Avg. 0.638 0.615 0.665

Cross-Project
BASELINE 0.502 0.617 0.657 0.592

COST
SENSITIVE WEIGHTED 0.754b 0.590 0.723b 0.689

DATA
SAMPLING

SMOTE 0.727b 0.674bw 0.702b 0.701
BLINE 0.697 0.662 0.683 0.681
ADASYN 0.730b 0.662bw 0.697b 0.696
SVMSMT 0.676 0.640 0.683 0.666
Avg. 0.681 0.641 0.691

Highest score is bolded and lowest score is underlined.
b,w - Statistically significant change from baseline and weighted respectively
based on Wilcoxon-Signed Rank test at 95% confidence level

techniques SMOTE and ADASYN has consistently improved
the Recall scores for all three classifiers over the BASELINE
in Within and Cross-Project setup. Although the COST tech-
nique has recorded the highest recall scores in both the Within
and Cross-Project setup, the improvement is not statistically
significant over SMOTE and ADASYN sampling techniques.
Further, SMOTE and ADASYN consistently improved the
BASELINE with a statistically significant change while the
COST technique is not consistent across all three classifiers.

Recommendation: For consistent extensive detection
of SATD comments from imbalanced data, use
SMOTE/ADASYN sampling technique for both Within
and Cross-Project setup.

C. RQ 3 Improving distinction capability of classifier for
SATD detection

Here our objective is to determine the balancing technique
that contributes more to ROC-AUC score. ROC-AUC char-
acterizes the distinctive capability of the machine learning
model between technical debt and non-technical debt classes.
Tables IV lists the Recall scores for both Within and Cross-
Project set up respectively.

The COST balancing technique with Logistic Regres-
sion/XGBoost recorded the highest ROC-AUC scores in both
Within and Cross-Project setup. The sampling techniques
SMOTE/ADASYN consistently improved the BASELINE
ROC-AUC scores in both Within and Cross-Project SATD
detection. The COST, on the other hand, is not consistent in
improving the BASELINE across all the classifiers. Further the
top score achieved with COST is not statistically significant
over sampling techniques SMOTE/ADASYN. It is evident

TABLE IV
CONSOLIDATED RESULTS: WITHIN-PROJECT AND CROSS-PROJECT AUC

SCORES

SCHEME HYBRID
Within-Project

METHOD LR RF XGB Avg.
BASELINE 0.636 0.786 0.799 0.740

COST
SENSITIVE WEIGHTED 0.855b 0.790 0.857b 0.834

DATA
SAMPLING

SMOTE 0.854b 0.822bw 0.838b 0.838
BLINE 0.844 0.806 0.814 0.821
ADASYN 0.856b 0.818b 0.832b 0.835
SVMSMT 0.822 0.786 0.816 0.808
Avg. 0.811 0.804 0.826

Cross-Project
BASELINE 0.747 0.804 0.824 0.792

COST
SENSITIVE WEIGHTED 0.857b 0.790 0.850b 0.832

DATA
SAMPLING

SMOTE 0.849b 0.829bw 0.840 0.839
BLINE 0.837 0.825 0.835 0.832
ADASYN 0.849b 0.823w 0.840 0.837
SVMSMT 0.827 0.814 0.835 0.825
Avg. 0.828 0.814 0.838

Highest score is bolded and lowest score is underlined.
b,w - Statistically significant from baseline, weighted respectively based on
Wilcoxon-Signed Rank test with 95% confidence level

from Table III and Table IV that, the COST decreases the
recall and ROC-AUC scores for Random Forest, while the
sampling techniques SMOTE/ADASYN improves them.

Recommendation: For consistent better distinctive ca-
pability of the classifier (AUC-ROC) from imbalanced
data, use SMOTE in both Within and Cross-Project
setup.

D. RQ 4 Balancing Precision and Recall for SATD Detection

Here, our motivation is to determine the balancing technique
that has consistently contributed more towards higher F1 score.
Tables V lists the Recall scores for both Within and Cross-
Project set up respectively.

