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Why Smart Appliances May
Result in a Stupid Energy Grid?

Pedro H. J. Nardelli and Florian Kühnlenz

Abstract—This article discusses unexpected consequences of
idealistic conceptions about the modernization of power grids. It
focuses on demand-response policies based on automatic decisions
by smart home appliances. Following the usual approach, indi-
vidual appliances sense a universal signal (namely, grid frequency
or price) that reflects the system state. Such information is the
basis of their decisions. While each device has a negligible impact,
their aggregate effect is expect to improve the system efficiency;
this is the demand-response goal. The smartness of such an ideal
system, composed by isolated appliances with their individual
decisions, but connected in the same physical grid, may worsen
the system stability. This undesirable outcome comes from the
synchronization of the devices’ reactions when subject to the same
signal. We argue that this is a predictable effect of (implicit)
methodological choices. We employ a different approach that
understands the electricity system as constituted by physical,
informational and regulatory (networked and structured) layers
that cannot be reduced to only one or two of them; it needs to be
viewed as an organic whole so proper management tools can be
designed. Two examples are provided to illustrate the strength
of this modeling.

Index Terms—Agents-based model, Smart grids, Decision mak-
ing, Collective behavior.

I. INTRODUCTION

The recent development of communication and information
technologies have stimulated the energy utilities and electricity
network operators to upgrade the long-time established power
grid automatic control systems [1]. Through this moderniza-
tion path, more devices that react to information signals are
appearing as part of the system physical structure. Among
many other applications, these elements – particularly the
smart home appliances and smart meters – are the tech-
nological bridge to involve the small-scale end-consumers
as part of demand-side management policies [2]. From this
perspective, one can classify this modernization process as a
socioechnical system [3]. Following the hype, the operation
and management of the modern grid tend to become more and
more autonomous, given origin to the term smart electricity
grid. Such a system grows in complexity by having more
elements, interactions and dependencies. If this is the case,
traditional reductionist methodologies usually lead to a poor
understanding of the system-level dynamics and, even worse,
misplaced interventions [4], [5]. As a contradictory unity, the
system becomes more resilient and more fragile at the same
time.
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We identify here a mismatch between the (hidden) method-
ology applied to design autonomous appliances that shall be
deployed as part of the power grid. Specifically, a kind of
methodological individualism [6], as a mainstream approach,
appears in this context as follows: A problem is delivered to an
engineer, who solves it by developing elements that will react
to a signal individually, considering that everything else is
given. In practice, however, other elements will likewise react
to that signal (if designed to do so). As they are interconnected
through the grid, their aggregate action may lead to unexpected
events from the methodological individualism point of view.

To move beyond this methodological weakness, we sys-
tematize a different methodology in [7] and other works
thereafter (e.g. [8]). The core idea is that sociotechnical
systems shall be analyzed through three constituent layers: (i)
a physical layer composed by material things and connections,
(ii) an informational layer related to symbolic classifications
and communications, and (iii) a regulatory layer involving
decision-making procedures and rules. The relation from the
physical to the informational layer happens through sensing.
The information sensed and processed by the agents is the
basis of their individual decisions, which may or may not be
the same. These decisions may then result into actions that
may affect the physical and information layers, directly or
indirectly. The system is then constituted of (and not reduced
to) these layers.

To illustrate such an approach, we have developed two
computational study-cases that present problems arisen from
the methodological individualism. One case is inspired by the
frequency stabilization via smart fridges, as introduced by [9].
In this contribution, the authors showed different methods to
coordinate the fridges’ reactions via randomization, similar
to random access control in communication networks. For
example, if the frequency drop is perceived by a fridge, it
waits a random time to become activated (i.e. using energy
from the grid), and also to return to its normal cycle operation
after the situation is resolved. This policy serves to avoid the
oscillations from the synchronized collective reactions.

The other case is inspired by [10], where the authors present
an analysis of how smart washing machines may answer to
dynamic price schemes. In their own words: “(...) when agents
are exposed to source noise via correlated price fluctuations
(as adaptive pricing schemes suggest), the market may am-
plify those fluctuations. In particular, small price changes
may translate to large load fluctuations through catastrophic
consumer synchronization. As a result, an adaptive power
market may cause the opposite effect than intended: Power
demand fluctuations are not dampened but amplified instead.”

