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Abstract: Monitoring physiological changes (e.g., heart rate, respiration, heart rate

variability) are important for measuring human’s emotions. Physiological responses

are more reliable and harder to alter compared to explicit behaviors (e.g., facial

expressions, speech), but require special contact sensors to achieve. Research in the

latest decade has shown that photoplethysmograph (PPG) signals can be remotely

measured (i.e., rPPG) from facial videos under ambient light, from which physiological

changes can be extracted. This promising finding has attracted big interests from

researchers and the field of rPPG measurement has been growing fast. In this article,

we review current progress on intelligent signal processing approaches for rPPG

measurement including earlier works of unsupervised approaches and recently

proposed supervised models, benchmark datasets, and performance evaluation.

Furthermore, we also review studies on rPPG-based affective applications, and

compare them with other affective computing modalities. We conclude this article by

emphasizing the current main challenges and highlighting future directions.

1. Introduction

In the recent two decades, affective computing, the study of automatically

processing, interpreting and simulating human affects, has attracted more and more



attentions and has been widely applied in everyday applications (e.g., remote

education, autonomous driving, and psychotherapy).

There are various emotion theories proposed in psychological studies.

Researchers have diverse rather than unanimous opinions [1] about how to represent

and measure emotions and the debate is still ongoing. In the debate, two prevailing

emotion models can be summarized, which describe emotions either as categorical or

dimensional. Categorical models consider emotions as multiple discrete categories,

e.g., one of the most typical models is Ekman’s six basic emotions. On the other hand,

dimensional models describe emotions as variants that change along two or more

continuous dimensions, e.g., valence, arousal, and dominance. In affective computing,

both categorical and dimensional models have been widely used. The selection of

emotion models is a key factor for affective data building (i.e., the data labels) which

impacts the design of computational methods for different real-world applications.

Inspired by human affective perception and manners, machine intelligence is

being used to explore and interpret emotions from various modalities, e.g., facial

expressions, speech, and physiological responses. While explicit behaviors including

facial expressions and speech can be faked, physiological responses (e.g., heart rate

(HR), respiration, HR variability (HRV)) modulated by the autonomic nervous system

are hard to be voluntarily altered, and are more reliable for affective computing under

certain circumstances.

Traditionally, special contact sensors are needed to measure physiological

signals, e.g., electrocardiography (ECG) is used for measuring electrical cardiac



activity, a photoplethysmograph (PPG) oximeter is used for measuring the blood

volume pulse (BVP), and a breathing belt is used to measure respiration.

Contact-based measurements suffer from two drawbacks: (i) inconvenience and

discomfort especially for long-term monitoring and for

human-human/human-computer interactions; and (ii) the constraint status impedes

the expression of spontaneous emotions. One study [2] showed that it is possible to

remotely measure PPG signals under ambient light, and the topic of remote PPG

(rPPG) measurement has attracted great attentions in recent years. Figure 1(a)

shows the trend of rPPG related publications in the last ten years.

(a) (b)
Fig. 1 (a) The number of rPPG publications over the past decade. Obtained through Google
scholar search with key-words: allintitle: “remote photoplethysmography”, “remote heart rate”,
“remote physiological”, “rPPG” and “iPPG”. (b) Reflection model of rPPG.

The fundamental mechanism of remote PPG measurement is illustrated in Figure 1(b).

Facial skin contains rich blood vessels. When ambient light shines on the skin, part of

the light is absorbed (mainly by hemoglobin in the blood) and the rest is reflected and

captured by a camera. The heart pumps blood through the body, and for a local skin

region the count or density of hemoglobin fluctuates with the pulsation, which then

changes the amount of light absorbed. The rPPG technology uses a camera to

capture the periodic color change of a local skin region which is dependent to the

amount of absorbed light. A general framework for rPPG signal measurement



approaches is illustrated in Figure 2. Physiological features (e.g., HR, respiration, and

HRV) can be extracted from the recovered rPPG signals and used for various

affective applications.

