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Abstract—We consider problems of optimal resource allocation
in zonal telecommunication networks with many users. In the
simplest formulation the network manager aims to distribute
some homogeneous resource (say bandwidth) among users within
one zone. We assume strictly convex charge and convex quadratic
fee functions and present combined dual type solution meth-
ods. Next, we consider a more general problem for a multi-
zonal wireless communication network with common capacity
constraints. We obtain a convex optimization problem involving
two kinds of constraints. By using the dual Lagrangian method
with respect to the capacity constraint, we suggest to reduce
the initial problem to a single-dimensional optimization problem,
but calculation of the cost function value leads to independent
solution of zonal problems, which coincide with the previous
single region problem. Some results of computational experiments
confirm the applicability of the new methods.

Index Terms—Resource allocation, wireless networks, multi-
zonal networks, affine price functions, nonlinear charge func-
tions, convex optimization, Lagrangian duality, decomposition.

I. INTRODUCTION

Due to strong variability and increasing demand of dif-
ferent wireless telecommunication services, fixed allocation
rules usually lead to serious congestion effects and inefficient
utilization of network resources despite the presence of very
powerful processing and transmission devices. Hence, one has
to find more flexible allocation mechanisms instead of the
fixed allocation ones. These mechanisms are based on proper
mathematical models; see e.g. [1]–[3]. In particular, spectrum
sharing is now one of the most critical issues in this field
and various adaptive mechanisms have been suggested. Treat-
ment of these very complicated systems is often based on a
proper decomposition/clustering approach, which can involve
zonal, time, frequency and other decomposition procedures for
nodes/units; see e.g. [4], [5], [6], [7].

In this work, the first and second authors were supported by the RFBR
grant, project No. 16-01-00109a. The first and third authors were supported
by by grant No. 297689 from Academy of Finland. Also, the work of the
second author is performed within the Government Program of Competitive
Growth of Kazan Federal University.

In this paper, we consider a basic problem of optimal
allocation of a homogeneous resource in telecommunication
networks such that the income received from users payments is
maximized and the implementation costs of the network opera-
tor are minimized. We first present an optimization formulation
for the case where the network manager aims to distribute
some homogeneous resource (bandwidth) among users of one
region with convex charge and quadratic fee functions. We
show that these convex optimization problems can be solved
by dual type iterative methods. Namely, we propose to apply
the bisection method and the conditional gradient method
combined with the solution of the dual problem.

Next, we consider a more general resource allocation prob-
lem for a provider of a multi-zonal wireless communication
network, which was formulated as a convex optimization
problem in [8], [9]. Now, since the price functions of buyers
are affine and the price functions of the network provider
are monotone, we obtain again a convex optimization prob-
lem having capacity and zonal balance constraints. By using
the dual Lagrangian method with respect to the capacity
constraint, we suggest to reduce the initial problem to a
single-dimensional optimization problem, but calculation of
the cost function value leads to independent solution of zonal
problems, which coincide with the previous single region
problem. We present results of computational experiments
which confirm the applicability of the new methods.

II. SINGLE-ZONAL RESOURCE ALLOCATION MODEL

Following [10], we first consider a single-zonal telecom-
munication network with one provider. The general problem
of a network manager is to find an optimal allocation of a
limited homogeneous resource among the users (nodes) in
order to maximize the total payment received from the users
and to minimize the total network implementation expenses.
That is, x is an unknown quantity of the resource offered by
the network, with the capacity bounds x ∈ [0, b], which yields
the network expense (cost of implementation) u(x). Similarly,
yi is the unknown resource offered to user i ∈ I and φi(yi)



is the fee (incentive) value paid by user i with the capacity
bounds yi ∈ [0, ai], where I is the index set of users. The
network manager problem is then formulated as follows:

max
(x,y)∈D

→ µ(x, y) =

{∑
i∈I

φi(yi)− u(x)

}
, (1)

where y = (yi)i∈I ,

D =

{
(x, y)

∑
i∈I

yi = x, 0 ≤ yi ≤ ai, i ∈ I, 0 ≤ x ≤ b

}
.

Suppose that the set D is non-empty, the function u(x) is
strictly convex and differentiable, the functions φi(yi) are
concave and quadratic, i.e.,

φi(yi) = 0.5αiy
2
i + βiyi + σi, αi < 0, i ∈ I.