XGBoost with COST and BASELINE XGBoost have
recorded top F1 scores in Within and Cross-Project setup
with 0.755 and 0.729 respectively. In Within-Project setup,
the SMOTE balancing technique has consistently improved
the F1 scores over BASELINE for all the classifiers, while
COST is not consistent across classifiers. Further, the top
F1 score with COST is not statistically significant over the
F1 scores with BLINE/SMOTE. In Cross-Project setup, al-
though the Boosting based ensemble classifier BASELINE
XGBoost achieved the top Cross-Project F1 score of 0.729,
it is not statistically significant over sampling techniques or
over COST. The sampling techniques BLINE/SMOTE have
a statistically significant improvement over BASELINE for
Logistic Regression. For the ensemble classifiers Random
Forest and XGBoost, the sampling technique have improved
over COST and achieved an equivalent performance as that of
the BASELINE. Overall, the results show that the sampling

TABLE V
CONSOLIDATED RESULTS: WITHIN-PROJECT AND CROSS-PROJECT F1

SCORES

SCHEME
Within-Project HYBRID

METHOD LR RF XGB Avg.
BASELINE 0.361 0.670 0.694 0.575

COST
SENSITIVE WEIGHTED 0.730b 0.680 0.755b 0.722

DATA
SAMPLING

SMOTE 0.748b 0.738bw 0.753b 0.746
BLINE 0.749 0.706 0.710 0.722
ADASYN 0.750b 0.703 0.730 0.728
SVMSMT 0.730 0.660 0.717 0.702
Avg. 0.678 0.704 0.726

Cross-Project
BASELINE 0.612 0.705w 0.729 0.682

COST
SENSITIVE WEIGHTED 0.674b 0.679 0.712 0.688

DATA
SAMPLING

SMOTE 0.700bw 0.713w 0.723 0.712
BLINE 0.700bw 0.718w 0.726 0.715
ADASYN 0.697 0.708 0.721 0.709
SVMSMT 0.684 0.711 0.728 0.708
Avg. 0.678 0.706 0.723

Highest score is bolded and lowest score is underlined.
b,w - Statistically significant from baseline, weighted respectively based on
Wilcoxon-Signed Rank test with 95% confidence level

techniques BLINE/SMOTE are more consistent in improving
the F1 scores for all the classifiers in Cross-Project setup.

Recommendation: For consistent higher balance of
Precision and Recall (F1-score), use SMOTE for Within-
Project and BLINE/SMOTE for Cross-project SATD
detection.

E. Comparison to prior work

Here we compare the F1 scores of our consistent top-
performing model in both Within and Cross-project setup with
previous works. First, we compare against the state of the
art results from cost-sensitive CNN by Ren et al. [6]. Then,
we evaluate the performance improvement over Huang et
al. [12] that employs feature selection as balancing technique
for ensemble of Naive Bayes (NB) Multinomial classifiers. For
identical comparison with CNN that had duplicate source code
comments in the training data, we retained the same data as
in [6] containing duplicate source code comments unlike [12]
in which the duplicate source code comments were removed
during the data preprocessing. Table VI lists the F1 comparison
scores with both ”Duplicates” and ”No Duplicates” scenarios.

Our classical machine learning classifier XGBoost with
SMOTE achieved an overall average of 0.828 for ten projects
exceeding the overall detection performance by 10.10%
against cost-sensitive CNN [6]. XGBoost with SMOTE sam-
pling improved the within-project F1 scores of all the projects
except ArgoUML, Hibernate and JMeter. It appears that the
deep learning model is more accurate for projects that have
higher percentage of SATD instances. For the other projects,
the XGBoost with SMOTE sampling has better F1 scores
indicating improved performance of machine learning algo-
rithm over deep learning in Within-Project setup. While for