Fig. 2 A general framework for facial rPPG measurement and its affective applications.

One major challenge is that the recorded skin color changes indicating rPPG

signals are very subtle, which can be easily affected by noises such as environmental

light variations and the subjects’ head movements. In previous rPPG studies, efforts

have been made to alleviate the impacts of noise for more accurate rPPG

measurement. Besides developing approaches for robust rPPG measurement, other

studies have also explored utilizing the remotely measured physiological signals for

various affective applications, which have shown the great potential of the rPPG

technology. The article is organized as follows: Section 2 reviews impactful rPPG

approaches, datasets, and performance evaluation. Section 3 introduces rPPG-based

affective applications and comparison with other affective modalities (e.g., speech

and face). At last, we discuss existing challenges and future directions in Section 4.

2. Approaches to rPPG measurement

Despite each approach’s specialties, a general framework of prevailing rPPG

measurement approaches can be summarized in three steps, including ‘video

pre-processing’, ‘rPPG signal recovery’, and ‘signal post-processing’. As shown in



Figure 3, each step may involve multiple processes and the most frequently employed

ones are shown in the figure. Prevailing unsupervised (red) and supervised (blue)

rPPG approaches will be introduced subsequently.

2.1 Early-stage unsupervised rPPG approaches

Early-stage ([2-6], 2007 to 2016) rPPG approaches usually involve

straightforward signal processing steps and do not rely on supervision from the

contact-measured physiological signals.

Fig. 3 A general rPPG measurement framework: three steps (column) and two groups (row) of
approaches.

Video pre-processing and ROI selection: The density distribution of blood vessels

varies in different facial regions, and it is important to select effective ROIs with rich

PPG clues. Face detection is usually firstly applied to localize the face region and

remove the background. Then ROI selection is performed in both the spatial and

temporal domains. Researchers have explored different intra-frame facial ROIs in the

spatial domain. One study [2] found the forehead region (see Fig. 4 (a) yellow) works

better than other facial regions, as the recovered rPPG signals have a higher

signal-to-noise ratio (SNR). However, the forehead might be occluded by hair or a hat.

Other studies [3] preferred to use the lower facial regions (see Fig. 4 (a) red) of the



cheek and nose areas. An alternative solution is to include as many skin pixels as

possible, as larger ROIs [4] can produce more stable rPPG signals which are less

affected by random noise. Skin segmentation is employed to segment all skin pixels

within the face region for rPPG measurement (see Fig. 4 (a) green) according to the

color contrast between skin and non-skin parts. Besides defining one single ROI, one

approach [5] employed multiple small ROIs divided from a large ROI (see Figure 4(b))

for rPPG measurement. Such local ROI banks could provide more synergic rPPG

clues from various facial regions and mitigate the impact of occluded facial regions.

(a) (b)
Fig. 4 (a) Different facial ROIs for rPPG recovery. (b) Spatio-temporal representation of
multiple facial ROIs, i.e., the STmap.

On the other hand, to eliminate the noisy fluctuations of the recovered rPPG

signal, inter-frame ROI selection along a temporal facial sequence have also been

explored. One simple solution is to obtain consistent facial skin regions by applying

the same spatial ROI selection approach on every frame [2,6]. However, frame-level

ROI localization operators are unstable and easily influenced by head movements

and occlusions which lead to noisy rPPG signals with high frequency artifacts. A better

solution is to use tracking instead of single frame ROI detection. In [3] a pre-defined

ROI was tracked through face sequences based on multiple key feature points within



the facial ROI region, and the results showed that tracking is efficient to achieve

continuous and a temporally stable ROI for rPPG measurement.

rPPG signal recovery: The most fundamental way to alleviate the effects of

hardware noise and achieve raw rPPG signals is to average all the pixels’ intensity

values within the selected ROIs frame by frame [2-6]. Concerning the three color

channels, based on the fact that the light wavelength corresponding to the green

channel has an absorption peak by (oxy-) hemoglobin, rPPG signals recovered from

the green color channel [2,3] are usually better than those from the red or blue

channels.

