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Abstract—The notion of a fast uplink grant is emerging
as a promising solution for enabling massive machine type
communications (MTCs) in the Internet of Things over cellular
networks. By using the fast uplink grant, machine type devices
(MTD) will no longer require random access (RA) channels
to send scheduling requests. Instead, uplink resources can be
actively allocated to MTDs by the base station. In this paper,
the challenges and opportunities for adopting the fast uplink
grant to support MTCs are investigated. First, the fundamentals
of fast uplink grant and its advantages over conventional access
schemes: i) fully scheduled with RA process and ii) uncoordinated
access, are presented. Then, the key challenges that include the
prediction of set of MTDs with data to transmit, as well as the
optimal scheduling of MTDs, are exposed. To overcome these
challenges, a two-stage approach that includes traffic prediction
and optimized scheduling is proposed. For this approach, various
solutions for source traffic prediction for periodic MTD traffic are
reviewed and novel methods for event-driven traffic prediction
are proposed. For optimal allocation of uplink grants, new
solutions based on advanced machine learning methods are
presented. By using the proposed solutions, the fast uplink
grant has the potential to enable cellular networks to support
massive MTCs and effectively reduce the signaling overhead and
overcome the delay and congestion challenges of conventional RA
schemes.

I. INTRODUCTION

Realizing the smart cities vision hinges on the introduction
of effective wireless solutions that can provide pervasive con-
nectivity across an Internet of Things (IoT) environment [1]
that integrates both human type devices, such as smartphones,
and machine type devices (MTDs), such as drones, sensors,
vehicles, and actuators. While cellular networks provide an
appealing solution for IoT connectivity, existing networks
have been designed with a primary focus on providing high
data rates to a small number of human type devices, in the
downlink. However, as shown in Fig. 1, IoT applications will
rely on a massive number of MTDs that generate small data
packets [2] that are mostly transmitted in the uplink direction,
towards a central controller, such as a base station (BS). Such
massive machine type communications (MTCs) in the IoT
will lead to a major paradigm shift for cellular networks. For
instance, beyond its uplink-centered nature, MTC in the IoT
will also differ from conventional human type communications
by the heterogeneous quality-of-service (QoS) requirements of
of the its IoT applications, in terms of latency and reliability,
two metrics that are seen as key enablers for IoT applications
such as smart grids, autonomous vehicles, factory automation,

and e-health. Clearly, supporting such uplink-centric MTCs,
with heterogeneous QoS needs will pose major challenges for
cellular networks that range from QoS modeling to network
optimization and multiple access [2].

In particular, one of the main challenges of cellular-enabled
MTC in the IoT is the inability of existing random access
(RA) protocols to support massive, short-packet transmissions.
Moreover, the dense nature of MTCs will inevitably strain
the highly-constrained resources of the RA process and, thus,
render it inefficient. The RA challenges of MTC will be further
exacerbated by the massive nature of the IoT which is expected
to encompass around 3000 MTDs within a geographically
constrained area [2], [3]. Recently, there has been a surge
in literature that focuses on optimizing RA process for MTC
(e.g., see [3] and references there in). Such works are primarily
focused on either reducing signaling overhead to increase
efficiency, or developing new backoff mechanisms to reduce
collisions. However, solutions that focus optimizing the signal-
ing overhead fall short in addressing the problem of resource
congestion. Moreover, prior art [3] that addresses the efforts
to solve the RA channel congestion problem typically does
so at the cost of increased latency. Such added latency cannot
be sustained by mission-critical IoT applications that require
reliable packet delivery within stringent deadlines. As a result,
without discounting the existing efforts on improving RA for
MTC, most of this prior art is still unsuitable to handle massive
access due to the associated signaling overhead, collisions and
delays.

Another promising approach to integrate the IoT into cellu-
lar systems is to use uncoordinated transmissions in which no
RA procedure is performed and the MTDs are not scheduled
[4]. In essence, for uncoordinated access, MTDs select a
random radio resource block (RB) and transmit their data.
Even though this method reduces signaling, it still suffers from
collisions since many MTDs might select the same RB. De-
spite some recent promising solutions for this uncoordinated
access problem (e.g., see [4]), these existing approaches will
still yield high congestion and associated delays.

Clearly, there is a need for new solutions for MTD access
that can strike a balance between fully scheduled solutions,
(that are controlled and reliable but have high signaling over-
head, RA congestion and long delays) and fully uncoordinated
solutions (that have low signaling overhead but have collisions,
long delays, and increased receiver complexity).
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The main contribution of this paper is therefore to develop
such a middle-ground multiple access solution by leveraging
the idea of a fast uplink grant. The fast uplink grant is a
method that was recently proposed by 3GPP [5], [6]. In the
fast uplink grant scheme MTDs do not send RA scheduling
requests and, instead, the BS will actively allocate uplink
resources to those MTDs. Therefore, by using the fast up-
link grant, MTDs are not required to perform RA, and, the
problems associated with RA can be overcome. Moreover, in
contrast to uncoordinated transmission, MTDs are scheduled
by the BS and hence, collisions can be avoided. To better
understand the potential of this approach for the IoT, first, we
provide an insight on on the opportunities provided by the
use of the fast uplink channel for MTC. Then, we present
an overview of the associated challenges, such as predicting
which MTDs have data to transmit and properly scheduling
those MTDs. To address these problems, we first exploit
the potential of different learning methods for source traffic
prediction. In this regard, we discuss a variety of tools and
machine learning algorithms that can potentially be used to
predict both periodic and event-driven MTC traffic. We then
shed light on the use of multi-armed bandit (MAB) theory
and deep reinforcement learning (Deep RL) as effective tools
for enabling effective fast uplink grant allocation for massive
MTC scenarios. To the best of our knowledge, this is the first
work that analyzes how the fast uplink grant can be effectively
leveraged to solve the emerging problem of massive MTCs in
the IoT. The rest of the paper is organized as follows. Section
II overviews the cellular RA process and its challenges for
MTC. The fast uplink grant and its opportunities and problems
are presented in Section III. A two-stage fast uplink grant
approach for MTC is presented in Section IV and conclusions
are drawn in Section V.