TABLE VI
F1 COMPARISON

WITHIN-PROJECT CROSS-PROJECT

Duplicates
[6]*

No
Duplicates

Duplicates
[6]*

No
Duplicates

Project CNN [6] Our2 NB [12] Our2 CNN [6] Our3 NB [12] Our3

Ant 0.445 0.690 - 0.476 0.660 0.627 - 0.554
ArgoUML 0.932 0.907 0.705 0.846 0.878 0.861 0.828 0.891
Columba 0.741 0.936 0.732 0.815 0.852 0.823 0.801 0.865
EMF 0.532 0.778 - 0.696 0.679 0.483 - 0.522
Hibernate 0.887 0.851 0.752 0.937 0.826 0.825 0.788 0.822
JEdit 0.622 0.623 0.619 0.457 0.599 0.423 0.518 0.433
JFreeChart 0.795 0.919 0.581 0.815 0.739 0.574 0.687 0.724
JMeter 0.867 0.857 0.751 0.882 0.828 0.790 0.781 0.847
JRuby 0.881 0.885 0.782 0.921 0.863 0.908 0.841 0.891
SQuirrel 0.813 0.838 0.628 0.681 0.739 0.692 0.651 0.737
Avg. (10 proj) 0.752 0.828 - 0.753 0.766 0.701 - 0.726
Avg. (8 proj) - - 0.693 0.794 - - 0.736 0.780
% Improv. - 10.10 - 14.57 - -9.27 - 5.45
* Same data set up as in [6] (with duplicate source code comments)
2 consistent top performer in Within-Project setup: XGBoost with SMOTE
3 consistent top performer in Cross-Project setup: XGBoost with BLINE

cross-project SATD detection the deep learning CNN model
outperformed our consistent top performer in Cross-Project
setup XGBoost with BLINE model by 9.27% characterizing
the improved feature generalization of source code comments
across projects by deep learning model. This hints that for
Within-Project SATD detection, classical machine learning
with data balancing is better approach than deep learning.

Our consistent top performer outperforms the prior work’s
[12] ensemble of Naive Bayes (NB) classifiers with feature
selection balancing technique in both Within and Cross-Project
set up by 14.57% and 5.45% respectively. All the improve-
ments in the F1 scores are statistically significant based on
Wilcoxon-Signed rank test.

F. Impact of Duplicates

Here we highlight the impact of duplicate source code
comments in the training data. From the Table VI, it appears
that the inclusion of duplicates can either improve or reduce
our models’ performance. We can see that the inclusion of
duplicates increases the F1 score from 0.753 to 0.828 in
the Within-Project setup. At the same time, the inclusion of
duplicates decreases the Cross-Project average F1 to 0.726 to
0.701. It is reasonable to think that within a project duplicates
can be useful as similar commenting style or copy-paste
commenting code can result in exact duplicates. On the other
hand for cross-project learning, it appears that learning from
duplicates of some other projects reduces performance as such
comments are unlikely to be present in the target project.

More detailed project level comparison shows that all the
F1 scores under ”No Duplicates” have dropped except for
the projects Hibernate, JMeter, and JRuby that have a higher
number of duplicate SATD comments, with an average of 10%
of duplicate SATD comments. The other remaining projects
have less than 6% of duplicate SATD comments. This some-
what surprising finding suggests that fewer duplicates below a
particular threshold increase the detection performance. While

on the other hand, removal of higher duplicates increases
the prediction performance as observed in Hibernate, JMeter
and JRuby projects. This indicate higher duplicates have a
negative impact on the prediction score. Perhaps the feature
learning over the same SATD features of duplicate source code
comments in the training data does not enable the machine
learning classifier to detect new SATD features when subjected
to new source code comments in the test data.

In Cross-Project setup, each target project is trained with
the data of the 9 other projects, and thus has a higher
average of 778 duplicate SATD source code comments. This
in contrast with the Within-Project setup’s per project average
of 87 duplicate SATD source code comments, is much higher.
The removal of SATD duplicate comments has improved the
overall F1 performance from 0.701 to 0.726 asserting our
previous observation that higher duplicates have a negative
impact on the prediction performance.

V. SATD FEATURE INTERPRETABILITY AND ANALYSIS

In this section, we interpret features from the trained
machine learning classifiers and study the impact of the
balancing techniques on SATD feature selection. There have
been significant recent advances in explaining black-box ML
models [40]–[42]. We employ the explainability framework
SHAP (SHapley Additive exPlanations) [42], due to its feature
interpretation capability. SHAP is based on cooperative game
theory, where the goal is to predict which groups (coalitions)
will emerge from pool of player to collect payoffs. In other
words, we use SHAP to see features as players that form
coalitions to detect SATD. SHAP uses Shapley value [43],
and the Shapley value of a feature represents the average
contribution of a feature with all possible coalitions. With
Shapley values, we identified the number of features that
contributed to the prediction, features that have a high impact
(features that have higher mean of absolute Shapley values)
on the prediction, and the features that do not contribute to
the prediction.