Raw single/multi-channel rPPG signals usually contain mixed sources including

the target rPPG signal along with noise fluctuations such as shading caused by

motion and lighting variations. To disentangle the pure and intrinsic pulse curve from

irrelevant interference is an essential problem for reliable measurement. One solution

is to use blind source separation (BSS) methods to remove noise and recover the

underlying target signal (i.e., the rPPG signal). To be specific, independent component

analysis (ICA) or principal component analysis (PCA) can be adopted to decompose

the raw rPPG signals into several sources or components, from which the one with

the strongest periodicity or energy is selected as the target rPPG signal. Another

solution is color space transfer. Compared with the original RGB space, the

chrominance [4] subspace is less sensitive to motion and luminance. Thus, it is

feasible to refine raw rPPG signals via an exact projection direction on the subspace

plane by real-time tuning. In addition, to explore the intrinsic rPPG relationships



among multiple ROIs, a spatio-temporal map (STmap) [5] has been used (see Fig.

4(b) for a typical example) for each frame, on which low-rank based self-adaptive

matrix completion [5] was applied to select high-quality ROIs for rPPG estimation,

while those impacted by motion or shading were dropped.

Signal post-processing: In the final step, signal post-processing further refines the

rPPG quality for subsequent applications. As the frequency of a human heartbeat

usually ranges from 0.7 to 4 Hz, a band-pass filter with the corresponding bandwidth

[2,3] has often been used to refine the rPPG signal in the frequency domain.

Detrending [6] is another popular post-processing method which removes the slow

fluctuance of the rPPG signal caused by environmental light variations or auto

adjustment of the white balance, for example. Additional post-processing approaches

have also been proposed [3] such as illumination rectification via adaptive filtering,

and non-rigid motion elimination by excluding low-quality segments to deal with

exceptionally challenging data.

To sum up, conventional studies have analyzed factors that could impact the

rPPG measurement (e.g., illumination variations and head motions) and have

proposed some preliminary solutions (e.g., ROI selection, BSS and illumination

rectification) that do not involve supervised learning and which usually come with

small computational costs. The approaches have the following limitations: 1) they

require empirical knowledge to choose proper parameters for designing the signal

processing filters; 2) lack of advanced video processing tools and supervised learning

models to counter data variations especially in challenging environments with a lot of



interference.

2.2 Emerging supervised rPPG approaches

One main difference from conventional unsupervised (red in Figure 3)

approaches is that supervised (blue in Figure 3) approaches could leverage

contact-measured ground truths with an efficient supervised learning paradigm.

Video pre-processing for supervised paradigm: In a supervised rPPG

representation paradigm, detected face sequences and extracted STmaps are the

two most typical inputs for supervised modeling. Sequences of cropped faces could

be directly fed into an end-to-end learning framework without further hand-crafted

pre-processing. Such learnable mapping from video-level input to one dimensional

signal output is flexible but could also easily overfit on small-scale data. STmaps

extracted from multiple pre-defined ROIs have recently been adopted as a refined

form of input for supervised rPPG frameworks. The frameworks focus on learning an

underlying mapping from the input feature maps to the target signals. Compared to

cropped faces, learning with STmap inputs is more efficient and converges faster

because the process of generating STmaps already collects raw rPPG information

and excludes major irrelevant elements (e.g., face shape attributes). Another

noticeable video pre-processing approach is the rPPG-dedicated video enhancement

technique [7], which deals with highly compressed face videos by enhancing intrinsic

rPPG clues and reducing undesired compression artifacts thus benefiting the

subsequent rPPG signal recovery process.

