Challenges of Al in Wireless Networks for IoT
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Abstract—The Internet of Things (IoT), hailed as the enabler
of the next industrial revolution, will require ubiquitous connec-
tivity, context-aware and dynamic service mobility, and extreme
security through the wireless network infrastructure. Artificial
Intelligence (AI), thus, will play a major role in the underlying
network infrastructure. However, a number of challenges will
surface while using the concepts, tools and algorithms of AI in
wireless networks used by IoT. In this article, the main challenges
in using AI in the wireless network infrastructure that facilitate
end-to-end IoT communication are highlighted with potential
generalized solution and future research directions.

I. INTRODUCTION

Internet of Things (IoT), the term first coined by Kevin Ash-
ton in [1], is an extension of network connectivity to physical
devices, such as actuators, sensors and mobile devices, enabled
to interact and communicate among themselves, and can be
controlled or monitored remotely. IoT, hailed as the enabler
of the next industrial revolution, will transform how we view,
interact and use the current physical systems available around
us. It already have major impacts on health care, smart-homes,
manufacturing, commerce, education and many other key areas
of the daily life. The IoT market is undergoing incredible
growth and the IoT industry is projected to grow tenfold
by 2025 [2]. With smart cities in a foreseeable sight having
automated IoT in various forms, such as Unmanned Aerial
Vehicles (UAVs), smart-homes, e-health devices, and context-
aware Augmented Reality (AR) and Virtual Reality (VR)
applications used in daily routines, the underlying communica-
tion networks must evolve to meet their needs. Communication
networks must also support autonomous operations due to
the continuously changing services, unprecedented increase
in network traffic, and increasingly complex security threat
landscape due to the amalgamation of diverse IoT devices and
services. All these challenges further add into increasing the
complexity of network operations.

Artificial Intelligence (AI) with its disciplines, i.e., machine
learning (ML), is the primary enabler of an autonomous
and intelligently operating network. Since the groundbreaking
work of Hinton et al. [3] in 2006 on a fast training method for
deep neural networks, there has been a reinvigorated interest
on neural networks and other ML methods in communication
networks [4]. The application of ML in wireless networks has
been of immense interest and a plethora of research articles
has been published. However, this is just not the first age of Al
where it has attracted a huge attention of research community.
During 70s and 80s, there have been immense enthusiasm and

optimism on Al in cycles, which was followed by periods of
Al winters, a term coined to explain low interest in Al. The
current era of Al is bolstered by advanced semiconductor tech-
nologies and the advent of cloud and distributed computing.
In spite of all these technological advancements, a number
of challenges still remain today in order to successfully
deploy AI based solutions on a competitive basis in wireless
networks. Instead of considering Al as an omnipotent solution,
a cautious approach and a careful comparison against state-of-
the-art solutions is necessary to make the Al-based solutions
applicable and successful in future communication networks.
For capitalizing on IoT, having increasing number of con-
nected diverse devices with emerging smart services, au-
tonomous network operations leveraging Al is inevitable. For
example, the conglomeration of heterogeneous IoT devices
in UAVs, e-health, manufacturing, AR/VR, wearables, and
smart homes through the communication technologies will
make it very difficult to differentiate a security attack from
legitimate traffic, and may not be practically possible or man-
ageable without using Al [5]. Therefore, autonomous network
operations are contemplated to be possible with embedding
and using the concepts, technologies and algorithms of Al in
wireless networks. To avoid repeating the definitions of the
vast number of types and disciplines of Al, in this article
the term Al is referred to techniques that are used to i)
gather (raw) data from the network environment, ii) perform
computation on it (e.g. for classification, training and testing),
and iii) produce intelligent actionable information for the
network. This may include the required systems of supervised,
unsupervised or semi-supervised learning, to name a few.
However, using Al in wireless networks will bring its own
challenges, which may not be worth considering in other fields
such as machine vision and robotics, but highly important in
communication networks, specifically in the case of IoT [6].
For example, gathering the raw data for training the system
incurs network overhead. Storing the raw data requires storage
systems, and in big data, big storage systems are required.
Similarly, performing computation on the data to extract
actionable information requires higher computing resources.
If resources are available in high-end servers in centralized
cloud systems, latency critical applications will be challenged
by the communication latency, besides other factors [7]. In
decentralized systems, sharing data and training models or
parameters of Al algorithms will not only require higher
communication network resources, but also open security
challenges. Hence, using Al in wireless networks has many



challenges that are not counted in most of the research in this
direction.

Most of the state-of-the-art research articles attempt to
solve specific challenges using Al in wireless networks while
ignoring the resulting challenges arising as a consequence.
Therefore, major challenges that arise due to using Al in
wireless networks are discussed in this article, mainly from
the point of view of IoT. The main purpose of highlighting
the challenges is twofold. First, to grasp research attention
to the limitations of AI from the perspectives of wireless
networks. For example, wireless channels are prone to errors,
data distribution can be non-uniform keeping in mind the
possibility of unavailability of data due to various reasons such
as jamming attacks, and wireless networks can have limited
capacity such as bandwidth, storage and computing required
for Al Second, to motivate further research on developing Al-
based solutions that are either specific to wireless networks
or avoid facing situations where solving one problem creates
another in the wireless network infrastructure. For example,
learning from the big data generated by IoT with the help of
Al in the edge might yield the required results, however, the
required storage and processing might be too costly compared
to its benefits. Therefore, how to avoid pitfalls in using Al in
future wireless networks, specifically in the case of 10T, is the
main theme of this article.

II. CHALLENGES POSED BY AI IN THE WIRELESS
NETWORK INFRASTRUCTURE

To complement for resource limitations, heterogeneity, and
complexity in IoT on one hand, and big data on the other
hand, various concepts of enhanced computing, storage, link,
and bandwidth are bundled with the concepts, tools and
algorithms of Al. Therefore, huge research efforts are going
on in this direction as presented in [8], [9]. Moreover, new
concepts and disciplines of Al in different network systems
or network services are proposed, discussed, and evaluated
continuously [10]. Fig. 1 presents a generic global network in
which Al is used in different segments, including IoT devices,
and the network that connects diverse IoT devices. However, a
number of challenges will surface in the when Al is used but
proper consideration is not given to the underlying network
architecture and infrastructure. In this section, we discuss the
main challenges that will be on the forefront when Al is used
in future wireless networks. The most common challenges,
related to almost all types of networks as depicted in red in
Fig.1, are described below.

