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Abstract—5G system and beyond targets a gigantic number
of emerging applications and services that will create an extra
overhead on the network traffic. Moreover, these industrial ver-
ticals have aggressive, contentious, and conflicting requirements
that make the network have an arduous mission for achieving
the desired objectives. It is expected to get requirements with
close to zero time latency, high data rate, and network reliability.
Fortunately, a ray of hope comes shining the way of telecom
providers with the new progress and achievements in machine
learning, cloud computing, micro-services, and the ETSI Zero-
touch network and Service Management (ZSM) era. For this
reason there is a colossal impetus from industries and academia
towards applying these techniques by creating a new concept
called Cognitive Cloud Native environment that can cohabit and
adapt according to the network and resource state, and perceived
Key Performance Indicators (KPIs). In this paper, we pursue
the aforementioned concept by providing a unified hierarchical
closed-loop network and service management framework that can
meet the desired objectives. Also, we have proposed a cloud-native
simulator that accurately mimics cloud-native environments, and
enables us to quickly evaluate new frameworks and ideas. The
simulation results demonstrate the efficiency of our simulator for
parroting the real testbeds in various metrics.

I. INTRODUCTION

Hitherto, there is an impressive growth of network data
traffic and progressive digital transformation of industry and
society. This stresses the network capacity and pushes it to
the limits by creating issues related to network and resource
capacity, security, resiliency, reliability, and privacy treads.
From another side, the 5G system and beyond targets an
immense number of emerging verticals and applications that
will stress even more the network traffic. In contrast to the 4G
LTE system, 5G envisioned close to zero time latency, higher
data rate with ten times more, five-nines network availability,
and a more dense network with 10 - 100 more connected
users and devices [1]. It is expected to observe more chal-
lenges in upcoming years related to the expected exponential
increase of traffic and ever-growing network complexity and
heterogeneity. On another side, the KPIs of different services
and applications become more demanding, which makes their
satisfaction an extra overhead on the network and telecom
providers.

Fortunately, a ray of hope comes shining telecom providers’
way with the new progress and achievements in Artificial
Intelligence (AI), cloud computing, and micro-services era.
The new achievements enable the development of a cognitive
network that can cohabit and adapt according to the network

and vertical changes. Shifting to the micro-service concept
by telecom (i.e., 5G service-based architecture [2]) creates a
new concept dubbed Cloud Native Environment (CNE) that
can adapt according to the network and vertical needs by
favoring horizontal than vertical scaling. Moreover, the service
granularity created thanks to the micro-service concept, leads
to:

• Increase the elasticity and reduce the Operating
Expenses (OPEX): This concept gives high freedom
of adaptation according to the network and resources
changes, and thus an atomic service provisioning that
reduces the cost and increases the flexibility. It gives the
possibility of deploying services using the right amount of
replicates and resources to reduce the OPEX and enhance
the elasticity. The resources would be used according
to their needs which prevents the over-provisioning of
services;

• Increase the resiliency and the reliability: This ap-
proach enhances the network resiliency and reliability
by enabling the deployment of multiple micro-service
replicates. This gives the network the capacity to maintain
the service level even with failures in some replicates.
Moreover, the cognitive network can automatically adapt
to network failures by deploying more replicates, which
does not consume too many resources, if needed. From
another side, in the presence of attacks, legitimate ser-
vices could be easily shifted and moved towards safe
locations to ensure the service continuity and prevent the
attacks from spreading. Meanwhile, different mitigation
mechanisms would be applied in a locked-down environ-
ment for alleviating the attacks;

• Ensure the expected KPIs and enhance the Quality
of Experience (QoE): This approach enables the de-
ployment of services with fine granularity for handling
few objects or users, which increases the likelihood for
deploying them on the proximity of users and hence in-
creased bandwidth, and reduced latency will be perceived.
Moreover, the use of micro-services enables the smooth
services relocation across Multi-access Edge Computing
(MEC) and clouds, with limited computational resource
and network bandwidth utilization, following user and
object motion, and hence ensures the targeted KPIs and
enhance the perceived QoE.