For both cases, the expected improvement in the system
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stability falls short, producing unforeseeable, more unstable,
dynamics. This emergent behavior is due to the synchro-
nization effect induced by the collective reactions of smart
appliances. This collective behavior – blind for individualist
methodologies – creates a dynamic sequence of overshoots
and/or undershoots. Our results, in consonance with [9], [10],
show that these events may be controlled, avoided or mitigated
by interventions designed through the proposed three-layer
approach.

Collective behavior

Collective behavior as an emergent phenomenon has been
extensively studied in complex system sciences [11]; the topics
are somehow universal, ranging from markets and ecosystems
to “the whole of human society.” Looking at technological
solutions, swarm intelligence is probably the most known way
of using the emergent features of collective behavior to solve
computational problems in different fields (refer, for instance,
to [12]). In [9], Evora et al. provide an in-depth review of
swarm intelligence and the advantages to apply it in smart
grids by creating a more resilient system.

Market institutional arrangements, in their turn, are char-
acterized by signaling demand-supply relations via price. It
can be then modeled as composed by individual entities that
“answer” to such signals (e.g. buying or not buying, or selling
or not selling). Among different currents, the growing field of
Complexity Economics (e.g. [13]) tries to cope with theoreti-
cal failures that neoclassical standard economical approaches
cannot handle. By doing so, they open similar methodological
questions as the present article. The paper by Krause et al. [10]
follows this line-of-thought by showing how a naive market
model may result in a “catastrophic” outcome to the power
system.

II. COORDINATION THROUGH SIGNALS

Coordinating individual agents using signals is widespread
and proves its effectiveness every day. Traffic lights are a
good example: drivers stop when the light is red and move
when is green. Other example: some health centers where the
patient upon entry selects one from different options related
to his/her health condition to then get a number assigned.
Different numbers appear in screens at waiting rooms, each
number associated to the next person to be served. In both
cases, an internalized rule-based coordination exists. Imagine
possible situations without it: messy traffic, crazy pushing and
pulling in lines, discussions about treatment priorities etc.

Nevertheless, although both situations indicated a need for
coordination, their specifics and the respective problems to be
solved are quite different. So are the correspondent solutions.
But, how could one assess these differences? Let us analyze
the traffic light example. When a driver sees the red light,
he/she stops not only because it is written in the norm, but
also because he/she knows that all others involved in the traffic
know this. Every driver expects that all others are going to
behave based on the signal given by the light in the same way
that he/she would. Due to the material characteristic of the
situation (two things cannot occupy the same place and car

accidents are undesirable), the coordination policy is almost
always effective.

Turning our attention to the health center example, the
person knows his/her number, but it is usually hard to know
how many people are in his/her line or even how many lines
exist. So it is hard to estimate how long it is going to take
and if the situation is fair based on his/her own health state
compared to the others. The coordination mechanism structure
and its effectiveness may be unclear to the persons involved
(although it may be clear to the designers).

From these two every-day examples, we suggest three
different ways of classifying the system, following three layers
of analysis [7]:

1) Physical layer (PHY) relates to the material problem to
be solved – who can move the car or who is served by
the nurse/physician. The relations between the elements
are normally related to transportation (e.g. flow of cars
or people or electrons). In this case, physical laws
determine the dynamics.

2) Information layer (INF) relates to the access to infor-
mation – “who knows what?” In this case, information
can be obtained through (a) sensing and processing
data from PHY, or (b) through communication between
agents in INF, or (c) through total or partial broadcast
from agents in REG (to be defined next).

3) Regulatory layer (REG) relates to the regulatory action
– how the individual decision is made and how is
the (re)action to it. The objective of the agent can
be anything from maximizing their individual pleasure
to following a simple threshold rule or even random
choices. The decisions may render changes in PHY by
acting upon physical devices (e.g. moving the car) or in
INF by broadcasting information to one, or to a group,
or to all other agents.

This article is built upon the understanding that all three
ways are equally important; they reflect three different layers
where events happen. They constitute and structure the so-
ciotechnical system under analysis. As constituent layers, the
system, in general, cannot be reduced to any of them, other-
wise the results and policy guidelines may lead to undesirable
outcomes. We will show along the rest of this article how the
methodological reductionist bias may be harmful when smart
appliances are employed as demand-response tools designed
to help the operation of modern electricity power grids.