A. Higher communication overhead

Using Al to improve the efficiency of IoT devices, services
offered by IoT devices, or to improve the functionality of the
underlying network used by IoT will have additional commu-
nication overhead. The communication overhead caused by Al
can be attributed to the very basic operating principles of Al
systems. For example, ML systems derive useful information
from (large scale) data that needs to be communicated between
the devices running ML algorithms. To illustrate the extra
communication costs, consider the learning device in Fig. 2

using communication bandwidth and spectrum for observation,
communicating results of the interpreter, and then sharing the
action space with other IoT devices in the environment. Thus,
the communication costs of learning algorithms in ML can be
generically determined by i) number of communication rounds
required to observe or learn the environment (ML algorithm
convergence), ii) number of channels used per communication
round, and iii) bandwidth or spectrum used per channel in a
communication round.

In IoT, the huge amount of diverse data generated by
the massive number of connected IoT devices will require
very high memory and processing resources [11]. Thus, the
limited capacity of IoT devices will force the ML processing
and required storage to other available resources, the most
prominent being the edge nodes, mainly being near to IoT
devices to meet the latency requirements [12]. However, it is
highly challenging in most use-cases of big data generated
by IoT to fit and process the entire data set in the edge as
discussed in [12]. Therefore, two approaches will most likely
be used, first, coordinated distributed processing in multiple
edge nodes, and second, centralized processing in a pool
of larger processing and storage systems such as centralized
cloud systems. In both cases, the communication overhead will
increase much higher than anticipated.

For distributed coordinated processing of ML in multiple
edge nodes, distributed ML, called federated learning, is
proposed [13]. In federated learning, the training data remains
distributed over a large number of nodes. A centralized model
is trained by the distributed nodes performing computation
over their individual data independently [13]. Most distributed
ML systems usually contain a group of server nodes that
manage global parameters, and worker nodes that pull the
latest parameters and push the gradients to server nodes
for update operation. This process of pulling and pushing
the parameters and gradients during the training cause huge
network traffic as demonstrated in [14].

Different ML algorithms for federated learning are evaluated
in [15] that reveal astonishing results. For example, when
the data distribution is non-uniform, the convergence time
of the training model is very high and the accuracy is very
low. Therefore, synchronization of a distributed ML system is
critical in order to accurately update each system to the global
model using fresh information. However, synchronization is
a high-cost operation that require significant communication
rounds for fresh updates for all the participating nodes. Het-
erogeneity in resource capacity of IoT devices, and diversity
in data sets will further increase the communication rounds
in order to synchronize ML among all the participating
nodes [15], [16]. In IoT, as the data sets for learning grow
larger, the models will be more complex and training Al
models will increasingly require distributing the model opti-
mization parameters over multiple machines [13]. As a result,
using Al in large IoT networks with multiple diverse nodes and
heterogeneous links will result in very high communication
overhead costs [17].

The Case of Centralized Cloud Systems: Computation and
storage costs can be minimized by using centralized cloud-
based systems for ML. However, the communication costs in
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Fig. 2. A simplified reinforcement learning system.

bringing raw data, training model parameters, and later the
outcome of the learning algorithms between the cloud and end-
user devices will consume high link and bandwidth budgets.
Traditional Al algorithms are designed for highly controlled
environments such as data centers, where the assumptions are
that i) the data is independent and identically distributed (i.i.d)
among machines, and ii) high throughput networks are always
available. In wireless networks, both of these assumptions may
not always hold true, requiring frequent re-sending of data
leading to further network resource dedication. Similarly, end-
to-end security procedures might further increase the network
overhead. In summary, for Al-based operations, continuous

gathering of data will be inevitable, dissemination of decisions
must happen, and scaling network resources (e.g. channels
and bandwidth, and access and backhaul networks, etc.) will
pose significant challenges, and more so in the case of Al in
centralized cloud systems.

B. Challenges for Latency-Critical IoT Systems

The dynamic nature of future IoT services will require real-
time computation, ideally near the users, or otherwise with
no observable delays [18]. However, due to low capacity IoT
devices will take considerably longer time for Al processing
within IoT devices. In the case of processing in the edge, it is
concluded by Arjevani et al. [16], that many communication
rounds will be required and still provide worst-case optimum
in minimum assumption situations. In simple words, (raw) data
acquisition, then data analysis and training, and the continuous
feedback loop in ML will introduce much higher delay. Even
traditional (non-ML) iterative or feedback systems are having
challenges in terms of computation and link delays to meet the
real-time requirements of dynamic services and highly mobile
users [19]. Whereas, the delay in training ML models, for
instance in streaming applications, will make it very difficult
to match the latency requirements [20].

An interesting scenario of V2X using federated learning
is evaluated in [21]. The results reveal that in most cases,
even near the user scenarios, the federated learning approach
incurs higher latency. In latency-critical systems such as V2X
communication and tele-surgery, an extremely small delay, for
instance in moving the steering wheel or robotic arm, can
be catastrophic. In [22], a CNN-based object-inference task



was offloaded to cloud which leads to a 2s to 5s latency.
The experiments were run in US and China and the authors
concluded that the variability of latency makes the service
unreliable. Therefore, continuous learning and adjustment of
systems using the apparatus of Al for such critical operations
must ensure latency first.

Furthermore, the limitations in time for usefulness of data
for Al processing, and validity of the outcome of Al mecha-
nisms must be counted. To elaborate these limitations, consider
intrusion detection systems. Analysis of data for intrusion
detection is highly time-sensitive, and if the communication
medium introduces delay, the whole process might be rendered
useless [23]. Investigating distributed ML systems, [14] reveals
that network communication consumes more time by an order
of magnitude than computation to train ML models. Similarly,
the completeness of data required within the time frame to
make observations on is also crucial. The question holds
true for observation-oriented or data-oriented decision-making
systems of any kind. Therefore, latency in such systems is as
crucial as the validity or accuracy of the system. This can
be further clarified with the example of object recognition
through deep learning, as described in [24]. Images for object
recognition tasks processed locally consume seven W energy,
and when processed in cloud it consumed two W energy.
However, the latency goes well beyond the constraints of 500
ms. It took between two seconds to five seconds of time when
processed in the cloud. Therefore, it is concluded in [24] that
for real-time deep learning tasks, cloud is not yet a viable
solution due to higher latency.