Besides the micro-service concept, technology enablers and
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concepts, such as MEC, Software-Defined Networking (SDN),
Network Functions Virtualization (NFV), and ETSI ZSM [3]
will play crucial roles in the 5G system and beyond to miti-
gate the challenges above and achieve the desired objectives
and KPIs. Thanks to these techniques and technologies, the
elasticity, resiliency, reliability and QoE will be increased,
the OPEX will be decreased, and the KPIs ensured. In 5G
system and beyond, with the new move towards the cloud-
native approach, there is a growing enthusiasm for using AI
techniques and ETSI ZSM concept that will play a deeper
and deeper role in the orchestration, control, and user planes.
The CNE will be mainly executed on top of distributed data
centers characterized by their resources and computational het-
erogeneity, and its geographical distribution could include pri-
vate/public clouds and MECs. The CNE will leverage both AI
and ZSM to attenuate the intensity of resource heterogeneity
and geographical distribution by: First, managing, controlling,
and orchestrating distributed resources and services across
those clouds and MECs. Second, running services over a
continuum of geographically distributed resources by pushing
those services near the end-users while hiding the resources’
heterogeneity. Third, cloud-native services that enable smooth
service relocation among different sites in a seamless fashion.

In this paper, we present an Artificial Intelligence based
Resource aware Orchestration (AIRO) framework in CNE.
AIRO framework leverages ZSM concept, cloud-native ap-
proach, and Machine Learning (ML) techniques for efficiently
managing network and computation resources. The contribu-
tions of this paper are manifold:

• A unified AIRO framework that is aligned with ETSI
ZSM vision and leverages ML techniques for enabling
closed-loop automation and autonomous CNE.

• A monitoring and management agent deployed alongside
the master node at each cluster for creating a single
management domain. The latter receives the high-level
controls and commands generated from the End-to-End
(E2E) management domain using domain integration fab-
ric.

• A simulation platform that accurately mimics K8s micro-
services clouds, and thus enables to evaluate the scalabil-
ity of AIRO framework and any other similar framework
to be proposed in the future.

The remaining of the paper is organized as follow: Section II
offers a background study and summarizes different related
works presented in the literature. While Section III presents the
AIRO framework functionalities and summarizes our cloud-
native simulator, as well as the monitoring and management
agent. Meanwhile, Section V shows the performance evalu-
ations and the comparison between the real deployment and
simulation performances. Finally, the paper is concluded in
Section VI.

II. BACKGROUND AND RELATED WORK

A. Background

ZSM can be considered as a natural extension of ”sys-
tem of systems” concept by integrating AI techniques for
enabling self-orchestration and management. ZSM defines a

unified management and orchestration framework for manag-
ing functions, services and resources in an autonomous and
harmonized way. The managed resources include physical
resources, such as Physical Network Functions (PNFs), Virtual
Network Functions (VNFs) and/or cloud resources (e.g. ”X-as-
a-Service” (XaaS) resources). ZSM has modular architecture
consisting of self-contained and loosely coupled services that
communicate using intent-based interfaces. Such interfaces
expose high-level abstraction in order to hide complexity,
technology and vendor specific details. This helps for ensuring
the flexibility and extendibility, and hence managing services
(horizontal/vertical control scaling) and capabilities at different
subsystems in a transparent manner. Moreover, this ZSM
framework ensures both scalability and resiliency by adopting
a decentralized approach and by giving more freedom to
the local subsystem management for taking local decisions.
ZSM ensures the self-management capability by leveraging
AI techniques for enabling a fully automated system that
prevents human intervention. ZSM architecture consists of two
management parts: i) Management domains; ii) E2E service
management domain. While there is a multiple entities from
the former, there is only one entity from the latter.