Then (1) is a differentiable convex optimization problem,
which is treated as a two-side market model. Unlike [10],
we do not insist that the function u(x) be also quadratic.
This means that the provider price function may be nonlinear
in general, which corresponds to a more general model of
behavior, but requires special solution methods since those
from [10] are not applicable now.

Let g(x) = u′(x) and hi(yi) = φ′
i(yi). The necessary and

sufficient optimality condition for problem (1) is written in the
form of the variational inequality: find (x̄, ȳ) ∈ D such that

g(x̄)(x− x̄)−
∑
i∈I

hi(ȳi)(yi − ȳi) ≥ 0, ∀(x, y) ∈ D.

In this case optimality conditions can be written as

(x̄, ȳ) ∈ D, ∃p∗, g(x̄)

 ≥ p∗ if x̄ = 0,
= p∗ if x̄ ∈ (0, b),
≤ p∗ if x̄ = b;

(2)

and

hi(ȳi)

 ≤ p∗ if ȳi = 0,
= p∗ if ȳi ∈ (0, ai),
≥ p∗ if ȳi = ai,

for i ∈ I; (3)

This is precisely a two-side market model with one trader
where all the buyers have affine price functions; see [11], [12].
Therefore, this is the case for the convex optimization problem
(1).

Following the dual approach, we write the Lagrange func-
tion of problem (1) with the negative sign:

M(x, y, p) = u(x)−
∑
i∈I

φi(yi)− p

(
x−

∑
i∈I

yi

)
= (u(x)− px)−

∑
i∈I

(φi(yi)− pyi).

In order to find a value of the dual cost function

θ(p) = min
x∈[0,b], y∈[0,a]

M(x, y, p),

where a = (ai)i∈I , we have to solve one- dimensional
problems:

min
0≤xk≤bk

→ (u(x)− px),

and
max

0≤yi≤ai

→ (0.5αiy
2
i + βiyi − pyi),

for i ∈ I . Solutions of these problems, which are denoted by
x(p) and yi(p), i ∈ I , respectively, are defined uniquely.

It follows that the function θ(p) is concave and differen-
tiable with

θ′(p) =
∑
i∈I

yi(p)− x(p).

Besides, the one- dimensional dual problem

max
p

→ θ(p)

coincides with the simple equation

θ′(p) = 0, (4)

where θ′(p) is non-increasing. If p∗ is a solution of (4), then
we can find the solution of the initial problem (1) from (2)–(3)
by setting p = p∗.

Let us describe first the dual bisection algorithm named
Algorithm (BS). It is based on the above treatment of the
convex optimization problem (1) as a two-side market model.

Set γ′ = g(0) and γ′′ = g(b). Then γ′ < γ′′. Set also
δ′i = βi and δ′′i = αiai + βi for i ∈ I .

If we define p′′ = max
i∈I

δ′i and p′ = γ′, then the case p′′ ≤ p′

yields immediately the zero solutions in accordance with (2)–
(3). So we can consider only the non-trivial case where p′ <
p′′. Then by (2)–(3) we must have θ′(p′) > 0 and θ′(p′′) < 0.
These properties enable us to find a solution of (4) by the
simple bisection algorithm. Given an accuracy ε > 0 and the
initial segment [p′, p′′], we take p̃ = 0.5(p′ + p′′), calculate
θ′(p̃). Then we set p′ = p̃ if θ′(p̃) > 0 and p′ = p̃ otherwise,
until (p′′ − p′) < ε.

Following [13], we can take the conditional gradient method
with linear search (CGDM) for problem (1). For simplicity,
set µ̃(w) = −µ(x, y).

Take an arbitrary initial point w0 ∈ D and numbers α ∈
(0, 1), γ ∈ (0, 1), and δ > 0. At the k-th iteration, k =
0, 1, . . ., we have a point wk ∈ D and calculate uk ∈ D as a
solution of the linear programming problem

min
w∈D

→ ⟨µ̃′(wk), w⟩. (5)

Then we set pk = uk − wk. If ∥pk∥ ≤ δ, stop, we have an
approximate solution. Otherwise we find m as the minimal
non-negative integer such that

µ̃(wk + γmpk) ≤ µ̃(wk) + αγm⟨µ̃′(wk), pk⟩,

set θk = γm, wk+1 = wk + θkp
k, and k = k + 1.

The main idea of this approach is that the basic linear
programming problem (5) is written as a two-side market
model with one trader and many buyers having fixed prices.
Hence, it can be solved in a finite number of iterations by a
simple arrangement type procedure; see [14].