The Case of Industrial Control Systems: Industrial Control
Systems (ICSs) have very complex requirements such as low
latency, high reliability, security and safety, and 5G seems
to be promising from many aspects as highlighted in [25].
The requirements of ICSs are different than other systems and
services, for example, the bandwidth requirements for data
transmission can be as low as few bytes, whereas the latency
requirements for real-time control messages in production and
manufacturing can be as strict as 250 micro seconds [26].
Albeit ICSs are moving towards distributed automated sys-
tems, distributed systems connected through communication
networks have a considerable delay mainly due to the inter-
working architectures from access to core networks. Only
the core network in 4G cellular system introduces a 39 ms
delay to contact the gateway towards the Internet [26]. The
measurements reported in [26] are in two cells and low traffic
scenario. In peak hours, the delay can further grow up to
85ms. Even though the delay can be minimized for instance
by localizing various network functions in the Edge in 5G, no
significant change is made for traffic reaching outer networks.
Hence, adding ML in ICSs will add further delay which raises
serious concerns about the benefits of ML in ICSs.

C. Challenges in Routing and Network Traffic Control

Even though AI has been proposed for routing, traditional
AI/ML techniques such as artificial neural networks have
evident shortcomings in terms of scalability and computation
efficiency when considered for routing [27]. Measuring the

benefits of using deep learning-based routing vs traditional
OSPF routing mechanism in [28], the results reveal that
OSPF yields the same throughput and average delay when
the signaling interval between routers is more than a certain
threshold. However, counting the computational and storage
resources, straightforward OSPF is a better option for the
core and backhaul networks, where changes are less likely
compared to the dynamics in access networks. Furthermore,
mutating or changing IP addresses or packet header fields for
either security attacks, or preventing security attacks [29] will
further challenge the phenomenon of learning, and may lead
to continuous feedback loops for finding the best route.

A lot of research efforts are dedicated to using Al in dy-
namic networks. Dynamic networks have frequently changing
topologies that require frequent sharing of information among
nodes in the network. An example of dynamic networks is
MANETs, which are composed of resource constrained mobile
devices. MANETs are formed randomly and spuriously by
freely moving nodes. Thus, the routing protocols usually have
higher overhead due to dissemination of topology information,
as well as sharing information because of transient disruptions
during routing protocol convergence [30]. However, the con-
stantly changing topologies lead to continuous arrival of new
information. Such systems behave like a closed loop system
making it hard for the learning algorithms to converge within
the latency constraints.

The Case of Software Defined Networking: Since tradi-
tional network traffic control systems heavily rely on pre-
defined policies hardwired in the data plane devices, new
solutions such as Software Defined Networking (SDN) have
been sought to minimize manual configurations and enable
run-time changes in network policies. SDN splits the network
control-data planes, centralizes the network control plane, and
enables programmability of the network equipment. Thus,
SDN enables dynamicity in communication networks, which is
required in wireless networks to cope with sudden changes in
user behavior, network traffic, and air interfaces. Therefore,
ML-based management of complex network systems, and
ML-based route selection in SDN, according to the traffic
requirements of different applications have been proposed
in [31], and [32] respectively. Hence, Al-based network traffic
control in SDN has gained research attraction recently mainly
to cope with the dynamicity of mobile nodes, diverse services
and increasing traffic variations.

Even though SDN provides promising solutions to many
challenges, it has its own inherent challenges of scalability
and security, mainly due to the centralized control architec-
ture [33]. In simple words, the centralized SDN controllers
need to be scalable enough to install flow rules in the entire
data plane under its control within latency constraints. In
terms of resilience, [34] reveals that it is hard to achieve
carrier grade requirement of restoration within 50ms in large
OpenFlow networks. However, using Al in SDN will require
either adding software modules to the controller or adding an
application on top of the control plane. In both situations, the
controller involvement in the data plane will further increase
by consistently feeding information (e.g., flow patterns, flow
statistics, or samples of packets) to Al algorithms. Hence,



using Al in SDN without giving proper consideration to its
inherent limitations will further increase its challenges.

D. Challenges in caching

Network caching systems temporarily store data or infor-
mation near the users in order to minimize redundant network
traffic [35]. Traditionally a router, for example, would cache
data that has higher requests or frequently passes through
it. However, the explosion of big data from IoT will really
challenge the fundamentals of in-network caching. Al-based
system have been proposed to enable the network to learn
which data or information to cache [36]. However, using Al
within the network devices, e.g. routers and switches, will
consume resources meant for storing routing procedures and
paths, and access control lists, etc. For example, in [37]
the authors proposed content caching using deep learning
in SDN. Considering the OpenFlow standard of SDN used
in the analysis, OpenFlow switches have limited capacity to
store unsolicited flows until the controller updates the flow
tables, and in some cases have limited capacity to store flow
rules [33]. Furthermore, the SDN controllers have serious
scalability challenges, and therefore various hierarchical and
distributed control plane architectures have been proposed,
as described in [33]. Albeit these limitations, the authors
in [37] suggest sending the prediction output of the deep
learning algorithm to the controller so that the controller
knows popularity of the contents in the network it manages.
The humongous increase in the number, types and services of
IoT will increase the amounts and types of popular content.
Hence, using Al algorithms on the content within the network
will require a drastic increase in memory size, as well as
processing capability to meet the requirements of real-time
services. Therefore, content caching in the edge is proposed
that has its own limitations and challenges as described below.

The Case of Edge Resources vs Data Growth: Partial or
full storage, and processing in the edge is proposed to deal
with varying and massive amount of data under the constraints
of time-validity or duration, e.g., for useful information re-
trieval from raw data, and generating actionable information
or intelligence. However, the main question, usually ignored,
is that how much storage and processing will be required?
Many evaluations of edge-enabled deep learning, such as
discussed in [12], consider the maximum data size of a task
as low as 1 Mbps and increases the number of edge nodes
for processing the data by many numbers at a time (10-90 for
1000 tasks). Having said that, the user experienced data rates
in 5G are expected to be 1 Gbps in downlink, 500 Mbps in
uplink, and capacity targets can be as high as 15Tbps/km?2
with 250 thousand user devices in a square kilometer [38].
Currently, the data size of medium-level operators easily
exceeds 100s of terabytes, and will further increase since video
traffic (4K, 8K, 3D video, 360-degree video) will account
for around 75% of traffic by 2023 according to the GSM
alliance. For example, the AT&T network carries more than
200 petabytes a day. Keeping these facts in mind, the main
challenge in the edge is the computation needed for real-time
analysis of raw data generated by end-user devices and IoT,

mainly due to the diversity of applications generating different
traffic. Traditional ML, however, requires full access to data
sets with centralized computing through ultra-fast chipset,
Graphics Processing Units (GPUs), connected through up to
256 Gbps connections. Thus, specific processing units, such as
tensor processing units [39] are required that will be capable
of matching with the quantity of data passing through the
networks. Keeping such huge amounts of data within the
networked devices, or even in edge nodes for Al processing
will be highly challenging.