Supervised rPPG signal recovery: rPPG signal recovery is the core part of the



supervised rPPG approach, and we will discuss it from three perspectives, including

the network architecture (concerning the structure of the model, task-aware inputs

and ground truth), the loss function (for designing suitable constraints to supervise the

model for robust feature representation), and the learning strategy (for accuracy,

efficiency, and generalization trade-offs).

From the perspective of network architecture, both 2D (spatial) [8,9] and 3D

(spatio-temporal) [7,20] models have been explored. A 2D convolutional neural

network (CNN) learns spatial rPPG features within each face and aggregate across

the frames, while a 3D CNN leverages both spatial and temporal contexts from the

input volume. DeepPhys [8] is the first end-to-end rPPG approach with 2D two-stream

convolutional attention networks, in which a motion stream explores facial color

changes from the normalized difference of adjacent frames, and an appearance

stream generates facial attention maps for rPPG feature refinement. 3D CNN could

explore more efficient spatio-temporal contexts for rPPG representation. In [7], a 3D

CNN based rPPGNet was designed, which contains a skin-based attention module for

adaptively selecting skin areas with stronger rPPG signals. To alleviate the huge

number of parameters needed in 3D CNN based spatio-temporal modeling, an

efficient 2D CNN with a temporal shift module [9] has been proposed for real-time

physiological measurement on mobile platforms, which is more practical for real-world

deployment.

In terms of loss function, both time domain and frequency domain constraints

have been explored for supervising rPPG models. Supervision in the time domain



aims to minimize the intensity of the temporal difference between the predicted rPPG

signal and the ground truth signal. There are two typical time domain losses, i.e., the

mean square error (MSE) loss [8,9] and the negative Pearson correlation

(NegPearson) loss [7,20]. The MSE compares the mean magnitude difference

between the estimated and ground truth signals, while the NegPearson focuses on

their trend similarity. As rPPG signals are recorded in a different way to the ground

truth physiological signals, the curve magnitudes (pixel values) are dependent on

device settings, the environment and the subject’s physical condition. To this end, the

NegPearson loss might be a more reasonable option, which also converges faster as

demonstrated in [7]. Frequency domain loss assumes that within a short time span

(e.g., <10s), the power spectrum density (PSD) curve of the rPPG signal should be

sharp (with a high amplitude) near the target frequency band (corresponding to the

ground-truth HR value) while being comparatively plain (with low amplitude) in other

frequency bands. To improve the periodicity of the rPPG signal, the cross-entropy loss

[10] has been used to constrain the PSD distribution for frequency supervision.

As for the learning strategy, multiple learning strategies have been explored for

rPPG measurement, including multi-task learning [7,9], disentangled learning [10],

and meta-learning [11]. As the rPPG measurement task is highly related to other tasks

such as facial skin segmentation and respiratory measurement, learning their

common features might benefit all and reduce irrelevant interferences. In [7], the

rPPGNet employed multi-task learning and jointly learned two tasks of regressing

rPPG signals and segmenting facial skin regions so that the learned color changes



focus more on skin regions. In [9], the joint measurement of multiple physiological

signals (i.e., rPPG and respiration) was also proven to be efficient in a multi-task

supervised learning framework. Another strategy is to use disentangled learning to

eliminate non-physiological noise (e.g., light variation and sensor noise). In [10], a

cross-verified disentangling strategy was developed and tested to distil rPPG features

from non-physiological features. Furthermore, the domain shift issue needs to be

considered as practical rPPG measurement can be affected by changes of

environment, skin-tone, and so on. To counter this issue [11] introduced a

meta-learning approach, which can adapt and generalize one rPPG model to specific

domains.

Supervised signal post-processing: Supervised signal post-processing aims to

adaptively exploit the temporal contexts to refine the estimated rPPG signals or

features. One approach is long-range temporal modeling between adjacent face video

clips, as their physiological parameters should be highly related. In [12], one temporal

reasoning technique, (a gated recurrent unit (GRU)), was applied to adaptively refine

rPPG features according to clip-level temporal contexts. Another study [13] also used

a generative model with adversarial learning to post-process estimated rPPG signals

to reduce noise and improve output quality.

