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Abstract—This paper studies the possibility to use a simplified
MacPherson suspension system model for tuning active suspen-
sion system controllers. With a nonlinear suspension model, more
accurate responses can be obtained compared to a traditional
linear quarter-car suspension system model. The presented non-
linear two-dimensional mathematical model for the MacPherson
suspension system is simulated in MATLAB/Simulink and vali-
dated by comparing it to an Adams/View multibody model with
three simulation cases, one for kinematic analysis and two for
dynamic analysis. The results are expressed as normalized RMS
deviation values between the outputs of the two models. Most
outputs of the two models go hand in hand, and the greatest
difference is in the camber angle values derived from simplified
linearization in the mathematical model.

Index Terms—suspension system simulation, multibody system,
vehicle dynamics, MacPherson suspension

I. INTRODUCTION

A suspension system plays an important role in vehicle
systems [1], [2], mainly providing vehicle handling with in-
creased controllability and improved traction and roll stability,
while also increasing the ride comfort of the passengers. In
suspension systems good vehicle handling and ride comfort
can be contradictory, because better handling performance
does not typically equal comfortable ride.

The MacPherson suspension is commonly used in small and
mid-sized vehicles, mainly in the front [3]. The MacPher-
son suspension is a simple, compact sized and low weight
structure. Its disadvantages compared to different suspension
structures (e.g. a double wishbone) are less favorable kine-
matic performance, higher demand in steering, increased tire
wear and lesser isolation of the vehicle body from the road
excitation input [4].

A wealth of nonlinear mathematical models for suspension
systems have been reported in literature. Study [5] derived a
complex nonlinear model of the MacPherson suspension sys-
tem and compared it to a quarter-car and full car Adams/Car
multibody model. The results showed better demonstration
in the dynamic responses of the nonlinear model than a
conventional linear quarter-car suspension model. In [6], a
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nonlinear model introduced in [3] was tested in an Adams/Car,
and the use of the nonlinear model over a linear quarter-car
suspension model was reasoned.

Mathematical MacPherson suspension system models have
been applied in variety of studies. Study [7] applied semiactive
H, control strategy to MacPherson suspension with hybrid
control between a skyhook and groundhook algorithm. In [8],
independent MacPherson suspension units were used in the
two steering axles of a 8§x8 vehicle Adams simulation model
for optimizing the design of the steering system. In [9], an
active composite nonlinear feedback control of MacPherson
suspension and a conventional quarter car suspension system
model were compared to a linear quadratic regulator control
and a passive control.

In [10], [11] a simple nonlinear two-dimensional dynamic
model of the MacPherson suspension system was derived by
analyzing the system kinematics and deriving the dynamics
using the Euler-Laurange approach [12], [3]. In [10], the work
was extended to state estimation and control in a stochastic
environment. The aim of this paper is to validate the two-
dimensional MacPherson model presented in [10] by com-
paring its outputs to similar two-dimensional model made in
commercial multibody simulation software Adams/View. The
dynamic behavior of the suspension system is simulated with
sine wave and bump/pothole excitation. With this kind of
validation, the use of a mathematical nonlinear MacPherson
model could be justified for active suspension control design.

This paper is organized as follows. Section 2 will outline
the kinematic and dynamic equations that are derived in [10].
Section 3 describes the two-dimensional multibody model
prepared in Adams/View. Section 4 illustrates the performed
simulations and results. Finally, the summary and conclusion
section summarizes the main points and presents ideas for
future work.

II. MACPHERSON MODEL BACKGROUND

Modeling the MacPherson suspension system in a two-
dimensional planar model can express the essential responses
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Fig. 1. Kinematic model.
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of the system [3], [12]. The derivation of [10], [11] followed
the path outlined in [12]. Figures of the model are adapted
from [12] and shown in Fig. 1 and 2.

The following restrictions are considered for the model:

e Chassis body displacement only in vertical motion

o All parts are rigid

o Ideal joints

o The tire is modeled as a linear spring-damper

o Linear spring-dampers

o The chassis body and the tire have fixed masses, while

other parts’ masses are negligible

In [10], a simple nonlinear model was derived based on
linearized kinematics of the planar system and the system
dynamics were obtained from Euler-Lagrange equations:
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Fig. 2. Dynamic model.

and ky = —yZpo with v~ = YpoZpo — YcoZpo + YpoLos,
kr = Q(YM()ZPO — YpoZMo) and ky = ko — k¢R, and strut
length Los =+/(Yaro — Yro)? + (Zao — Zpo)?.

Following [12], [14], the system parameters were chosen
as: for sprung and unsprung masses m,; = 453 kg, m; = 71
kg; spring and damping coefficients: K, = 17658 N/m, B; =
1950 Ns/m, K; = 183887 N/m, K;; = 50000 N/m, B; = 2500
Ns/m; and tire radius and inertia R = 0.29 m and I = 0.021
kgmz; and point locations: Yog = 0.3721 m, Z¢g = 0.0275
m, Ygo = 0.0000 m, Zgo = 0.0000 m, Yo = 0.1074 m,
Z]WQ = 0.5825 m, Ypo =0.2490 m, Zpo = —0.0608 m.

III. MULTIBODY MODEL

The commercial Adams simulation software is considered
a realistic simulator of multibody dynamics [3], [12] and is
thus used to validate the mathematical MacPherson model de-
rived in the previous chapter with two-dimensional multibody
simulation model.