E. Security and Privacy Challenges

The application of AI for IoT security has got a lot of
momentum in recent years. Al is typically used for discovering
a pattern in existing data, detecting outliers, predicting values
or feature extraction which are all very crucial tools to secure
IoT devices and network. The main objective of using Al
for TIoT security is detecting a security breach which can be
divided into three categories according to [5]: (1) malware
detection, (2) intrusion detection, (3) data anomaly detection.
For example, in [40], the authors presented a linear SVM
based android malware detection for reliable IoT devices. An
example of intrusion detection can be found in [41] where
the authors applied a two tier classification mechanism based
on Naive Bayes and K-Nearest Neighbor to prevent intrusion
detection of an IoT network. An example of data anomaly
detection is presented in [42] where the authors propose using
ANN in an [oT gateway to detect anomalies in the data sent
from the edge devices. We invite interested readers to go
through [5] to learn more about the Al schemes for security
purposes.

A key question for using Al in the context of IoT security
is how to generate a high-quality training dataset containing
possible attack types and patterns. A high quality training
dataset is essential for the accuracy of Al schemes. A diverse
training dataset containing information that reflects all the
strategies of real world attacks is required for successful
deployment of Al methods for IoT security. However, due to
a large number of devices generating large volumes of data, a
real-time high quality data streaming and extraction remains
a challenge. In addition, extracting a reliable dataset through
collaboration of different devices can also be challenging due
to a wide diversity of IoT devices. Most publications on Al for
IoT security are applied for high-quality data. For example, the
intrusion detection mechanism of [41] use NSL-KDD dataset
to train and validate the Al scheme. However, the NSL-KDD
may not be a perfect representative of existing real networks.
Due to the amalgamation of a large number of heterogeneous
devices in an IoT network, the effect of noise and interference
can corrupt a dataset. Therefore, AI methods based on high-
quality datasets to secure IoT are highly infeasible. It should be
noted that acquiring dataset for training in the context of IoT
security is more difficult than for image or natural language
processing.

ML techniques such as supervised learning, unsupervised
learning, and reinforcement learning based approaches for IoT
authentication, access control, secure offloading, and malware



detection schemes are studied in [43]. The authors conclude
that both supervised and unsupervised learning methods for
IoT security have serious challenges of oversampling, lack of
sufficient training data, and bad feature extractions. Supervised
learning-based intrusion detection systems have, sometimes,
miss-detection rates that cannot be neglected in IoT systems.
RL-based system can cause network disaster for IoT systems
at the beginning stage of learning, i.e., exploring bad security
policies to achieve optimal strategies. The optimal solution in
such cases is to have backup security mechanisms to protect
IoT systems during the exploration stage of the learning
processes [43].

Another key challenge is the inherent security flaws of tra-
ditional AI mechanisms. Firstly, adversaries can feed polluted
training data during training and reduce the performance of Al
schemes. This attack is commonly known as poisoning attack.
Secondly, an adversary can feed feasible new inputs in an
attempt to evade detection, which is known as evasion attack.
Thirdly, adversaries can create their own Al models by public
API and refine their own model using it as a guide. Therefore,
security of an Al scheme itself needs to be taken into account
before using it to secure IoT systems and devices. Several
techniques such as, data sanitization, adversaries retraining and
homomorphic encryption exists to make an Al scheme more
secure against its inherent security flaws. The security flaws
of AI algorithms and their countermeasures are presented in
detail in [44].

In [45], some basic questions are put forward regarding the
use of Al in security systems. Comparing the use of Al in other
disciplines, Sommer et al. [45] state that it is not only harder
to use Al for intrusion detection, but the premise of using Al
to find novel attacks does not hold true. The reason is simple;
Al algorithms typically use previous experiences or knowledge
to build decisions upon, whereas, for novel attacks the system
may not have prior data or information available. Another key
question is how to intervene once an [oT device is discovered
to be part of a DDoS attack. Removing the device from the
network might not be possible, mainly if it is a critical device.
Most Al methods just focus on detecting an attack and do not
address the mechanism of rectifying this situation.

The Case of Privacy: Privacy with its all potential colors
such as legal, ethical, moral, is likely to get exposed in the era
of Al controlled networks. For example, in [46] the authors
propose to harness user behavior, social relationships, and
other personal attributes from social networks for proactive
caching in the edge. Similarly, Al algorithms themselves can
leak sensitive information when they are subjected to security
attacks [47]. The adversary can perform inverse operation to
attain the input data, such as, patient medical information, user
fingerprint or customer purchase record. Therefore, preserving
privacy in the age of Al will be challenging from both the
algorithmic security and human invasions perspective. There
are various approaches now emerging to safeguard privacy
of user data, such as differential privacy models [44], and
encoding and shuffling algorithms [48]. However, privacy
requires more regulatory efforts as well, since in most cases
the privacy challenges arise on the operator or service provider
sides [49].

F. System Complexity Challenges

Deploying Al in communication networks will further in-
crease the complexity of the system, if the implementation
is carried out as we see currently: implement case-specific
ML to achieve one objective, ignoring other objectives or
end-to-end network goals. Hence, one of the main challenges
that remain at the forefront is that the research on using
Al in wireless networks is optimizing one objective while
overlooking other constraints such as latency, link, storage,
and processing overhead. For example, increasing spectral ef-
ficiency using reinforcement learning is proposed in [50]. The
cost of information sharing, storing and processing while using
the proposed mechanism in real world or large networks is
not mentioned. Looking at the overall network performance or
end-to-end network objectives, little attention is paid towards
a cross-layered approach, as shown in Fig. 3 in which Al in
one layer could also benefit or help in optimization in another
layer. Even more so, the negative effects of using Al in one
layer over the performance in other layers is rarely considered.
For example, the increased latency in finding the optimal route
using ML on scheduling in MAC and physical layers are not
properly investigated. Due to resource (power, storage, and
processing) constraints, a massive number of IoT devices will
simply transmit data without performing heavy computation,
e.g., for compression or encryption. This will require the
upper layers to cooperate to adaptively compress or encrypt
data. In mobile IoT nodes, the cross-layer interaction, e.g., for
channel or topology selection, from physical to application
layer will require synchronization of all layers not only to
minimize challenges faced by IoT but also to facilitate end-to-
end communication. To properly elaborate the system design
complexity, below we describe using ML in digital transceiver
design as an example.