We choose the Logistic Regression classifier for JMeter
project in Within-Project setup for a brief insight on the impact
of balancing techniques for SATD detection. We chose JMeter
as an example project as it has 7.79% of SATD instances, close
to the overall SATD average of 9.08%. We can see in Table
VII that in the JMeter example the performance is in line
with previous results. BASELINE has the highest precision but
suffers from poor recall while balancing techniques sacrifice
little precision to improve recall and therefore offer better
overall performance in F1 and ROC-AUC.

TABLE VII
LOGISTIC REGRESSION’S SATD DETECTION PERFORMANCE FOR

JMETER (WITHIN-PROJECT)

Technique Precision Recall F1 ROC-AUC
BASELINE 0.875 0.389 0.538 0.692

COST 0.784 0.806 0.795 0.892
SMOTE 0.848 0.778 0.812 0.882

ADASYN 0.829 0.806 0.817 0.895
BLINE 0.844 0.750 0.794 0.868

SVMSMT 0.871 0.750 0.806 0.870

Next, we look if balancing techniques differ in terms of
features. Table VIII shows the number of features that are con-
tributing or not contributing in each balancing technique, e.g.,
BASELINE has 875 contributing and 2116 non-contributing
features. The table shows also how many new features each
balancing technique introduces in comparison to BASELINE.
COST echoes its inherent nature (of adjusting instance weight)
and introduces 1.4% of new features, while the sampling
technique introduces new features between 12-15%, reflecting
its new sample synthesis ability.

TABLE VIII
SHAP FEATURE CONTRIBUTION STATISTICS (WITHIN-PROJECT JMETER)

Technique BASE-
LINE COST SMOTE ADASYN SVMSMT BLINE

Contributing
SHAP value 6= 0

875 870 916 905 914 919

Non-Contributing
SHAP value = 0

2116 2121 2075 2086 2077 2072

New Feature count - 12 124 108 112 140
New Feature % - 1.4% 13.5% 11.9% 12.2% 15.2%

Feature count alone cannot tell us if the balancing tech-
niques really are meaningfully different from BASELINE so
we also look in to the top contributing features of each.
Table IX contains the top 10 features of SATD detection by
each of the balancing technique.

TABLE IX
TOP 10 CONTRIBUTING FEATURES (JMETER WITHIN-PROJECT)

BASE-
LINE COST SMOTE ADASYN SVMSMT BLINE

todo todo todo todo todo todo
hack hack hack hack perhaps perhaps
file later appear bug appear hack

nonjavadoc file used used doe used
fix helper doe need cleaning could

later fix nonnls number fix exception
helper one exception appear used improve

yet yet improve improve disconnected wrapped
encoding nonjavadoc perhaps allow nonnls always

found currently later reason note nonjavadoc

The feature ’todo’ is the most contributing SATD feature
across all the techniques. ’hack’ is the second most contribut-
ing feature across sampling techniques but does not list in the
top 10 of SVMSMT. Similarity to BASELINE is the highest
in COST with 8 shared features. Data sampling techniques
have lower number of shared features with the BASELINE.
SMOTE has 3 (todo, hack, later), ADASYN has 2 (todo, hack),
SVMSMT (todo, fix), BLINE (todo, hack, nonjavadoc). So
COST is the most similar to BASELINE also in terms of the
top 10 contributing features while data sampling techniques
have larger differences to BASELINE. When investigating
feature importance, in a single project one would suspect that
project specific words would have more weight. Indeed this
is a difficulty others have experienced when using regression

coefficients as measures of feature importance [44]. It appears
that SHAP avoids this problem as only one project specific
word ’nonnls’ is seen in the table.