One thing to mention is that, not all supervised methods contain explicit

pre-processing and post-processing steps. Some studies [7-9,11,20] preferred an

integrated end-to-end approach, which takes face frames as the inputs and outputs

rPPG signals directly. End-to-end rPPG approaches are less dependent on prior



task-related prior knowledge and handcrafted engineering (e.g., STmap generation),

but rely on diverse and large-scale data to alleviate the problem of overfitting.

2.3 Benchmark datasets and evaluations

Before 2012 there were no public datasets for rPPG measurement therefore most

studies used self-collected, small-scale datasets that were not shared. It is a waste of

time to repetitively collect data, and unshared data makes it impossible for fair

comparisons between different algorithms. Later several public datasets were

released to fulfil the needs of rPPG measurement studies. A summary of benchmark

datasets for rPPG measurement is shown in Table 1.

Table 1 Public datasets for remote physiological measurement.

Dataset Year Subjects Videos Physiological signal* Affective Application

MAHNOB [14] 2012 27 527 ECG, EEG Emotion recognition

BioVid [15] 2013 90 8700 ECG, EEG, EMG, SC Pain estimation

MMSE-HR [5] 2016 40 102 HR HR estimation

OBF [16] 2018 100 200 BVP, ECG, BR HR estimation

VIPL-HR [12] 2019 107 2378 HR, BVP, SpO2 HR estimation

UBFC-rPPG[17] 2019 42 42 BVP HR estimation

uulmMAC [18] 2020 57 95 ECG, BR, SC, EMG Emotion recognition

UBFC-Phys [19] 2021 56 168 BVP, SC, EDA Stress recognition

* ECG: Electrocardiogram; EEG: Electroencephalogram; EMG: Electromyography; SC: Skin

conductance; BVP: Blood volume pulse; BR: Breathing rate; SpO2: Oxygen saturation.

The datasets contain facial videos and corresponding physiological signals as the

ground truth for performance evaluation. Concerning the scale of the datasets, the

BioVid and VIPL-HR datasets contain a much larger number of samples (thousands)

than the other datasets (five hundred or less). Concerning the diversity of the data,

most of the datasets were recorded indoor with one fixed scenario setup, while the



VIPL-HR dataset concerns various scenarios with different illuminations and camera

setups. From these aspects, these datasets are still not sufficient for training large and

deep networks. In terms of video quality, 1) most datasets contain videos that are

compressed via modern standards (e.g., MPEG4 and H.264) except UBFC-rPPG and

UBFC-Phys, which contain lossless videos without compression; 2) videos of most

datasets are with HD resolution (1920x1080), except BioVid (1280x1024) and

UBFC-rPPG (640x480). It is worth mentioning that besides color videos, OBF,

VIPL-HR, and uulmMAC also provide near infra-red (NIR) videos. As for the ground

truth signals, MMSE-HR and UBFC-rPPG only provide one single ground truth signal

about the HR, while the other datasets provide multiple physiological signals,

including ECG, EEG, EMG, SC, SpO2, and EDA. Some of the datasets were

designed for affective applications and provide special affective labels, e.g., MAHNOB

[14] and uulmMAC [18] for emotion recognition, BioVid [15] for pain level estimation,

and UBFC-Phys [19] for stress recognition.

Table 2 Performance evaluation of rPPG methods for average HR estimation.