III. MULTI-ZONAL NETWORK PROBLEM

Now we consider a more general model where a telecom-
munication network is divided into several zones (clusters).
The problem of a manager of the whole network is also to
find the optimal allocation of a limited homogeneous network
resource among the zones in order to maximize the total profit
containing the total income received from consumers’ fees and
negative resource implementation costs; see [8], [9].

Let us use the following notation:
• n is the number of zones;
• Ik is the index set of users (currently) located in zone k

(k = 1, . . . , n);
• B is the total resource supply (the total bandwidth) for

the system (network);
• xk is an unknown quantity of the resource allotted to

zone k with the upper bound bk and fk(xk) is the cost
of implementation of this quantity of the resource for
zone k (k = 1, . . . , n);

• yi is the resource amount received by user i with the
upper bound ai and φi(yi) is the charge value paid by
user i for the resource value yi.

The network manager problem is the optimization problem
involving capacity and balance constraints:

max →
n∑

k=1

[∑
i∈Ik

φi(yi)− fk(xk)

]
, (6)

subject to
n∑

k=1

xk ≤ B; (7)∑
i∈Ik

yi = xk, k = 1, . . . , n; (8)

0 ≤ yi ≤ ai, i ∈ Ik, 0 ≤ xk ≤ bk, k = 1, . . . , n. (9)

That is, (8) provides the balance for demand and supply in
each zone, (9) involves capacity constraints for users and
network supply values in each zone, and (7) gives the upper
bound for the total resource supply.

In what follows we assume that there exists at least one
feasible point satisfying conditions (7)–(9), all the functions
fk(xk) are strictly convex and differentiable and all the
functions φi(yi) are concave and quadratic, i.e.

φi(yi) = 0.5αiy
2
i + βiyi + σi, αi < 0, i ∈ Ik,
k = 1, . . . , n.

(10)

This means that (6)–(10) is a convex optimization problem.
However, due to large dimensionality and inexact data one can
meet serious drawbacks in solving this problem with usual fi-
nite or penalty solution methods. In order to create an efficient
method, we have to take into account its separability and apply
certain decomposition approach. However, the standard duality
approach using the Lagrangian function with respect to all
the functional constraints leads to the multi-dimensional dual
optimization problem. We will apply another approach, which

was suggested in [15]. Let us define the Lagrange function of
problem (6)–(9) as follows:

L(x, y, λ) =
n∑

k=1

[∑
i∈Ik

φi(yi)− fk(xk)

]
− λ

(
n∑

k=1

xk −B

)
.

We utilize the Lagrangian multiplier λ only for the total
resource bound. We can now replace problem (6)–(9) with
its dual:

min
λ≥0

→ ψ(λ), (11)

where

ψ(λ) = max
(x,y) ∈ W

L(x, y, λ) = λB

+ max
(x,y) ∈ W

n∑
k=1

[∑
i∈Ik

φi(yi)− fk(xk)− λxk

]
,

W =

{
(x, y)

∑
i∈Ik

yi = xk, 0 ≤ yi ≤ ai, i ∈ Ik,
0 ≤ xk ≤ bk, k = 1, . . . , n

}
.

By duality (see e.g. [16], [17]), problems (6)–(9) and (11)
have the same optimal value. But the solution of (11) can be
found by one of well-known single-dimensional optimization
algorithms; see e.g. [17]. In order to calculate the value of
ψ(λ) we have to solve the inner problem:

max →
n∑

k=1

[∑
i∈Ik

φi(yi)− fk(xk)− λxk

]
,

subject to ∑
i∈Ik

yi = xk, 0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ xk ≤ bk, k = 1, . . . , n.

Obviously, this problem decomposes into n independent zonal
optimization problems

max →

[∑
i∈Ik

φi(yi)− fk(xk)− λxk

]
, (12)

subject to ∑
i∈Ik

yi = xk, 0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ xk ≤ bk;

for k = 1, . . . , n. Each k-th independent zonal problem (12)
clearly coincides with problem (1) where

φi(yi) = 0.5αiy
2
i + βiyi + σi, i ∈ Ik,

u(x) = fk(xk) + λxk.

Therefore, we can find its solution by the algorithms described
in Section II.