Finally, we explore the newly introduced features in compar-
ison to the BASELINE to understand whether the new features
make sense in SATD detection. Table X contains the top 3
features which are new contributing features, i.e., shifted from
non-contributing to contributing features by the application
of balancing techniques. Feature ’decision’ appears in two

TABLE X
TOP 3 INTRODUCED FEATURES (JMETER WITHIN-PROJECT)

COST SMOTE ADASYN SVMSMT BLINE
validation decision although decision stopped

initialization important generally sensible nothing
fetched anything notused extra extra

techniques and it could very well be used when discussing
decisions made while coding. Also feature ’extra’ is in two
techniques and it could be used referring to code having extra
logic. COST technique appears to have words that are the most
technical (’validation’, ’initialization’, ’fetched’), while data
sampling techniques introduce new features that appear more
appropriate in SATD detection like ’important’, ’anything’,
’nothing’, ’sensible’, ’notused’, ’extra’, ’decision’.

VI. DISCUSSION

In this section, we discuss the factors affecting the choice
of a balancing technique and the implications to practitioners
and researchers. Our results show that no single balancing
technique can provide consistent higher performance across
multiple metrics. Even though the sampling technique SMOTE
has consistently improved Recall, ROC-AUC, and F1 scores
of BASELINE across multiple classifiers, the absolute average
difference between COST and SMOTE for the same metrics is
less than 4%. This suggests performance tradeoff as the crucial
parameter for choosing between COST and SMOTE in which
the SMOTE incurs an additional data synthesis step while the
former does not.

Ensemble classifiers Random Forest and XGBoost handle
class imbalance with their algorithmic design. Random Forest
creates a random subset of samples to generate multiple
decision trees while XGBoost creates more decision trees
based on the misclassified samples in the training data. XG-
Boost’s approach results in higher F1, ROC-AUC, and Recall
while Random Forest results in higher Precision. However, the
maintenance of Random Forest is more expensive with model
training time being 2.5 times than that of the XGBoost.

The real-world application of AI/NLP techniques for SATD
detection through source code comments depends heavily on
time and resource availability. Limited time and resources
could not allow a higher number of incorrectly classified
SATD instances, warranting the precise detection of SATD
comments. On the contrary, if enough time and resources are
available to validate SATD comment classification manually,
then extensive detection (recall) of SATD comments should

be the ideal choice of metric. Our study would enable prac-
titioners and researchers to choose an appropriate balancing
technique for NLP-based SATD detection in Within-Project
(limited data) and Cross-Project (ample data) setup.

Another important implication for researchers is the removal
of duplicate source code comments in the training data. Even
though the duplicate source code comments accompanied with
duplicate source code are to be treated as separate technical
debt candidates, such duplicate comments should be avoided
while training machine learning models as they affect the
prediction scores.

VII. THREATS TO VALIDITY

The superior performance of classical machine learning al-
gorithm XGBoost in Within-Project set up over Deep Learning
algorithm Convolution Neural Network might be due to the
limited training data size with an average of 3,442 source code
comments. Even though the source code comments within a
project will always be lesser than consolidated source code
comments from multiple projects, the Within-Project setup’s
training data size might play a vital role in the classical
machine learning algorithm’s improved performance. The data
sampling rate of all the evaluated sampling techniques have
been evaluated at 1.0 (maximum), in our study, for realizing
an even class distribution between technical debt and non-
technical debt classes. The SATD detection performance of
each evaluation metric is highly susceptible to change if the
sampling rate changes.

The balancing technique recommendations from this study
are based on the source code comments data with an average
class imbalance ratio of 9.08% between SATD and non-
SATD classes. All the balancing techniques employed in
this study have been evaluated for the class imbalance ratio
of 1:10 approximately (for every one technical debt source
code comment, there are ten non-technical debt source code
comments). A higher or lower class imbalance ratio before
applying a balancing technique might have a different impact
on the evaluation metrics. More research should identify the
threshold for the ideal class imbalance ratio for improved
SATD detection performance.

Another crucial factor that might impact the generalizability
of our results is the choice of machine learning models. The
applicability of our recommendations might vary for different
machine learning classifiers.

VIII. CONCLUSION

In this study, we investigated the effectiveness of multiple
balancing techniques to detect SATD comments from imbal-
anced data. Our study is based on a manually labeled dataset
from 10 open source projects. We make four contributions.