III. DEMAND-RESPONSE AND SMART APPLIANCES

Smart home appliances – as part of the Internet of Things
(IoT) trend – are expected to play a big role in the mod-
ernization process of the electricity grid. With the increase
of intermittent sources of energy (e.g. solar and wind) as
substitute of more controllable ones (e.g. thermal), electricity
supply becomes less predictable than it is now. Then, demand
is expect to respond accordingly, employing flexibility in con-
sumption instead of production. Smart appliances are planned
to react by adjusting their usage according to the available
power. In this case, two universal coordination signals appear:
frequency and price.
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Frequency

In electricity grids, the frequency of the alternate current
shall be constant, reflecting a balanced supply and demand.
In Europe, the nominal frequency is 50 Hz. If the supply is
higher than demand, the frequency rises. On the other hand, if
supply is lower than demand, frequency drops. This effect is a
fundamental part of the physics of the current system. The grid
frequency is the same for regions connected in the same power
grid (synchronous region). In other words, any appliance
connected within a given synchronous grid experiences the
same frequency at the same time. As frequency is an indicator
of supply and demand balance in real-time, it can be used
by smart appliances as a signal to guide demand-response.
Fridges, for instance, could adjust their cooling cycles as a
reaction to frequency deviations [9]. If its value is too low,
based on a given threshold, the smart appliance postpones its
cycles to reduce the load on the system, and vice-versa.

Price

Dynamic “real-time” electricity price can also be seen as a
universal indicator of the supply and demand situation. Price is
a metric that reflects (at least in theory) the willingness or need
of buying by the consumers and availability of supply. In the
electricity wholesale markets, it indicates the most expensive
power produced to match the demand in a given period of
time [14], [15]. It is worth noting that price and frequency are
associated to different timescales. While frequency is a direct
measure of the physical grid (PHY), it is fair to say that it
captures the system state in real-time. The real-time in price,
on the other hand, is different; it is only an indirect measure of
the physical reality, which must be related to some period of
time, generally one hour. In this case, price is a construction
in REG based on predictions of all supply and demand of
that specific period. In an electricity system dominated by
intermittent generation from solar and wind, for instance, one
expects fluctuations in supply. Then, smart appliances that
have more flexibility in their usage (e.g. washing machine)
can wait until more power is available – reflected by lower
electricity prices – to be turned on. In this way, the situation
becomes win-win: the consumer pays less and the system
become more balanced [16].

IV. SYNCHRONIZATION AND SYSTEM-LEVEL
COORDINATION

In both cases discussed in the previous section, the appli-
ances are aware of the same signal, either frequency or price,
depending on the timescale to be considered. However, if the
appliances’ decision procedures are based on the individual
behavior without considering how the others may react to
the signal, possible undesirable fluctuations may emerge (even
when the goal of stability is shared by all individual agents).
In other words, this kind of methodological individualism –
widespread in many fields – may lead to optimal individual
solutions when the others are assumed external elements, but
this may lead to poor solution for the whole system [17].

To investigate these scenarios, we employ a variation of the
models presented in [9], [10] following a modified version
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Fig. 1: Electrical circuit representing the physical layer of the
system. The circuit is composed by a power source V and its
associate resistor RV, and resistors of in parallel, generating a
current I . These resistors are related to N agents, where each
agent i “ 1, ..., N has a basic load Rbi and controls a flexible
load Rfi .

of the multi-layer system introduced in our previous work
[7]. Our discrete-time agent-based model assumes an electric
circuit as the physical infrastructure as illustrated in Fig. 1.
Although this model is based on direct current, clearly a very
simple one, it captures the essential features of the system to
be investigated. In this case, instead of frequency, the stability
of the system is evaluated by the voltage experienced by the
agents, which reflects the physical balance between supply and
demand. The documentation and source-codes of the proposed
experiments can be found at [18].

A. Direct voltage control

This experiment is a simplified DC version of the one pro-
posed in [9], which focused on frequency control in alternate
current scenarios. We start assuming each individual smart ap-
pliance acts based on the voltage experienced by every agent.
If the voltage is below a given predetermined threshold, the
appliance postpones its planned activation (emulating fridge
cycles). Using this policy, a coordination will happen: every
smart appliance will act synchronously. This phenomenon
– probably unexpected in methodological individualist ap-
proaches – yields overshoots and undershoots that, instead of
stabilizing the voltage (or frequency), create a system that is
structurally unstable.