Each management domain is considered as a loosely cou-
pled entity, whereby its functions internally communicate
using internal domain integration fabric. This fabric, besides
ensuring the communication between management functions,
it enables the registration, discovery and invocation of man-
agement services within the management domain. Concep-
tually, a management domain could be formed based on
functional similarities (e.g., Transport, Access Network, Core
Network, etc.) or relationships such as services using the
same set of infrastructure resources, types of infrastructure
resources, technology and/or ownership. While the E2E ser-
vice management domain, which is also a loosely coupled
entity, ensures the cohesion and the unified management and
interaction between the different management domains, thus
it helps enable E2E services that meet the desired KPIs
[4]. An external domain integration fabric is used to ensure
the communication between various management domains,
including E2E service management domain, the registration,
the communication and the discovery functions. Internal and
external domain integration fabrics use different service pat-
terns including registration/discovery, synchronous (request-
response) and asynchronous (publish-subscribe) interactions.

Thanks to AI techniques, closed-loop management and or-
chestration is ensured at the management domain level, as well
as at the E2E service management domain level. As part of
the closed-loops, the following functions are employed: Data
collection, control, orchestration, intelligence, and analytics.
In fact, the domain data collection service monitors all the
entities, functions and services. Then accordingly, it provides
feedback to the other functions (control, orchestration, intelli-
gence, and analytics) in order to support the closed-loop au-
tomation. The domain control service allows to steer the states
of managed entities and coordinate with the orchestration func-
tions. While the orchestration functions enable the instantiation
and maintenance of domain-level network services, including
creation, modification and termination of the services, and they
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allow the automation of corresponding workflows. Meanwhile,
intelligence functions are responsible for driving the intelligent
closed-loop automation by leveraging various AI techniques
including Machine Learning (supervised, unsupervised and
reinforcement learning). Finally, based on the feedback of
data collection functions, the analytics functions provide do-
main specific predictions which enhance further the intelligent
closed-loop automation.

Kubernetes is a container orchestration system that is used
to manage containerized workloads and services. A Kuber-
netes cluster consists of (at least) one master and multiple
worker nodes. The nodes run PODs which are the smallest
deployable and managed units in the cluster. A POD typically
contains multiple containers that provide a service and are co-
located and co-scheduled. The Kubernetes cluster maintains
a (logically) centralized storage which is used to store the
cluster’s state information and its configuration and that is
also used for service discovery. One of the Kubernetes’ system
components is the scheduler and its main responsibility is to
find the most suitable worker node where to run a POD.
Therefore, it is responsible for service placement which is
a very important topic in 5G networks [5]. The scheduler
and other controllers are bound to work only for one cluster
where the maximum number of nodes, preferably, does not go
beyond 5000 nodes. Also, the scheduler policy is fixed, it is
manually set by the operator. In 5G and beyond systems, the
deployments are heading toward multi-cluster setups with a
high-level of automation. The scheduling mechanisms would
need to cope with the high number of possible configurations
that comes from the increased number of nodes and the
increasing users requirements. Following the ZSM framework,
implementing hierarchical AI driven systems would alleviates
some of the issues induced by multi-cluster setups.

B. Related Work

A lot of efforts have been put into applying the cloud-
native principles in the 5G mobile system. In [6], the authors
introduced Next Generation Platform as a Service (NGPaaS)
project. The main idea behind NGPaaS is to remove the barrier
between the telecommunication and IT industries. In one
scenario, the telecommunication industry will enable Content
Providers to place VNFs into the networks that connect their
data centers and their customers. Other works have applied
the cloud-native principles to 5G systems [7], [8]. In [8], the
authors provided a proof of concept for 5G network slicing.
They proposed to replace large monolithic network entities
with Service Function Chains (SFCs) that are made up of
several lightweight VNFs. The SFCs would represent an ab-
straction of a network function or capability, such as network
authentication or packet scheduling. While [7] proposes to
shift Virtual Machine (VM) based VNFs toward container
based ones to achieve more lightweight virtualization. This
approach, called native-cloud VNF, is meant to provide 5GaaS.