First, we studied the performance of balancing techniques.
We found that SMOTE provides the most consistent improve-
ment for Recall, ROC-AUC and F1 in Within and Cross-
Project SATD detection for all the classifiers included in
this study. However, if one does not want the extra data
synthesis step in SMOTE sampling, the classifier level COST

(class weight) balancing technique is a potential alternate.
The ensemble (classifier level balancing technique) algorithm
(Random Forest and XGBoost) achieved the best Cross-Project
Precision and F1 scores in imbalanced data without explicit
balancing technique such as COST or SMOTE. This shows
that, for Cross-Project SATD detection in imbalanced data fo-
cusing on high Precision or high F1, the Bagging or Boosting
ensemble techniques serves as a potential choice apart from
sampling technique.

Second, we compare our results to previous works in
SATD detection that include feature selection based Naive
Bayes Multinomial [12] and COST based CNN [6]. Our top-
performing XGBoost with SMOTE/BLINE sampling tech-
nique outperforms Huang et al.’s [12] approach by 14.57% and
5.45% in both Within and Cross-Project setup respectively.
Then, in comparison with the state of the art CNN, we
find that our consistent top performer in terms of F1 score
(XGBoost with SMOTE) beats CNN in Within-Project SATD
detection, offering a 10% improvement. However, in Cross-
Project SATD detection, our top performer loses to CNN by
9%. For SATD detection, it suggests that in a Within-Project
setup, classical ML is a better choice. However, the deep
learning approach shows improved generalization capability
in cross-project setup.

Third, our feature analysis shows that all techniques use a
similar set of features with at least 85% of features being the
same in all techniques. Sampling techniques have a larger dif-
ference to BASELINE than to COST technique. Highly shared
top features were the words ”todo” and ”hack”. Sampling
techniques also appear to be able to introduce new feature
words that are sensible in the SATD context which further
support their consistent improved performance over COST.

Fourth, we developed a SATD classification tool based on
this study that works in two modes, online and batch. Our
web tool’s batch mode would help reduce the initial efforts
for labeling a huge volume of source code comments data.

In the future, we intend to apply and evaluate deep learning
architectures for SATD detection from source code comments.
In particular we are keen to explore the capability of BERT (a
transfer learning scheme, that is already pre-trained on a huge
corpus) for SATD detection in imbalanced data.

ACKNOWLEDGEMENT

The authors acknowledge the financial support by the
Academy of Finland (grant ID 328058) and computational
infrastructure by CSC Finland.

REFERENCES

[1] M. Kuutila, M. Mäntylä, U. Farooq, and M. Claes, “Time pressure in
software engineering: A systematic review,” Information and Software
Technology, vol. 121, p. 106257, 2020.

[2] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 91–100.

[3] R. Longadge and S. Dongre, “Class imbalance problem in data mining
review,” arXiv preprint arXiv:1305.1707, 2013.

[4] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data imbal-
ance in classification: Experimental evaluation,” Information Sciences,
vol. 513, pp. 429–441, 2020.

[5] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing
heuristic and machine learning approaches for metric-based code smell
detection,” in 2019 IEEE/ACM 27th International Conference on Pro-
gram Comprehension (ICPC). IEEE, 2019, pp. 93–104.

[6] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: from perfor-
mance to explainability,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 28, no. 3, pp. 1–45, 2019.

[7] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[8] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in 2014 Sixth
International Workshop on Managing Technical Debt. IEEE, 2014,
pp. 1–7.

[9] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[10] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp.
1044–1062, 2017.

[11] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-admitted,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 216–226.

[12] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical
Software Engineering, vol. 23, no. 1, pp. 418–451, 2018.

[13] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the
role of data balancing for machine learning-based code smell detection,”
in Proceedings of the 3rd ACM SIGSOFT international workshop on
machine learning techniques for software quality evaluation, 2019, pp.
19–24.

[14] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with
machine learning algorithms: an empirical study,” in Proceedings of the
3rd International Conference on Technical Debt, 2020, pp. 31–40.

[15] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic
regression for text categorization,” Technometrics, vol. 49, no. 3, pp.
291–304, 2007.

[16] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1276–1304, 2011.