Method Dataset SD(bpm)↓ MAE(bpm)↓ RMSE(bpm)↓ r↑

Verkruysse et al. [2] UBFC-rPPG - 7.50 14.41 0.62

Meta-rPPG [11] UBFC-rPPG 7.12 5.97 7.42 0.53

TS-CAN [9] UBFC-rPPG - 4.68 - 0.74

PulseGAN [13] UBFC-rPPG - 1.19 2.1 0.98

CHROM [4] OBF 2.73 - 2.73 0.98

PhysNet [20] OBF - - 1.81 0.992

rPPGNet [7] OBF 1.76 - 1.8 0.992

Li et al. [3] MAHNOB-HCI 6.88 - 7.62 0.81

SMAC [5] MAHNOB-HCI 5.81 - 6.23 0.83

DeepPhys [8] VIPL-HR 13.6 11 13.8 0.11

RhythmNet [12] VIPL-HR 8.11 5.30 8.14 0.76



CVD [10] VIPL-HR 7.92 5.02 7.97 0.79

Performance evaluation: Most existing methods compare performance on the

average HR of each input video in beats per minute (bpm). Several common

evaluation metrics have been used, such as the standard deviation of the error (SD),

the mean absolute error (MAE), the root mean square error (RMSE), the mean error

rate percentage (MER), and the Pearson’s correlation coefficient (r). Table 2

summarizes the performance comparison of popular rPPG measurement methods.

The state-of-the-art methods (PulseGAN [13] and rPPGNet [7]) can achieve

respectively satisfactory performance (MAE=1.19 bpm and RMSE=1.8 bpm) on

high-quality datasets OBF and UBFC-rPPG, while the performance is yet to be

improved on other more challenging datasets (e.g., VIPL-HR and MAHNOB-HCI).

Compared with unsupervised methods (e.g., Verkruysse et al. [2] and CHROM [4]),

supervised learning-based methods can predict more accurate HR on OBF and

UBFC-rPPG datasets due to the efficient feature representation learning. In terms of

the inputs, STmap-based methods (RhythmNet [12] and CVD [10]) outperform the

end-to-end method DeepPhys [8] with face inputs by a large margin (>5 bpm RMSE)

on VIPL-HR dataset as the latter is sensitive to head movements. It is worth noting

that with learnable and adaptive post-processing for coarse rPPG signals refinement,

PulseGAN [13] outperforms the other three methods with fixed and straightforward

post-processing on UBFC-rPPG dataset. Overall, it is practical to consider

STmap-like inputs and learnable post-processing in complex scenarios while

improving the robustness of end-to-end supervised methods is urgent. Table 2

concludes the performance of recent approaches, but it is worth mentioning that some



studies used different validation protocols or data partitions in the training and testing

phases. To provide a fair comparison platform, the RePSS Challenge is organized as

an annual competition series since 2020 (RePSS 2020:

https://competitions.codalab.org/competitions/22287#; RePSS 2021:

https://competitions.codalab.org/competitions/30855) which specifically focuses on

fair evaluation of the rPPG measurement approaches.

3. Applications in affective computing

In this section, we first review studies of using rPPG signals for affective

computing applications. Then we compare rPPG with other modalities, and discuss

about their strengths and limitations.

3.1 Remote physiological signal measurement for affective computing

Emotion understanding is one focus area of physiological signal analysis. Multiple

kinds of physiological signals are related to emotional status, including ECG, EMG,

SC, PPG, EEG, and so on. ECG and PPG both measure the cardiac activities. For

measuring affective status, the average HR alone is not sufficient. The ECG and PPG

signals are usually further processed to compute inter-beat-intervals (IBI) and conduct

an HRV analysis to achieve more sophisticated features. Common HRV features

include low frequency (LF), high frequency (HF), their normalized ratio, and other

features in both time and frequency domains.

Using rPPG for emotion understanding is a new rising topic and not many papers

have been published so far. These studies build upon traditional ECG- and

PPG-based affective computing studies, with an essential extra challenge, i.e., to



reconstruct rPPG signals from facial videos. In consideration of the coarse-designed

statistical features, finding proper features from imperfectly measured rPPGs and

training a model to measure the target affective status are key. Here we review

representative works using rPPG signals for affective computing under different

scenarios.