In current 5G systems, the exhibited scale and heterogeneity
of resources and users demands results in further complex
systems with a huge space of possible settings. Indeed, in
a scenario of task scheduling that have multi-dimensional

resource requirements, coupled with a telco-grade system, the
scheduling problem would prove to be too complex. Using
traditional ad-hoc scheduling mechanisms may underperform
in such complex systems. Therefore, ML techniques are being
widely adopted to replace heuristic approaches. Due to the
large set of parameters, the use of AI techniques is becoming
of utmost importance. With ML techniques, it is possible for
the scheduling framework to automatically understand both
of the workload and the environment [9]. A careful design
of the ML algorithm would ensure a robust scheduling in
heterogeneous changing environments while following the
performance guidelines set by the operator. [10] introduced
a Deep Learning (DL) scheduler that is specifically aimed
for DL clusters where the main objective is the average
job completion time. It is worth noticing that DL scheduler
deals only with the resource allocation problem, which means
that the resources locations are irrelevant in such scenarios.
Another interesting use case for AI techniques, is smart mon-
itoring. Given the sensitivity of Ultra-Reliable Low-Latency
Communication (URLLC) type applications and the high
number of devices in massive Machine Type Communications
(mMTC), the monitoring demands of 5G networks are quite
pervasive [11]. In this context, ML methods can greatly reduce
the size of transferred monitoring data by using ML-based
methods for intelligence extraction close to the source of the
data.

One pillar of 5G networks is edge computing. It consists
in pushing the computing resources toward the edge of the
network where they are closer to the end-user. The closer the
edge cluster to the end-user is, the better QoE perceived by the
end-user becomes. It is also clear that with edge computing
the resources would be distributed in a large geographical
area. Considering these properties, the VM placement problem
would become fundamental to the good functioning of the
network. [5] have provided a comprehensive list of several
solutions of the VM placement problem. They categorized
the solutions in regards to energy consumption minimization,
cost optimization, Quality of Service (QoS), resource usage,
reliability, and load balancing. In [12], the authors have
provided a comprehensive view about the interplay between
Deep Learning and the edge. They show how DL techniques
are leveraged to optimize the edge and how the edge can
be optimized to better support DL based services. Finally,
authors in [13] have leveraged machine learning techniques for
enhancing the NFV Management and Orchestration (MANO)
platform. A bottom-up micro-functionality approach has been
presented that leverages reinforcement learning and federated
learning techniques. In contrast to the mentioned solution,
AIRO framework leverages deep reinforcement learning tech-
niques for providing closed-loop automation and autonomous
CNE.

III. ARTIFICIAL INTELLIGENCE BASED RESOURCE AWARE
ORCHESTRATION

In this section, we present our AIRO framework that aims
to leverage ML techniques for orchestrating network and
computing resources in CNE. The AIRO framework consists
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of two parts, which are E2E service management domain,
and single service management domains. Finally, we conclude
this section by presenting our cloud-native simulator that
accurately mimics real deployment of cloud-native cluster (i.e.,
K8s).

A. AIRO Framework: General Overview and E2E Service
Management Domain

Figure 1 depicts a general overview of AIRO framework
targeted by this paper to create Cognitive Cloud Native. The
AIRO framework leverages both ZSM and ML for creating
self-orchestrated and self-optimized CNEs that are able to
cohabit and adapt according to the network state and industrial
verticals’ KPIs. AIRO mainly consists of two planes, which are
i) The orchestration and management planes that present E2E
service management domain; ii) The management domain
that presents the user plane. The latter consists of a set of
clouds and edges, whereby different vertical micro-services
and applications run. For instance, K8s and K3s can host
services at the cloud and edge level, respectively. While the
communication components within the edge and cloud present
the internal domain integration fabric, the ”Monitoring Bus”
and ”Command & Control Bus” present external domain
integration fabric.

In AIRO framework, we have two resource orchestration
and management levels that aim to optimize the deployment
of the services. The first level consists of E2E service man-
agement domain that has the global vision and information
about various verticals, CNE clusters states, network and
computational resources, as well as running services. AIRO
framework has two scheduling levels; the first for E2E service
management domain and the second for CNE cluster.