Fig. 2 shows an example of such dynamics. Note that the
green line is the reference voltage, which has a sudden drop
below the 98% threshold at time 1500. The blue line represents
the voltage behavior when all devices are individualistically
reactive to the signal. One can observe that, after the drop,
a voltage spike happens due to the synchronized reaction
of appliances: they have postponed their cycles in the same
way. But, such a spike drove the system out of its desired
operation so that the appliances need to react again since there
is oversupply in the system. The collective reaction leads to
another drop, but much worse than the initial one. Even more



4

Fig. 2: Simulation comparing the voltage control for three
scenarios. The green line refers to the basic scenario without
voltage control. The blue refers to the smart control with
devices that decides locally (individualist approach). The red
refers to the proposed solution that considers the global
behavior of the system.

dramatic, the system dynamics become oscillatory, even after
the initial voltage drop is restored.

Note that the issue is systemic from the way that the appli-
ance reaction was designed. More interestingly, this happens
even when all fridges have the same shared goal of stabilizing
the grid. The problem is then methodological in its core,
and not result of a bad technology. The smart appliances
are doing what they are supposed to do, so they are still
smart in this sense. However, the system is more unstable,
going against the final shared objective. The system and its
elements are indeed reactive to voltage variations above/below
the established limits, but not in a smart way. And yet, the
problem cannot be reduced to the single agents alone: the issue
is a structural one and happens due to the way the agents are
organized/coordinated.

Let us now consider that the appliances are designed to
consider that the other appliances with the same design are
also connected in the physical grid. Our three-layer approach
now becomes an important tool for building an effective policy
towards the system-level goal, as presented in Table I. The
system goal given in PHY and the individual appliance goal
in REG are the same: stabilizing the voltage when instabilities
appear. From the information layer, the appliances have direct
access to the system state.

As discussed before, the problem appears because all ap-
pliances react synchronously. So the solution to the problem
is coordinate the appliances’ reactions, similar to medium
access control techniques used communication networks [19].
A central controller can just inform which appliance is to
be turned on in a given period (time-division approach). A
decentralized approach – the one used here – is based on
randomization: if an appliance experiences a situation that
action is needed, then it will only act with a given probability
or after a random period of time (like Aloha or carrier sensing
protocols). The red curve in Fig . 2 illustrates the behavior of
the proposed solution, showing that (if the system parameters
are properly tuned) the goal of stabilizing the voltage can be
achieved.

B. Voltage control via dynamic pricing

We propose a similar experiment (although in different
timescales) based on smart washing machines that react to
dynamic price signals. Consistent with [10], this scheme may
worsen the system stability in terms of voltage variations
instead of softening it. Peaks in demand will occur as a
collective, synchronous, reaction to low prices. These spikes
in electricity demand may, and probably will, be harmful to
the power grid. The predicted win-win situation turns out
to be idealistic. The top and the bottom plots in Fig. 3
show outcomes of this scenario using our proposed model.
Following [10], the sudden variation in the aggregate demand
is caused by the internal agent state; these internal price
expectations slowly synchronize during high price periods.
The synchronized collective reaction is then triggered when
a lower price appears.

As argued before, this is not an unfortunate event: it is
rather a systemic feature from the methodological individu-
alism embedded in the demand-response policy design and
the respective individual appliances’ reactions. The proposed
three-layer approach can be used to mitigate the issue by
building interventions that make explicit the structure of the
phenomenon, as presented in Table I. A schematic of our
proposed solution is presented in Fig. 4, where the decision
procedure of individual agents is based on the physical net-
work state and the price associated to that period.

Fig. 3 presents an output of a simulation that compares
the system behavior with (middle plot) and without (top plot)
the local voltage check for the same starting conditions and
same price curve. The local voltage check strategy leads to
much lower drops as far as the agents look not only to the
price to make their decision, but also consider what is actually
happening in the physical system. In other words, they do a
“sanity-check” to verify whether the price is really giving the
most appropriate signal based on the voltage level observed
before the decision of turning on the flexible load.