TABLE I
RESULTS OF TESTING WITH J = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: Algorithm (BS)
10−1 0.0275 2.3406 0.0013
10−2 0.0322 2.9034 0.0019
10−3 0.0413 3.3624 0.0025
10−4 0.0463 3.8750 0.0019

TABLE II
RESULTS OF TESTING WITH n = 70, ε = 10−2

J Tε: (CGDM0) Tε: (CGDMB) Tε: Algorithm (BS)
210 0.0078 0.2344 0.0003
310 0.0159 0.7248 0.0003
410 0.0248 1.7156 0.0006
510 0.0322 2.9034 0.0019
610 0.0457 4.2282 0.0015
710 0.0603 5.6814 0.0025
810 0.0741 7.4378 0.0041
910 0.0891 9.3688 0.0035
1010 0.1071 11.5718 0.0053

IV. NUMERICAL EXPERIMENTS

In order to evaluate efficiency of the new method we made
several series of computational experiments. The programs on
the methods were coded in C++ with a PC with the following
facilities: Intel(R) Core(TM) i7-4500, CPU 1.80 GHz, RAM
6 Gb.

The initial intervals for choosing the dual variable λ were
taken as [0,1000]. Values of bk were chosen by trigonometric
functions in [1, 51], values of ai were chosen by trigonometric
functions in [1, 2]. Value B were taken equal 1000. Values γ
and α in (CGDM) was chosen to be 0.7 and 0.4, respectively.
The number of zones was varied from 5 to 1005, the number of
users was varied from 210 to 10010. Users were distributed in
zones either uniformly or according to the normal distribution.
We took the cost functions fk(xk) = τk exp(ηkxk). The
coefficients of the functions fk(xk) and φi(yi) from (10) were
taken as

τk = | cos(2k + 2)|+ 1, ηk = | cos(k + 1)|+ 3,

and

αi = −3| cos(2i+ 1)| − 3, βi = | sin(i+ 2)| − 1.

For all the methods of finding a solution of problem (6)–(9)
the accuracy of the upper dual problem solution were varied
from 10−1 to 10−4. The accuracy of the lower level problem
solution was fixed and equal to 10−2. For each set of the
parameters we made 50 tests. Let J denote the total number
of users, Tε the total processor time in seconds. We named
by (CGDM0) a dual Lagrangian method with conditional
gradient method with linear search with initial point w0 = 0
and (CGDMB) a dual Lagrangian method with conditional
gradient method with linear search with initial point w0

equaled upper boundary of W̃ . The results of computations
are given in Tables I–IV.

TABLE III
RESULTS OF TESTING WITH J = 510, ε = 10−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: Algorithm (BS)
5 0.0284 3.3936 0.0015
15 0.0290 3.3470 0.0009
25 0.0290 3.2906 0.0009
35 0.0284 3,1690 0.0012
45 0.0297 3,0910 0.0012
55 0.0307 2.9750 0.0028
65 0.0305 2,9220 0.0012
75 0.0325 2.8588 0.0015
85 0.0332 2.8376 0.0028
95 0.0331 2.8068 0.0022

105 0.0334 2,7940 0.0027

TABLE IV
RESULTS OF TESTING WITH n = 70, ε = 10−2

J Tε: (CGDM0) Tε: (CGDMB) Tε: Algorithm (BS)
1010 0.1071 11.5718 0.0053
2010 0.4308 22.6720 0.0313
3010 0.9846 62.5000 0.1161
4010 1.7436 140.1100 0.2141
5010 2.7354 239.3160 0.3428
6010 3.8752 354.0210 0.5000
7010 5.3212 496.8820 0.6888
8010 6.9454 671.1140 0.9225
9010 8.8922 872.3650 1.2275
10010 11.0104 1129.3900 1.6335

As we can see from the results in the tables, in all the
cases the suggested methods were capable to find a solution.
The processor time expenses given in the tables show that
utilization of Algorithm (BS) for inner optimization problems
give better performance, especially on large problems (see
Table IV).

V. CONCLUSIONS

We considered a basic problem of optimal allocation of
a homogeneous resource in telecommunication networks. We
presented combined dual type solution methods for the case
where the network manager aims to distribute some homo-
geneous resource (bandwidth) among users of one region
with convex charge and quadratic fee functions. Next, we
considered a more general problem for a provider of a wireless
communication network divided into several zones. By using
the dual Lagrangian method, we transformed this problem into
a two-level problem with the single-dimensional optimization
problem at the upper level and the set of independent zonal
problems at the lower level. The results of computational
experiments confirmed the applicability of the new methods.
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