In the first scheduling level, different services and POD
intents would be generated and queued up to serve various
verticals. Then, according to the vertical state (e.g., user loca-
tion), clusters states, and network and computational resources,
the AI based Orchestrator (i.e., the first scheduling level)
decides at which time and on which CNE cluster the PODs
and services should be created. In order to take the right
decisions, the AI based Orchestrator would employ various
AI techniques including deep learning and deep reinforcement
learning techniques, such as value-based (e.g., DQN, DDQN,
and Duel-DDQN) and policy-based (e.g., A2C, A3C, DDPG,
and PPO) approaches. The latter offers the ability to learn
from the environment, and then accordingly offer the ability
to cohabit and adapt according to the KPIs and resources state.
The AI based Orchestrator requires two inputs. While the first
input consists of the target KPIs per vertical and network slice,
the second one consists of the aggregate logging network state
that includes information about resources in different clusters
and perceived KPIs. Based on the observation that in a closed-
loop management system, the AI based Orchestrator deals with
continuous time series data. Thus, there is a need for data pre-
processing that includes data cleaning, integration, smoothing
and reduction. For this purpose, the ”Monitoring Aggregator”
entity has been suggested. In order to remove the noise in this

module, different data pre-processing strategies and methods
would be applied including dimensionality reduction, discrete
Fourier transform, numerosity reduction, and discrete wavelet
transform.

Meanwhile in the second scheduling level, the PODs will
be instantiated at the single management domain (cloud-
native cluster) from the received POD intents. In each single
management domain, there is a Monitoring Agent (MA) that
is responsible to gather local information related to network
and computation resources and applications, such as QoE,
E2E delay and bandwidth, to ensure the desired KPIs. In
each cloud-native cluster (i.e., K8s or K3s), the required
services (i.e., POD intents) are deployed as PODs and exposed
them to the outside world. Besides the master node, there
is a management agent that exposes REpresentational State
Transfer (REST) API and is able to apply different strategies
for selecting the appropriate worker node for each POD
deployment. Therefore, according to the general guidelines
received from the E2E service management domain (i.e.,
AI based Orchestrator) through the REST API, the cloud-
native management agent will deploy PODs in various worker
nodes to meet the desired KPIs while preventing service over-
provisioning and resources under utilization.

B. AIRO Framework: Single Service Management Domain

In this section, we detail the scheduling process at each
single management domain (i.e., K8s and K3s cluster). The
latter also offers close-loop self-management automation plat-
form to deploy received POD intents. In vanilla K8s and K3s
cluster, the PODs are scheduled and deployed in a predefined
order and using two cycles, which are the scheduling and
the binding cycles. While the appropriate worker nodes are
selected for hosting different PODs during the scheduling
cycle, the PODs are actually deployed during the binding
cycle. In the scheduling process, the PODs that fail to be
scheduled should get back to the initial queue, and then
considered in the next epochs. The deployment of the POD
would be aborted after a given threshold of scheduling failures.
We have enhanced the single management domain to ensure
the close-loop self-management automation by adding two
new modules, which are i) MA, and ii) management agent.
The former gathers logging information within that cluster and
reports them to the latter and to ”Monitoring Aggregator”
modules. Meanwhile, the management agent leverages the
outputs of the MA for updating the internal strategies of PODs
scheduling to reduce and prevent deployment failures and to
ensure the satisfaction of desired KPIs. Similar to E2E service
management domain, AI techniques including deep learning
and deep reinforcement learning techniques would be explored
in the future for providing the required strategies. Taking
the decisions at the cluster level helps AIRO framework to
be a hierarchical, an extensible and a scalable platform by
lightweighting the overhead on the E2E service management
domain.

Figure 2 depicts a detailed communication diagram between
the two developed modules and vanilla K8s and K3s clusters.
With the help of these new communication links, it becomes
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Figure 1: Main idea of AIRO framework.

possible to exploit AI based techniques together with ML to
assist the K8s cluster’s workload scheduling. In such system,
both K8s and external entity have specific well-defined roles
based on their interactions that are carried out via the specified
Application Programming Interfaces (APIs). These roles and
the respective APIs are depicted in Figure 2. The external
entity (from the K8s cluster’s point of view) called AI/ML
logic provides guidance to the K8s scheduler on how to
evaluate candidate nodes (workers). This guidance consists of
mathematical formulas and the related KPIs based on which
a rank value (see Scoring in [14]) for each candidate node is
calculated. In this way, the AI/ML logic is continuously main-
taining up-to-date guidance information in the K8s scheduler
so that at any moment, a new workload scheduling can be
done accurately.