[17] M. V. Mäntylä, F. Calefato, and M. Claes, “Natural language or not
(nlon) a package for software engineering text analysis pipeline,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, 2018, pp. 387–391.

[18] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[19] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[20] H. Mustapha, N. Abdelwahed et al., “Investigating the use of random
forest in software effort estimation,” Procedia computer science, vol.
148, pp. 343–352, 2019.

[21] M. A. Hossen, M. S. Islam, N. A. T. Yusof, M. S. Rahman, F. Siddika,
M. Rahman, S. Khatun, M. S. A. Karim, and S. H. Mahmud, “Hybrid
sampling and random forest based machine learning approach for
software defect prediction,” in InECCE2019. Springer, 2020, pp. 541–
553.

[22] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detec-
tion,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[23] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[24] Y. Freung and R. Shapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J Comput Syst Sci, vol. 55,
pp. 119–139, 1997.

[25] E. Fitkov-Norris and S. O. Folorunso, “Impact of sampling on neural
network classification performance in the context of repeat movie
viewing,” in International Conference on Engineering Applications of
Neural Networks. Springer, 2013, pp. 213–222.

[26] P. Kaur and A. Gosain, “Comparing the behavior of oversampling and
undersampling approach of class imbalance learning by combining class
imbalance problem with noise,” in ICT Based Innovations. Springer,
2018, pp. 23–30.

[27] E. Biswas, K. Vijay-Shanker, and L. Pollock, “Exploring word embed-
ding techniques to improve sentiment analysis of software engineering
texts,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 68–78.

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[29] S. Garcı́a, J. Luengo, and F. Herrera, “Tutorial on practical tips of
the most influential data preprocessing algorithms in data mining,”
Knowledge-Based Systems, vol. 98, pp. 1–29, 2016.

[30] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
conference on intelligent computing. Springer, 2005, pp. 878–887.

[31] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, 2008, pp. 1322–1328.

[32] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory, 1992, pp. 144–152.

[33] A. Ali, S. M. Shamsuddin, A. L. Ralescu et al., “Classification with
class imbalance problem: a review,” Int. J. Advance Soft Compu. Appl,
vol. 7, no. 3, pp. 176–204, 2015.

[34] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4,
pp. 463–484, 2011.

[35] T. M. Khoshgoftaar, A. Fazelpour, D. J. Dittman, and A. Napolitano,
“Ensemble vs. data sampling: Which option is best suited to improve
classification performance of imbalanced bioinformatics data?” in 2015
IEEE 27th International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE, 2015, pp. 705–712.

[36] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and
G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert Systems with Applications, vol. 73, pp. 220–239,
2017.

[37] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[39] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365.html

[40] E. Strumbelj and I. Kononenko, “An efficient explanation of individual
classifications using game theory,” The Journal of Machine Learning
Research, vol. 11, pp. 1–18, 2010.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[42] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[43] L. S. Shapley, “A value for n-person games,” Contributions to the Theory
of Games, vol. 2, no. 28, pp. 307–317, 1953.

[44] L. Rantala, M. Mäntylä, and D. Lo, “Prevalence, contents and automatic
detection of kl-satd,” in 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2020, pp. 385–
388.

http://jmlr.org/papers/v18/16-365.html
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

	I Introduction
	II Background
	II-A Technical Debt
	II-B Machine Learning in SATD Detection
	II-C Imbalanced Data

	III Methodology
	III-A Machine learning classifiers
	III-B Balancing Techniques
	III-B1 Data Level Techniques
	III-B2 Classifier Level Techniques
	III-B3 Hybrid Techniques

	III-C Dataset
	III-D Processing Code Comments
	III-E Experiment Configuration
	III-F Evaluation Criteria

	IV Study Results
	IV-A RQ 1 Precise detection of SATD comments
	IV-B RQ 2 Extensive detection of SATD comments
	IV-C RQ 3 Improving distinction capability of classifier for SATD detection
	IV-D RQ 4 Balancing Precision and Recall for SATD Detection
	IV-E Comparison to prior work
	IV-F Impact of Duplicates

	V SATD Feature Interpretability and Analysis
	VI Discussion
	VII Threats to Validity
	VIII Conclusion
	References