V. FINAL REMARKS

Although our simulation results were obtained through
a simple model, they are inspired by material, real-world,
phenomena. In other words, our approach tries to get the
essence of the electricity system – defined by the electricity
interchange operation – by analyzing the concrete dynamics
of system in action. Our approach acknowledges that the
individual behavior is part of a complex system that has
different structures in different layers. We argue that this
consideration is a necessary condition to have an effective
demand-response policy.

Smart appliances that are designed to work selfishly can be
deployed in the grid in small number up to a certain point.
If their usage scales up (as it is claimed and expected), then
the concerns posed by this article become very relevant. For
instance, when 1% of appliances avoid the peak evening hour
due to high prices, they can indeed reduce peak-load and then
decrease the usage of reserve power plants. If this number
grows to 10%, they might create another unforeseen peak after
the high price hours, leading to under-usage during the high
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TABLE I: Three-layer description

Scenario PHY INF REG

Direct Structure given in Fig. 1
Goal: Stable voltage value

Voltage information from PHY
Knowledge about others

Action: Add or remove load
Goal: Stabilize voltage

Price
Structure given in Fig. 1
Goal: Stable voltage value

Price information from REG
Voltage information from PHY
Knowledge about others

Action: Add or remove load
Goal: Minimize the cost

Fig. 3: Two simulation runs showing the differences between the scenarios without (top) and with local voltage check (middle).
The bottom plot depicts the market price. The dashed green line represents 5% drop, which indicates the limit.

Fig. 4: Diagram of the proposed solution. The smart meter
is not in direct control of loads, but rather the signal has to
go through a voltage-check layer that will be used to decide
about the load usage.

price hours and reserve power needs in the low price hours
afterwards.

This might seem unlike at first, but even nowadays it is
possible to see the structural effects of the wholesale electricity
market in the physical grid. Fig. 5 presents the average grid
frequency for every second of the day for a period of over

twelve (12) months in Germany. As the nominal frequency
value in Europe is 50 Hz, one would expect the average
would converge to such value, regardless of the measurement
time. However, one sees a quite different behavior, where two
patterns can be identified. The first one being that more intense
spikes occur every full hour while, smaller ones occur every
quarter hour; these specific spots are the time-ticks of the
European electricity market EPEXSPOT [21]. The other one is
that, for some hours, we see negative deviations while in other
hours we see positive ones. This suggests daily reoccurring
over/under corrections. In fact, a very recent paper discusses
in-depth this specific case [22].

Likewise, there was a problem in Germany related to the
upper limit for normal operation of the grid frequency, as
discussed in [23]. This value is set to 50.2 Hz. For this
reason, the initial legislation demanded that all photo-voltaic
generation must shut down when that value was sensed. With
the high penetration of such a source, the aggregate effect
of this rule-based behavior had the potential to decrease the
power generation up to 9 GW (approximately the capacity of
ten big thermal power plants). Such an abrupt generation loss
would lead to a cascade effect, causing a blackout in Europe.

Moreover, the predicted increase of storage and electric
vehicles introduces another challenge to the grid management.
Scaling-up the use of storage may create problems in the oper-
ational timescale (like the proposed smart fridges) and the mar-
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Fig. 5: Average grid frequency over more than one year. The effects of the market timing, with a bidding period ending every
15 minutes, are clearly visible. This illustrates the coupling between markets and the physical system. Data is available in [20].

ket timescale (like the proposed washing machines). In the first
case, batteries may synchronize their activation/deactivation
cycles in relation to the frequency (voltage) signal. In the
second case, they may be used to speculate in the market:
buying when is cheap, selling when is expensive. This may
help the system stability, but also may create synchronization
of expectations (like the washing machines) that harms its
operation. Clearly, the proposed models cannot be extended
to such cases, but it may indicate another important research
direction; if distributed storage capabilities are to scale up, they
need to be properly organized and coordinate to achieve the
desired positive effects in the grid (refer to [24] and references
therein).

All these undesirable, emergent, phenomena are due to syn-
chronization of individual actions and reactions. As we have
argued here, this is a structural feature that emerges from the
system design that (unconsciously) assumes a methodological
individualism approach as default. Proper interventions shall
be based on models where the complexity of interactions
across and along physical, information and regulatory domains
are understood as constituent parts of the system. Otherwise,
there is a big risk of smart parts build a stupid whole due to
structural reasons hidden in methodological choices.
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