This approach does not slow down the scheduling cycle
by introducing external entities in the scheduling loop, since
any communication (synchronous or asynchronous) to fetch
external information for the scheduler’s decision making phase
may delay the execution of the internal scheduling function-
alities. The feedback for the AI/ML logic is achieved in two
steps; i) the results of the scheduler’s decision making are
communicated back (Report) and ii) the cluster’s conditions
are actively monitored (Observe). This feedback is then used
to further refine the AI/ML logic’s ”knowledge” affecting to
the related ML among other things. All this is then used to
update the guidance to the scheduler.

Additionally, this kind of system enables a single AI/ML
logic to govern multiple clusters that are operating au-
tonomously, i.e., there are no federation or co-operation

Figure 2: Communication system overview.

between clusters. However, even if clusters operate au-
tonomously, certain management actions could be imple-
mented in a distributed fashion resulting in a federated man-
agement operation on top of the clusters at the AI/ML logic
level. For instance, federated scheduling can be achieved by
having an external entity in the scheduling loop, even if
the scheduling process becomes slower than the autonomous
approach, the advantages of such distributed operation could
far outweigh the slower execution times.

Cluster operators are interested in driving the cluster to-
wards some equilibrium of multiple objectives. These objec-
tives represent operator’s incentives and goals, and one of
the main incentives is to reduce costs and increase revenue.
In what follows we shall present some objectives that the
operators may chase:

• Utilization and load distribution among nodes: Dis-
tributing the load among the nodes consists in keeping
a low utilization across all nodes. In fact the euclidean



6

Figure 3: CPU consumption per node.

distance of the percentage of resource utilization among
nodes should be reduced as much as possible. This
helps maximizing resource utilization while mitigating
and reducing points of congestion. The accurate load
distribution ensures a good distribution of network traffic
which may result in a positive impact on the QoS and
QoE.

• Reduce operation costs: In a scenario where nodes have
different running costs, it may be useful to shift load
from nodes with high running costs to nodes with smaller
running costs.

• Reduce energy consumption: Likewise, this objective
may help the operator in choosing nodes with small
energy footprints. It can also clear some nodes from all
the PODs so they can be turned off.

• Service satisfaction: In this instance, the objective is
to maximize the service satisfaction. In other words,
regardless of the cluster and node status, the best node
would be the one that satisfies all the preferences of the
service.

• Selecting healthy nodes: We may consider the nodes
that have less probability of failure. Such a probability
can be calculated from the current load exerted on the
node and its history of failures. This objective will help
increase the reliability of deployed services.

C. Cloud-native Simulator

This section addresses the challenges faced in the deploy-
ment of AIRO framework. One of the main challenges is how
to support ML for the new clusters in such way that a newly
created cluster has sufficient knowledge to carry out intelligent
decisions making without needing from scratch training of the
ML. One way would require us to build a set of pre-trained
agents that can be injected into a new system. The injected
agents will help the system to quickly converge and to take
the right decisions in a short period. In order to create such pre-
trained agents for a system following the proposed framework
(Section III), a simulator was developed to provide training to
ML agents in pre-configured cluster environments.

Given the nature of deep reinforcement learning algorithms
where the agent learns from scratch, using real environments
as a playground for the agent would result in multiple issues.
Real environments evolve in real time while simulated ones
can be accelerated. Moreover, multiple instances can run in
parallel which will greatly reduce the time needed to train the
agent. Real environments can be irremediably harmed due to
a bad behavior of the agent. Using simulated environments
would help the agent to learn in widely different configura-
tions, while real environments are constrained with available
resources; in other words, simulation is cost effective. Last but
not least, simulated environments are energy efficient, which
represent a growing concern in the field of Reinforcement
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Learning. The simulated environment is meant to jump start
the agent learning, it is not meant to replace the real environ-
ments. Indeed, after finding a decent policy, the agent needs to
continue learning once it is deployed in a real environment. On
the downside of using simulated environments is the fact that
the simulation has to be sufficiently accurate. When simulated
and real environments greatly differ, the agent will, in the best
case, underperform when deployed and it can even be useless
or harm the real system in the worst case scenario.