The Case of Communication Signal Processing: A com-
munication infrastructure for IoT consists of a central entity,
commonly a base station, to handle the traffic of tens or hun-
dreds of IoT devices. The main challenge for the base station is
to enable access of a unknown subset of IoT devices at a given
instant. Thus, there is a need for efficient signal processing im-
plementation on the base station side. On the other hand, many
IoT devices will not require complex signal processing as
they do not support multi-antenna communications or complex
channel coding. Due to the nature of transceiver algorithms, it
is difficult to justify the use of ML techniques to replace the
conventional signal processing algorithms. The current signal
processing algorithms are typically designed analytically using
statistics, mathematical optimization and information theory.
The algorithms based on such techniques are well established
and can provide optimal performance. However, many of such
algorithms are based on the assumption of a simple and linear
system model [51]. For example, most beamformer or precoder
for a wireless transmitter are based on the assumption that
a perfect channel state information (CSI) is available at the
transmitter side. However, it is highly unusual to obtain a
perfect CSI at the transmitter. In this scenario, a ML based
beamformer or precoder can be used which is not dependent
on perfect CSI. Thus, the application of Al is perfectly justified
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Fig. 3. An example of layer-wise Al implementation.

for transceiver blocks that are highly non-linear in nature
and where the mathematical model is far from perfection.
However, there are many sub-optimal solutions available for
transceiver algorithms, which are suitable for implementa-
tion with satisfactory error-rate performance. The sub-optimal
equalization algorithms, such as, zero-forcing, or minimum
mean-square error (MMSE) can reach to near-optimal level for
massive MIMO systems when the ratio between the number of
antennas in a BS and number of users is relatively large [52].
It is difficult to justify the application of Al techniques when
a sub-optimal algorithm can provide satisfactory performance.
To summarize, Al will continue to excel for non-linear signal
processing applications like digital pre-distortion which is used
to compensate for the non-linearities of a power amplifier.
On the other hand, the sub-optimal algorithms can provide
very good performance with feasible complexity for many
applications. Therefore, more research is necessary to make
the Al solutions competitive against those applications.

In most research areas, the processing power required for
ML algorithms is not a big hindrance anymore due to the
advent of cloud and distributed computing. However, the
requirements for digital signal processing are significantly
more stringent than traditional applications. Besides, most of
the computing required for the physical layer of telecommu-
nications are still carried out by embedded platforms. Some
parts of the processing, for example, part of the baseband
units, can be transferred to the cloud. In spite of that, the
remote radio head (RRU) unit requires highly complex on-
site computations, which has to be carried out by embedded
computing platforms. Thus, the high complexity of sophisti-
cated Al techniques introduces new challenges for the RRUs.

We now try to provide an intuitive discussion on the
complexity of the neural networks and how they fare against
traditional signal processing algorithms with a use case. In
general, the Neural Networks require large number matrix
calculations. A N; = 3 layer fully connected feed-forward
NN can be represented as

y = f(W39(W2 h(Wix +b;) + by) + bs) (D

where h, g and f are different activation functions for different
layers [53]. The weight matrices for the layers are represented
as W1, W5 and W3 and the bias for the layers are represented
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as by, by and bs. The input and output vectors of this network
is denoted as x and y. It can be seen from the equation that the
neural network requires three matrix-vector multiplications.
The complexity of a m X m matrix and n X 1 vectors can
be denoted by n? and thus, the neural network has a N;n?
complexity if we only consider the matrix multiplications.
Here, we assumed each layer has m number of neurons to
simplify the comparison.

The training or learning process to know appropriate
weights is a key part of neural networks and the performance
of the network is heavily dependent on the methods used for
training. The most common training or learning scheme for
a NN is known as Backpropagation, which follows Gradient
Descent approach that exploits the chain rule. The backprop-
agation traverses through the same nodes and layers and thus,
the number of multiplications after updating the weights is
the same as the forward propagation. Therefore, for a 3-
layer NN, the total number of operations can be expressed as,
2N;n?. However, the NN requires a large number of iterations
of forward and backward propagation to achieve required
accuracy for the weights and thus the complexity of the NN
training can be expressed as T'(2N;n?), where T is the number
of iterations.

A least-square solution, which is commonly used in many
transceiver operations, requires matrix inversion, which has a
complexity of n? for traditional applications. For large values
of n, the n® complexity is higher than the complexity of a
forward and backward propagation, i.e. N;n? [53]. In spite
of the difference, the number of operations for a forward-
backward pass of a NN and a matrix inversion is still com-
parable. However, as the value 7' is typically very large, for
example, in hundreds of thousands or in millions, the time
required to train a network is too high and impractical. If
we take T into account, the numbers of operations are not
significantly higher than least-square solutions. It should be
noted that, once trained, the network can run faster than
a traditional least-square solution. A NN trained for multi-
antenna symbol detection is proposed in [54]. Even though
the network can achieve ML performance, it took two days
to train the network to properly function as a MIMO detector.
These two days required to train the network can render the
ML detector useless for many scenarios.



III. ROADMAP: GENERALIZED GLOBAL Al
ARCHITECTURE

Even though there exists a plethora of research on us-
ing Al in communication networks for different use-cases,
applications, network functions and segments, little efforts
are put on visualizing the holistic network architecture. The
major benefit of the holistic network view is to attain the
end-to-end goals without having situations where achieving
one objective leads to a compromise on another. In addition,
having a global network view is vital to efficient utilization of
available resources throughout a network. Therefore, a global
network architecture using Al is presented in Fig. 4. The three-
tier architecture represents autonomous and intelligent network
operations leveraging Al in each tier, as well as across the three
tiers in order to maintain synchronized Al-based operations in
the entire network for different IoT services.

In Fig. 4, the user environments comprises end-user devices
(IoT devices) and IoT networks that use Al to improve its
performance. Due to limitations of IoT devices such as pro-
cessing and storage, edge (or MEC) platforms are used when
higher resources for Al operations are needed. Since edge
platforms still represent distributed operations with limited
capabilities, centralized cloud systems are proposed for two
major reasons. First, to maintain global network view includ-
ing Al operations in order to maintain synchronized operations
throughout the network. Second, to provide higher resources
when the edge platforms fall short of resources. On one
hand, the communication network infrastructure using diverse
technologies from radio access technologies to the application
layer facilitates Al operations throughout the network, i.e.,
from end-user environments to the centralized cloud systems.
On the other hand, Al is used in the communication network
infrastructure to improve end-to-end goals of the network.
Therefore, it can be seen in Fig. 4 that Al is used through out
the network, connecting many IoT networks, edge platforms
and centralized cloud systems. Fig. 5 represents the three tier
network architecture visualizing how in practice Al will be
used in a large network, such as shown in Fig. 4.