Emotion recognition in human-computer-interaction (HCI) scenarios: HCI is one of

the most common scenarios for affective computing studies, e.g., to measure emotions

while the subject is watching a movie or playing a video game. Yu et al [20] designed a

spatio-temporal network to recover rPPG signals from movie watchers’ faces, and then

ten dimensional HRV features were extracted for emotion recognition. The study explored

emotion recognition in nine categories and also in the valence and arousal dimensions.

Beside direct emotion measurement, Gupta et al. [21] also used rPPG to detect the on-set

of emotional behaviors. The extracted features from recovered rPPG signal are used for

facial micro-expression (ME) spotting under HCI scenarios.

Cognitive stress estimation: McDuff et al. [22] showed that remotely measured

physiological changes with a camera could be used for cognitive stress estimation.

One fact is that when people are under cognitive stress, their autonomic nervous

system activity changes which can be reflected in some HRV features. McDuff’s study

showed that even the remote rPPG measurement was not 100% accurate and their

model could achieve accuracy of 85% for cognitive stress estimation. The LF

component and breathing rate are the most indicative features. A recent study [23]

showed peripheral hemodynamics and vasomotion power extracted from rPPG



amplitudes are also important indicators for cognitive stress estimation. One

multimodal dataset was established in [19] for stress estimation with video based

rPPG modality.

Driver’s status monitoring: Driver’s status monitoring is one of the focused topics in

autonomous driving. Future intelligent driving system should be able to detect the

dangerous status of a driver, e.g., fatigue or feeling sleepy, to improve safe driving.

Tsai et al. [24] proposed a remote physiological measurement system to instantly

monitor driver fatigue without contact devices. Statistical HR and HRV features were

extracted from measured rPPG signals and then fed to a regressor to predict drivers’

fatigue level.

Pain estimation: Pain is a major research focus as it not only causes physiological

discomfort but also impacts people’s mental status (e.g., causes stress or depression).

Kessler et al. [25] used remotely measured rPPG signals as a new approach to pain

level estimation as the heartbeat and breathing patterns are altered when people are

in pain. RGB facial videos were evaluated for rPPG signal recovery and HRV analysis,

then the pain level was estimated with an SVM or a Random Forest classifier. One

main finding is that the LF component of HRV features is important for estimating the

pain level.

Engagement measurement in educational activities: Education is one major

application field for affective computing technologies. By analyzing teachers’ and

learners’ status in educational activities, e.g., engaged or not, we can evaluate the

effectiveness of educational approaches. Monkaresi et al. [26] estimated students’



engagement levels by measuring HRs from facial videos while they were conducting a

structured writing task. Seven statistical features were extracted from instantaneous

HR signals and cascaded to train a supervised learning model for engagement level

estimation. Unlike typical emotions, engagement cannot be measured as a prototype

facial expression, thus remotely measured physiological signals could be a novel yet

convenient approach for engagement measurement.

3.2 Comparison with other affective computing modalities

As humans can perceive emotions from multiple sources, affective computing can

be achieved from different modalities, e.g., text, audio speech, visual clues, and

physiological signals concerning the input types. Here we mainly compare with the

audio and visual modalities due to their wide use in various applications.

Audio modalities: Audio modalities concern an affective analysis from various

acoustic inputs, among which one major research area is the speech emotion

recognition (SER) [27]. SER focuses on recognizing emotions conveyed by speech

signals. Speech signals are segmented as a ‘unit of analysis’ for feature extraction

and model learning. Features for SER can be summarized into two groups. 1) Textual

features are related to the speech content, e.g., the occurrence of some key words (or

word groups). Automatic speech recognition (ASR) is needed to extract textual

features. Culture and language need to be concerned when using textual features for

SER. 2) Audio features indicate lower-level acoustic features such as the energy or

spectral information, speed, and rhythm, which do not require ASR and are more

robust across different languages and cultures.