Given the reasons mentioned above, in what follows, we
shall introduce our simulation testbed of a Kubernetes cluster.
In our case study, there are four main components that defines
a Kubernetes cluster: a) a set of PODs, b) a set of Nodes, c) a
scheduling mechanism, and d) a statistics/reporter module. A
POD can be characterized by its actual resources consumption,
its requested/claimed resources, and the upper limits that it
cannot go beyond. It can also specify some requirements and
preferences on which kind of node it should be deployed on.
A Node is characterized mainly by how much resources it
contains and it can specify other characteristics such as type
of node, location, or cost. The node should also keep track
of the PODs that are deployed on top of it. The scheduling
mechanism responsibility is to place new PODs into a node.
Finally, the statistics/reporter module is used to extract the
status of the cluster. It will act as a monitoring system that
will help gather all the necessary information needed by
Reinforcement Learning (RL) agents. The cluster also needs
to keep track of deployed PODs, especially when there are
multiple replicas of the same POD running in different nodes.

The lifetime of a POD is very short compared to the lifetime
of the Kubernetes cluster. Therefore, the Kubernetes cluster
will witness many arrivals and departures of PODs. Nodes
can also be added and deleted dynamically from a Kubernetes
cluster. It is clear then that the simulator should provide a
sense of the passing of time. In order to do this, we opted to
implement a discrete time simulator with which the lifecycle
of the different components of the Kubernetes cluster would
be managed. The time module is used to model the arrival and
departure processes of the PODs and to model the resources
consumption changes during the lifetime of a POD. It can also
be used to generate random events, such as the failure of a
POD or a node, and it can also be used to dynamically change
the load exerted on the cluster.

With this simple design, the simulator can easily be ex-
panded to support new use cases. In order to alleviate the
problem of the difference between the real and simulated
environments, this simulator will be updated to reflect the
insights gained when deploying the learned agent in real
testbeds.

IV. CLOUD NATIVE ENVIRONMENT USE-CASES AND
SCENARIOS

In densely crowded environments, a large number of Inter-
net connectivity demands originate from a small geographical
area. Under such circumstances, it is not always possible to
satisfy such demands. Usually, to alleviate this problem, users

are grouped into clusters that share computational and storage
resources [15]. The purpose of such clustering is to satisfy
the demands of the users inside that cluster. Therefore, the
number of users inside a cluster and the number of clusters
varies greatly. Given this high variability in network topology,
having independent and self-managed clusters is of utmost
importance. In this regard, the AIRO framework would permit
the hierarchical management of such clusters.

Many verticals will benefit from the AIRO framework
thanks to the intertwining between the flexibility of micro-
services and the smartness provided by the artificial intel-
ligence. Self-driving vehicles are next-to-come, multiple car
manufacturers around the globe are pursuing this vein. Such
vehicles need a reliable network with stringent latency re-
quirements. This is why the interplay between vehicles and
Roadside Units (RSUs) plays a vital role in the functioning of
these vehicles. With AIRO framework, multiple AI managed
clusters can collaborate to satisfy the requirements of self-
driving vehicles. Indeed, with the help of the E2E service man-
agement domain, the AI agents can collaborate, for instance,
on the placement and relocation of VNFs problem [16].

From another side, object detection, and recognition would
play a crucial role in future use-cases and applications varying
from self-driving cars to augmented reality. Unfortunately,
object detection and recognition is a time and resource-
consuming process. The problem heavily lies in the number
of images that should be treated to track moving objects.
AIRO framework will play a crucial role in enabling these
applications by splitting the jobs smartly into different micro-
services and running them at the appropriate locations for
achieving the desired QoE.