In Fig. 5, the local network represents a network of IoT
devices, which in most cases have very limited resources,
e.g., storage, computing and transceiver capabilities. Edge
networks comprise edge nodes, each node is near to an IoT
network to meet latency constraints, and have more resources
compared to local IoT networks. The centralized cloud serves
many edge networks and have higher resources to serve the
entire (global) network. The resources available within each
network, i.e. local IoT and edge networks, are visible in the
centralized control system, much like the data plane resources
being visible in the SDN control plane. Since the tools and
algorithms of Al require data, and a common assumption is
that the more the data is, the better the results will be [11], it is
highly likely that the needed resources are not available locally
or in the edge. In that case, requests must be sent to high-
resourced centralized cloud systems to fulfill the requirements
of processing and storage. Thus, Al procedures throughout the
entire network are carried out in the following three steps:

1) Local resource discovery: Before initializing an Al pro-

cedure, a local resource discovery procedure is carried
out. If the resources, such as storage and computing,
are available locally, the process is carried out within
the local IoT network.

2) Edge resource discovery: If the local IoT network re-
sources are not enough, the resource discovery procedure
in the edge layer will be carried out. If the resources
in the edge are enough and are available for the Al
procedure, edge resources will be allocated and all the
processing will happen in the edge layer. It is important
to note that link and bandwidth resources will also count
for sending the (possibly raw) data, training parameters,
and decisions back and forth between the local IoT
network and the edge nodes.

3) Central cloud resource discovery: If the edge resources
fall short, the resource discovery and allocation proce-
dure will be carried out in the central cloud. Thus, the
Al processing will happen in the centralized cloud, and
even more network resource will be consumed in this
case.

Such globally optimized network architecture will have the
potential to avoid many challenges described in the previous
section. For example, localized IoT-based Al processing yields
benefits such as low bandwidth consumption and meeting
the requirements of latency, as evaluated for wireless sensor
networks in [55]. The edge nodes are involved for two major
reasons, first, the resources in IoT or local networks are not
capable (fall short) to perform the tasks, and second, the
latency constraints do not allow to perform the tasks in the
centralized cloud systems as elaborated in [12]. Yet, the edge
nodes have challenges in terms of resources mainly due to the
humongous growth of data as well as distributed ML required
for distributed services that require global aggregation of, for
instance, data and learning parameters [56]. Since most of
the IoT environments are dynamic and evolving, the learning
models are bound to evolve, which can also create challenges
in synchronizing and monitoring multiple edge nodes [57].
Therefore, a dynamic architecture capable to synchronize mul-
tiple edge nodes through a centralized control and monitoring
system, as depicted in Fig. 4, is required. In the proposed
architecture, the concepts of intelligent service decoupling for
enabling mobility of Al systems (e.g. Al system running as
a virtual function) between multiple edge nodes, and between
edge nodes and centralized monitoring and control systems is
visualized. Intelligent Al services for IoT can be decoupled
much like Network Function Virtualization (NFV) with the
unique requirements of IoT and Al, as elaborated in [58].
Al system or service mobility, along with synchronizing the
needed Al processing among multiple edge nodes [56], can
be achieved through the novel technological development in
communication and computing technologies such as SDN and
MEC, as explained with examples in [59]. The hierarchical
architecture is beneficial in terms of proactive catching without
draining the local and edge resources or compromising the
latency constraints, as evaluated in [60].
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IV. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Al with its many disciplines, tools and algorithms, will play
an important role to efficiently utilize the available network
resources for IoT through autonomous network operations.
However, deploying Al mechanisms need proper investigation
of the resulting consequences in terms of different performance
indicators. Furthermore, the effects of using Al in one service
over the other, and one network segment for function over the
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other must also be properly investigated. For example, raw
data gathering, processing it, and disseminating the resulting
information or decisions of Al can increase communication
overhead resulting in network congestion, or induce delays in
different network functions such as routing or access control.

Therefore, it is highly important to investigate the resulting
challenges in the underlying network infrastructure due to
integrating the mechanisms of Al in communication network
infrastructures that will be used by IoT. The major challenges
discussed throughout this article are summarized in Table
IT with the most important references. The challenges are
presented with respect to using Al within IoT devices, within a
localized network of 10T, edge level Al that runs Al procedures
in the edge nodes, and centralized cloud level Al in which high
performance cloud infrastructures are used for Al processing.
The challenges are given different levels, from low, medium
and high, to give an insight into its severity, based on the
references.

Certain measures taken according to the context, the net-
work infrastructure, and available resources can help us use the
mechanisms of Al more effectively. Comparing the require-
ments, for instance, time-sensitivity of applications vs benefits
of using the disciplines of Al either in the local IoT network
or in the centralized cloud systems might provide better
conclusions. For example, latency-critical applications need to
use the concepts of service migration (Al processing) from the
central cloud to edge or local IoT gateways. In this case, Al
must be bundled with efficient service migration techniques
and slice elasticity to increase or decrease resources (e.g. in



TABLE I
SUMMARY OF CHALLENGES IN WIRELESS NETWORK INFRASTRUCTURE LEVERAGING Al FOR I0T.

IoT Environment

Challenges References

IoT Device Localized AI | Edge Level Al | Cloud Level Al
Communication Overhead | Low Low Medium High [17], [15], [16], [11]
End-to-End Latency Low Low Medium High [24], [19], [20], [21], [22]
Security Challenges Low High High High [61], [45], [62]
Caching and Memory High High Medium Low [39], [23]
Network Traffic Control High High Medium Low [27], [28], [30]
System Complexity High High Medium Low [54], [51]

*Challenge levels or severity represented by Low, Medium, and High.

the edge nodes) accordingly. Therefore, the holistic view of
the global network infrastructure and available resources will
be highly beneficial. However, further research is necessary in
the following communication network-specific areas to reap
the full benefits of Al

Al-based approaches within the bandwidth, spectrum,
and latency constraints: It is foreseeable that the number of
end-user devices will grow exponentially in future wireless
networks, having different traffic patterns, and mostly prone
to security challenges [63]. Hence, how to efficiently use the
existing allocated bandwidth and spectrum resources while not
compromising on the required data rates, QoS and QoE, will
be a huge challenge. Al based approaches, which can predict
the traffic growth and flash traffic, proactively move services
between edge and centralized cloud systems, and dynamically
allocate resources will definitely yield better results. However,
more research is needed to develop Al mechanisms that can
be trained quickly and effectively with less data in order to
consume less bandwidth or spectrum resources.