Visual modalities: Visual modalities include both images and videos as the inputs for

affect analysis. Major research areas include facial expression recognition (FER),

emotion body gesture recognition (EBGR), and affective image content analysis

(AICA). One key assumption of FER [28] is that each emotion category corresponds

to one (or more) prototypical facial expression, e.g., wide opened eyes with a lowered

jaw when one is surprised. Besides recognizing general emotion categories, some

studies also focused on differentiating genuine and fake expressions as facial

behaviors can be voluntarily altered for various purposes. EBGR [29] focus on

analyzing body behaviors (other than the face) for affect measurement. A human body

can be modelled either as a composition of multiple local parts or a kinematic chain

model of skeleton joints for action (or posture) recognition, e.g., sitting, walking, or

jumping. Then relevant representations can be extracted from the actions (postures)

for emotion measurement. Compared with facial expressions, body gestures are more

complex and diverse in terms of emotion representation. While FER and EBGR focus

on human behaviors, AICA [30] concerns all images of any content, i.e., what

emotions an image can induce when it is shown to a person. Various features were

explored for the task, including low-level features such as colors and edges, mid-level

features such as materials and eigenfaces, and high-level semantic features such as

facial expressions.

Modality comparison: The rPPG is a unique one among all modalities for affective

computing. On one side, it is one of the visual modalities (along with facial expression,

body gesture, etc.) which may share some common advantages and challenges, e.g.,



related to video quality, lighting, occlusion, etc. On the other side, the rPPG also

intersects with physiological modalities and possesses some of their characteristics.

Compared with other modalities, the rPPG signals have two main advantages for

emotion measurement. The first advantage is inherent to the general physiological

domain, that physiological signals might be the most reliable source among all

modalities, as it is difficult to intentionally control or alter one’s physiological

responses. On the other hand, people can control their facial expressions, body

gestures and speeches to hide or convey fake emotions if needed. From this

perspective, the physiological modality (including rPPG) is essential for measuring

suppressed emotions when limited movement or speech is presented. However,

traditional physiological monitoring requires contact sensors, which could be a major

drawback in practical applications before rPPG techniques appear. The second

advantage of rPPG is that it only requires one color camera, and the captured facial

videos can be processed for both rPPG measure and facial expression analysis for

emotion recognition. There are also disadvantages to using rPPG for emotion

recognition. First, comparing to other visual modalities, e.g., facial expressions or

body gestures, rPPG signals are weaker signals and are more easily affected by

lighting changes and motion. Current methods still need to be improved to increase

their robustness. Second, rPPG only measures heartbeat which is limited for emotion

recognition. It would be better if more physiological signals could be remotely

measured and combined for the task. Some work [23] has explored novel

rPPG-related physiological indexes from facial videos, but it is not likely for e.g., SC



and EEG signals so far.

4. Open Challenges and Future Directions

In this article, we introduced facial video-based remote physiological

measurement approaches, datasets and applications in affective computing. Despite

great progress in recent years, there are noteworthy challenges. 1) The robustness

and generalization ability of current methods are limited for practical applications.

Video quality, human attributes and behaviors, and environmental changes all

influence the accuracy. Approaches do not generalize well to novel datasets due to

large data differences in the domain shift. 2) There is insufficient data with limited

scale and diversity for deep learning models. The acquisition of ground-truth

physiological signals requires medical equipment and professional operation, which

limits the dataset’s scale. 3) Remote measurement of other physiological signals than

the rPPG need to be explored for affective computing.

More effort is needed in future to fill in the gaps. Potential future directions include:

1) to design robust, efficient, and interpretable approaches for rPPG feature

representation. Firstly, more informative representations from both time domain and

frequency domain could be designed. Secondly, lightweight CNNs could be explored

for real-time rPPG applications. 2) It would be useful to learn from limited or

unlabelled data. Data augmentation or synthesis methods would be helpful to achieve

more data samples. Self-supervised pre-training or semi-supervised methods could

be explored to use unlabelled data from the internet. 3) It would be useful to explore

multimodality approaches that fuse rPPG signals with other modalities for more



reliable affective measurement.
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