Last but not least, the AIRO framework will play a pivotal
role in enabling smart home applications. Soon, it is expected
to observe a massive amount of Internet of Things (IoT)
devices used everywhere for managing people surroundings
[17]. These IoT devices would generate tremendous uplink
traffic that should be treated efficiently and close to their
source generation. Moreover, placing the services closer to
the users would have a positive impact on the perceived QoE.
By leveraging ML techniques, the AIRO framework is able to
identify and deploy the required micr-oservices at the clouds
that are close to the user.

V. PERFORMANCE EVALUATION

Using a simulator instead of using a real deployment would
greatly reduce the time needed by the agent to learn a good
policy. However, the simulator should show a similar behav-
ior to the real deployment. In what follows, a performance
evaluation is carried out to show how close our cloud-native
simulator is to the real deployment.

The experiment testbed comprises three worker nodes and
one master node. Each node has 4 CPU and 4Gib of memory.
Prometheus is used to monitor the load exerted on the cluster.
In order to study the cluster’s behavior, dummy PODs are
launched. These dummy PODs do random calculation and
write/read random values to/from the memory. Therefore,
PODs do not only reserve, but actually consume computation
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(a) Real testbed (b) Simulated testbed

Figure 4: Memory consumption per POD.

and memory resources. The PODs run a containerized version
of stress-ng tool, which is used to stress test computers.

The main idea behind this performance evaluation study is
to deploy the dummy PODs into K8s and study how resource
consumption evolves with respect to time. In this experiment,
all PODs are configured to use 1 CPU and and 1Gib of RAM.
In order to reduce the effect due to system and Prometheus
PODs, 1 CPU and 1Gib of RAM are reserved in each worker
node. Consequently, nine PODs can be fitted into the testbed.
The experiment scenario is scripted as follows:

1) POD1..9 are launched with a 30s interval between each
two launches

2) After 20 minutes, three PODs are terminated, one from
each worker node.

3) After 20 minutes, POD10 and POD11 are launched.
4) After 10 minutes, POD12 is launched.
5) After 20 minutes, the remaining six pods from POD1..9

are terminated.
6) After 5 minutes, all remaining PODs (i.e., POD10..12)

are terminated.
Figure 3 shows CPU consumption per node. It is clear

that the evolution of CPU consumption in the real and the
simulated testbeds is quite similar. There are, though, two
main differences between the two testbeds. The real testbed
shows small variation of CPU consumption through time and
it also shows small delays when PODs are launched and
somewhat longer delays when they are terminated. While in
the simulated testbed, the CPU consumption is stable and the
changes are instantaneous. These same conclusions hold true
for memory utilization. With the exception that the variation
in memory utilization is less pronounced than the variation in
CPU utilization.

Figure 4 shows memory consumption for each POD. From
Figure 4(a) and Figure 4(b), it is clear that the real and
simulated testbeds are almost identical. The only notable
difference between the two is that the real testbed can show

random behavior such as it is shown by POD6 and POD9

between 3500s and 4000s. Likewise, CPU utilization of PODs
in both testbed is quite similar. Similar to what was shown at
the node level, at the pod level, the real testbed shows some
noisy behavior compared to the simulated testbed.

This experiment shows that when it comes to CPU and
memory utilization, the real and the simulated testbeds are
quite similar. Therefore, the small variation in resources
consumption should not have an impact on the scheduling
decision. Also, it is indeed quite straightforward to add noise
in resource consumption for each POD.

VI. CONCLUSION

Leveraging ZSM concept, cloud-native approach and ML
solutions, AIRO framework has been proposed. The AIRO
framework offers a solution for telco-grade system resource
management and service satisfaction enforcement. It proposes
to alleviate the scheduling and placement problem in very large
system where the number of possible configurations is huge.
In order to evaluate and quicken development of the AIRO
framework, a simulation platform has been introduced. This
simulation platform mimics the behavior of a real deployment
of a cloud-native cluster. Evaluation results have shown that
the behavior of a cluster can be approximated with a small
degree of uncertainty which is due to the stochastic behavior
of computing systems.
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Figure 1: Main idea of AIRO framework.



Figure 2: Communication system overview.



Figure 3: CPU consumption per node.



(a) Real testbed (b) Simulated testbed

Figure 4: Memory consumption per POD.
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