Al-based security approaches for Al-based security chal-
lenges: Conventionally, using Al for improving network secu-
rity is highly researched, but on the contrary, e.g., using Al for
security attacks on network entities, must also be investigated.
Security attacks leveraging Al can be more challenging to
detect, or stop as demonstrated in [62], and described in [61].
Similarly, Al needs data, and data needs privacy. Therefore,
Al based approaches to secure resources and data from Al
based security threats and privacy issues represent interesting
challenges that need further research.

Meeting the caching requirements in times of Big Data:
Using the tools of Big Data analytics require resources such
as storage, computing and link capacities. However, finding
early enough if the data can be counted as Big Data will lead
better selection of technologies for the purpose, as described
in [23]. Now that resources near the users, i.e., edge clouds,
are gaining footprints in communication networks, scaling the
resources up for Big Data will eventually not pose major
challenges. However, further research is required to enable
using Al on Big Data near near the data sources within the
resource constraints.

Network abstraction to cope with complexity: Abstracting
the underlying network infrastructure, from services that will
use it, will simplify the network to be used for any kind

of services. Granular, event-driven control of the network
elements through high-level policies, and avoiding low-level
configurations has been enabled by SDN [64]. The same
mechanisms, i.e., functional split and abstraction, have been
proposed for the radio access technologies, however, further
research is required on the MIMO side. Abstraction in IoT
has driven research and industry interests also, as seen from
the Pelion IoT platform. Leveraging Al in the same fashion,
Al-as-a-service whenever and wherever needed in a network,
will result in the same benefits without increasing complexity
of the overall system, which needs further research.

V. CONCLUSION

Al has gained a research momentum in wireless networks
to cope with the increasingly complex nature of diverse IoT
devices and services. However, most state-of-the-art research
takes the concepts of Al from other mature technologies
such as robotics and computer vision as it is and use it
to solve different complex challenges faced by IoT devices
and services, as well as the underlying network serving IoT.
Such right-away use of the concepts of Al in the wireless
network infrastructure gives rise to many challenges. In this
article, the main challenges are highlighted with potential
solutions and open research issues that need further research.
The main objective of this work is to drive attention for
future research towards wireless network-specific design of the
concepts, tools, algorithms, and even disciplines of Al for the
communication of IoT. Furthermore, generic requirements of
an IoT wireless network are highlighted to elaborate the need
and integration points of the concepts of Al into the wireless
network infrastructure used by IoT. The challenges arising
in each integration point of Al and wireless networks are
discussed. A generalized conceptual framework, as a roadmap,
is suggested that could solve most of the challenges with novel
technological concepts used for network programmability,
global network resource visibility, and granular control of
network and Al functions.

REFERENCES

[1] K. Ashton, “That "Internet of Things” Thing,” RFID journal, vol. 22,
no. 7, pp. 97-114, 2009.

[2] K. L. Lueth et al., “State of the IoT 2018: Number of IoT devices now
at 7B—Market accelerating,” IoT Analytics, 2018.



[4]

[5]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527-1554,
2006.

M. G. Kibria and K. Nguyen and G. P. Villardi and O. Zhao and K. Ishizu
and F. Kojima, “Big Data Analytics, Machine Learning and Artificial
Intelligence in Next-Generation Wireless Networks,” IEEE Access, vol. ,
no. , pp. 1-1, 2018.

M. Moh and R. Raju, “Machine learning techniques for security of in-
ternet of things (IoT) and fog computing systems,” in 2018 International
Conference on High Performance Computing & Simulation (HPCS).
IEEE, 2018, pp. 709-715.

T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in
the internet of things: Finite resources and heterogeneity,” IEEE Access,
vol. 4, pp. 7063-7073, 2016.

J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204-2239, Nov 2019.

M. Mohammadi, A. Al-Fugaha, S. Sorour, and M. Guizani, “Deep
Learning for IoT Big Data and Streaming Analytics: A Survey,” IEEE
Communications Surveys Tutorials, vol. 20, no. 4, pp. 2923-2960,
Fourthquarter 2018.

O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware comput-
ing, learning, and big data in internet of things: A survey,” IEEE Internet
of Things Journal, vol. 5, no. 1, pp. 1-27, Feb 2018.

C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, “Ma-
chine learning paradigms for next-generation wireless networks,” IEEE
Wireless Communications, vol. 24, no. 2, pp. 98-105, April 2017.

A. Lheureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,
“Machine learning with big data: Challenges and approaches,” IEEE
Access, vol. 5, pp. 7776-7797, 2017.

H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” IEEE Network, vol. 32,
no. 1, pp. 96-101, Jan 2018.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

P. Sun, Y. Wen, T. N. B. Duong, and S. Yan, “Timed Dataflow: Reducing
Communication Overhead for Distributed Machine Learning Systems,”
in 2016 IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS), Dec 2016, pp. 1110-1117.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
pp. 1-16, 2019.

Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume
1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, pp. 1756—
1764.

Z. M. Fadlullah, F. Tang, B. Mao, J. Liu, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “On Intelligent Traffic Control For Large Scale Het-
erogeneous Networks: A Value Matrix Based Deep Learning Approach,”
IEEE Communications Letters, pp. 1-1, 2018.

I. Ahmad et al., “Towards gadget-free internet services: A roadmap of
the Naked world,” Telematics and Informatics, vol. 35, no. 1, pp. 82-92,
Apr. 2018.

H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless
resource management,” in 2017 IEEE 18th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), July
2017, pp. 1-6.

C. Augenstein, N. Spangenberg, and B. Franczyk, “Applying machine
learning to big data streams : An overview of challenges,” in 2017 IEEE
4th International Conference on Soft Computing Machine Intelligence
(ISCMI), Nov 2017, pp. 25-29.

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency V2V communications,” in 2018
IEEE Global Communications Conference (GLOBECOM), Dec 2018,
pp. 1-7.

J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot, “Enabling deep learning on
iot devices,” Computer, vol. 50, no. 10, pp. 92-96, 2017.

S. Suthaharan, “Big data classification: Problems and challenges in
network intrusion prediction with machine learning,” SIGMETRICS
Perform. Eval. Rev., vol. 41, no. 4, pp. 70-73, Apr. 2014. [Online].
Available: http://doi.acm.org/10.1145/2627534.2627557

J. Tang, D. Sun, S. Liu, and J. Gaudiot, “Enabling deep learning on IoT
devices,” Computer, vol. 50, no. 10, pp. 92-96, 2017.

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17-27, March 2017.

P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann,
A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
critical IoT applications in 5G: Perspective on the design of radio
interface and network architecture,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 70-78, February 2017.