The main components of the MacPherson suspension are the
lower control arm, the tie rod and the strut. The lower arm is
attached to the body with a revolute joint and to the spindle
with a spherical joint. The tie rod operates the steering control
and the strut that contains a spring-damper is connected to the
chassis body with sphere joint and with fixed connection to
the spindle [13].

Fig. 3 illustrates the Adams/View model used. The outline
is similar to the multibody model presented in [12], but in
this case the Adams/View model has rotation joints instead
of sphere joints. The chassis body is only allowed to move
in the vertical direction, the control arm is connected with a
rotational joint from both the ends and the strut is coupled to
the chassis with a rotational joint. The flexible tire is modeled
as a linear spring-damper in the vertical direction and a linear
spring in the horizontal direction.



Fig. 3. Two-dimensional Adams/View model of MacPherson suspension
(adapted from [12]).

IV. SIMULATIONS AND RESULTS

The two simulation models were compared in three dif-
ferent cases presented below. The mathematical model was
simulated in MATLAB/Simulink and the multibody model in
Adams/View. The simulations were performed with a fixed
time step of 1 ms for a simulation time of 10 seconds.

A. Kinematic analysis

Camber angle and wheel track width variation are compared
to wheel center vertical displacement by fixing chassis move-
ment (Z; = 0) and using vertical displacement with input
0.1 sin(27t) (m) [12], [3] to the wheel center. The results
are shown in Fig. 4. There is a noticeable difference, as the
[10] model is only producing linear results. This is due to
simplifying the calculation of the ¢ (camber) angle. Also,
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Fig. 4. Kinematic analysis

similarities between the Adams/View model results with the
model in [12] and in this paper can clearly be seen.

B. Dynamic analysis

The two dynamic analyses were performed by using a
vertical road profile input to the bottom of the tire, and the
chassis body is allowed to move in the vertical direction.
RMS deviations of the simulation outputs divided by the mean
absolute value of the Adams output are calculated from the
results to express the difference as percentages.

1) Sinusoidal road profile: The road input used here is a
sinusoidal wave 0.05 sin(27¢) (m). The results are shown in
Fig. 5, 6 and 7. Displacement outputs are quite similar, though
there is a slight difference in peak values and phase. In Fig. 7,
the linearization of camber angle is emphasized as lower peak
values in both directions. Nevertheless, for active suspension
control design, the camber angle is not as important as the
dynamic behavior of unsprung and sprung masses, which in
this simulation case are almost identical.
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Fig. 5. Chassis displacement (upper) and wheel vertical displacement (lower).
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Fig. 6. Strut length.

2) Bump and pothole: The road profile used here is the
same as in [11]: 100 mm road bump at t = 1 s and 100 mm
pothole at ¢t = 5 s. As observed in previous simulation cases,
the results (Fig. 8, 9, 10, 11, 12, 13) follow each other quite
closely. With camber angle, the peak values are far greater in
the Adams/View model than in the Simulink model.
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C. Results

In Table I, small differences in the bump and pothole cases
result from excitation being zero for most of the simulation
time. The largest differences in percentages are with angles 6,
¢ and the displacement of chassis (Zg). When comparing the
presented Adams model to a conventional linear quarter car
model, the corresponding chassis displacement RMS deviation
rates for 100 mm bump and 50 mm sine wave excitations
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Fig. 12. Wheel center vertical (Z¢) displacement.

are 21.9 % and 39.1 %, respectively. From the results, it
can concluded that the nonlinear mathematical model can
be hypothesized as a simplified two-dimensional MacPherson
suspension model with reservations.

V. SUMMARY AND DISCUSSION

A nonlinear two-dimensional mathematical MacPherson
suspension model [10] and a two-dimensional multibody
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TABLE I
NORMALIZED RMS DEVIATIONS OF SIMULATION OUTPUTS
100 mm bump and pothole | 50 sin(27t) (mm)

— Zg 12.4 27.0
S
£ Zo 3.0 4.1
=
3
S Yo 0.5 3.0
wn
2
~ | Strut length 0.5 3.0
S
g 0 25.9 314
s
4

¢ 76.7 51.2

Adams/View model were investigated with three simulation
cases. Similarities were noticed in most of the output values.
Most of the differences are in the wheel camber angle that was
obtained from simplifications in the calculations. For vehicle
systems, changes in camber angle cause tire wear and affect
vehicle steering, due to the lateral forces acting on the wheel
[6].

The mathematical model is based on a model presented in
[12], but in a simplified form, targeting it for simulation-based
nonlinear control design. In this paper, the model is validated
using the Adams/View multibody model. The similarities in
dynamic responses qualify this model to be used in active sus-
pension system control design. Even though the Adams/View
model can be used for active suspension control design with
Simulink co-simulation, the simulation times can be excessive
and prevent model/simulation-based design control and state
estimation approaches.

The main contribution of the paper is in that the model de-
veloped in [10] is validated against well-known and commonly
accepted Adams simulations. The results show good perfor-
mance, although the model equation simplifications show in
the poor reproduction of the camber angle. The camber angle
is, however, less significant in applications of active suspension

control [10], [11], where the fast simulation speed of the
proposed model can be exploited in simulation-based control
design.

In future work, active suspension control design with
Markov decision processes in [10], [11] can be further inves-
tigated, with different kinds of controller cost functions and
road profile excitations.
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