N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and
K. Mizutani, “The Deep Learning Vision for Heterogeneous Network
Traffic Control: Proposal, Challenges, and Future Perspective,” IEEE
Wireless Communications, vol. 24, no. 3, pp. 146-153, June 2017.

B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “Routing or Computing? The Paradigm Shift Towards
Intelligent Computer Network Packet Transmission Based on Deep
Learning,” IEEE Transactions on Computers, vol. 66, no. 11, pp. 1946—
1960, Nov 2017.

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “An effective address mutation
approach for disrupting reconnaissance attacks,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 12, pp. 2562-2577, Dec
2015.

M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network Architecture for Joint Failure Recovery and Traffic
Engineering,” in Proceedings of the ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’11. New York, NY, USA: ACM, 2011,
pp. 97-108. [Online]. Available: http://doi.acm.org/10.1145/1993744.
1993756

M. Zorzi, A. Zanella, A. Testolin, M. D. F. D. Grazia, and M. Zorzi,
“Cognition-Based Networks: A New Perspective on Network Optimiza-
tion Using Learning and Distributed Intelligence,” IEEE Access, vol. 3,
pp. 1512-1530, 2015.

S. T. V. Pasca, S. S. P. Kodali, and K. Kataoka, “AMPS: Application
aware multipath flow routing using machine learning in SDN,” in 2017
Twenty-third National Conference on Communications (NCC), March
2017, pp. 1-6.

I. Ahmad and S. Namal and M. Ylianttila and A. Gurtov, “Security in
Software Defined Networks: A Survey,” IEEE Communications Surveys
Tutorials, vol. 17, no. 4, pp. 2317-2346, Fourthquarter 2015.

D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
in 2011 18th IEEE Workshop on Local Metropolitan Area Networks
(LANMAN), Oct 2011, pp. 1-6.

X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the air: exploiting content caching and delivery techniques for 5G
systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131-139,
February 2014.

Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:
Machine learning for network edge caching in the big data era,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 28-35, JUNE 2018.

W. Liu, J. Zhang, Z. Liang, L. Peng, and J. Cai, “Content popularity
prediction and caching for ICN: A deep learning approach with sdn,”
IEEE Access, vol. 6, pp. 5075-5089, 2018.

3rd Generation Partnership Project (3GPP). (2017) 5G service require-
ments.

N. P. J. et al., “In-datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), June 2017, pp. 1-12.

H.-S. Ham, H.-H. Kim, M.-S. Kim, and M.-J. Choi, “Linear SVM-based
android malware detection for reliable IoT services,” Journal of Applied
Mathematics, vol. 2014, 2014.

H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K. R.
Choo, “A two-layer dimension reduction and two-tier classification
model for anomaly-based intrusion detection in IoT backbone networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp.
314-323, April 2019.

J. Canedo and A. Skjellum, “Using machine learning to secure IoT
systems,” in 2016 14th Annual Conference on Privacy, Security and
Trust (PST). IEEE, 2016, pp. 219-222.

L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT Security Techniques
Based on Machine Learning: How Do IoT Devices Use Al to Enhance
Security?” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41-49,
Sep. 2018.



[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Z. Guan, L. Bian, T. Shang, and J. Liu, “When machine learning meets
security issues: A survey,” in 2018 IEEE International Conference on
Intelligence and Safety for Robotics (ISR). 1EEE, 2018, pp. 158-165.
R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy, May 2010, pp. 305-316.

E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82-89, Aug 2014.

A. Holzinger, P. Kieseberg, E. Weippl, and A. M. Tjoa, “Current
advances, trends and challenges of machine learning and knowledge
extraction: From machine learning to explainable ai,” in Machine
Learning and Knowledge Extraction, A. Holzinger, P. Kieseberg, A. M.
Tjoa, and E. Weippl, Eds. Cham: Springer International Publishing,
2018, pp. 1-8.

A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld, “Prochlo:
Strong privacy for analytics in the crowd,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 441-459. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132769

I. Ahmad, S. Shahabuddin, T. Kumar, J. Okwuibe, A. Gurtov, and
M. Ylianttila, “Security for 5G and Beyond,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3682-3722, Fourthquarter 2019.
M. Bennis, S. M. Perlaza, P. Blasco, Z. Han, and H. V. Poor, “Self-
organization in small cell networks: A reinforcement learning approach,”
IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp.
3202-3212, July 2013.

T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563-575, Dec 2017.

S. Shahabuddin, M. Juntti, and C. Studer, “ADMM-based infinity norm
detection for large MU-MIMO: Algorithm and VLSI architecture,” in
IEEE International Symposium on Circuits and Systems (ISCAS), May
2017, pp. 1-4.

H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural
Network Design. Martin Hagan, 2014.

N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO detection,” in 2017
IEEE 18th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), July 2017, pp. 1-5.

J. W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kargupta,
“In-network outlier detection in wireless sensor networks,” Knowledge
and Information Systems, vol. 34, no. 1, pp. 23-54, Jan 2013. [Online].
Available: https://doi.org/10.1007/s10115-011-0474-5

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in JEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, April 2018, pp. 63-71.
J. A. C. Soto, M. Jentsch, D. Preuveneers, and E. Ilie-Zudor, “CEML.:
Mixing and moving complex event processing and machine learning
to the edge of the network for IoT applications,” in Proceedings of
the 6th International Conference on the Internet of Things, ser. IoT’16.
New York, NY, USA: ACM, 2016, pp. 103-110. [Online]. Available:
http://doi.acm.org/10.1145/2991561.2991575

E. Ramos and R. Morabito, “Intelligence stratum for IoT. Architecture
Requirements and Functions,” arXiv preprint arXiv:1908.08921, 2019.
A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2359-2391, Fourthquarter 2017.

J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in
5G wireless networks: Cloud versus edge caching,” IEEE Transactions
on Wireless Communications, vol. 17, no. 5, pp. 3030-3045, May 2018.
L. Huang, A. D. Joseph, B. Nelson, B. 1. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, ser. AlSec *11. New
York, NY, USA: ACM, 2011, pp. 43-58.

M. Abadi and D. G. Andersen, “Learning to Protect Communications
with Adversarial Neural Cryptography,” CoRR, vol. abs/1610.06918,
2016. [Online]. Available: http://arxiv.org/abs/1610.06918

M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating Critical
Security Issues of the IoT World: Present and Future Challenges,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp. 2483-2495, Aug 2018.
B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti,
“A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks,” IEEE Communications Surveys Tutorials,
vol. 16, no. 3, pp. 1617-1634, Third 2014.