II. RANDOM ACCESS FOR MTC: OVERVIEW AND
CHALLENGES

A. Overview of the RA Process

The RA procedure is the first step needed to establish an
uplink connection between any cellular device and a BS [3].
Moreover, the RA process has two different forms, contention-
based and contention-free. In contention-based RA, cellular
users compete for RA resources and there is a possibility of
collisions. In contrast, in contention-free case, the BS allocates
specific resources for cellular users to send RA requests. For
MTC, we focus on contention-based RA procedure because
contention free RA is mostly suitable for transmitting emer-
gency messages or very critical data, and the BS cannot reserve
RA resources for all MTDs. The RA process in LTE/LTE-
A systems has the following format. Upon having data to
transmit, each user selects one RA slot, randomly from a set
of available RA slots to send scheduling request. The number
of RBs that are available for RA is limited since RA slots are
allocated in uplink channel. In the frequency domain, each
RA slot is 1.08 MHz, which is equal to 6 LTE RBs. In LTE
each RB is frequency-time unit one with 180 kHz bandwidth
and 1 ms duration. In the time domain, the time intervals
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Fig. 1: An illustration of an example IoT environment in which
multiple MTDs communicate with BSs connected to a cloud-
based gateway.

for RA availability vary between every 1 ms to every 20 ms,
depending on the system configuration. There are a total of 64
configurations which are broadcasted periodically by the BS.
Once RA slots are available, cellular users randomly select
one of the available RA slots and send the scheduling request
in that slot. If the RA process is successful, the BS sends
a RA response to the cellular user. However, if more than
one device select the same RA slot for sending scheduling
request, a collision occurs. The BS will attempt to decode
the scheduling request in case of collision and will send an
RA response which is received by all the users that had used
the same RA slot. However, only the MTD whose data is
successfully decoded at the BS is able to continue RA process
and others are barred and have to send scheduling request
in next RA opportunity. Once RA response is received, the
cellular user will then transmit a connection request to the BS.
In next step, the BS transmits contention resolutions and after
that, cellular user starts transmitting data. Fig. 2 illustrates a
typical cellular RA process.

B. Challenges of RA in MTC

While the RA process of Section II-A is suitable for con-
ventional human type devices, adopting it for MTC will face
several challenges. For instance, the first challenge pertains to
the limited number of RA opportunities in a cellular network.
In fact, cellular RA resources are often much smaller than
the anticipated number of MTDs in the IoT. For instance, RA



efficiency is maximized when the number of RA opportunities
is equal to number devices competing for these resources.
Increasing the number of RA slots is not feasible because
RA slots are allocated in the physical uplink channel which
has limited resources. Moreover, these resources are shared for
both RA and uplink transmissions and, hence, there should be
a balance between number of RBs allocated for the RA process
and the number of resources left for uplink transmission.
Hence, a small number of RA slots in comparison to the
number of contending devices increases the probability of
collisions. These collisions will make it impossible for the BS
to decode RA pilots which will lead to a waste of resources
and long delays for MTDs. The reason for long delays is that,
after each RA failure, the affected MTD has to wait until the
next RA opportunity to send the scheduling request again.

The second key RA challenge pertains to the short data
packets size in MTC compared to conventional cellular ser-
vices. For example, using six RBs for sending a scheduling
request to transmit a short data packet that might require only
one RB, is highly inefficient. The signaling overhead for RA
is no longer negligible compared to the actual size of the data
packets that will be transmitted by MTDs. Therefore, a low
signaling scheduling scheme for MTC is highly desirable.

C. Overview on Existing RA Solutions for MTC

To address the aforementioned challenges of RA for MTC,
several recent solutions have been proposed, as extensively
reviewed in [3]. The first class of solutions focus on coor-
dinated transmissions. One popular solution is access class
barring (ACB) in which the BS selects a number between
zero and one and broadcasts it to the MTDs. Each MTD
also randomly selects a number between zero and one. If the
number that is selected by an MTD is smaller that the number
that is sent by the BS, the MTD proceeds with RA. Otherwise,
this MTD is barred from RA and waits until the next RA
opportunity [7]. While ACB solves the problem of RA channel
congestion, it can potentially produce excessive delays due to
the long waiting times experienced by barred MTDs. Another
challenge in ACB is optimizing the value of the number that
will be broadcast by the BS. To improve ACB, the work in [8]
introduced the notion of extended access class barring (EAB).
The main premise of EAB is to bar low-priority MTDs by pre-
assigning different classes for MTDs and, hence, effectively
improving system performance, in terms of heterogeneous
QoS requirements. However, ACB schemes suffer from high
RA signaling overhead. Another approach to improve RA for
MTC, is to use the so-called access backoff process. In this
method, the BS encourages MTDs to not send a scheduling
request for a time duration. However, by doing so, it increases
latency. Another alternative solution for RA congestion is the
notion of slotted RA in which each MTD is allocated a fixed
RA opportunity to transmit only on that slot. However, slotted
RA will not be suitable for massive MTC access since the
periodicity of the RA slots will be large and, hence, incurring
long delays. Moreover, if an MTD does not to send an RA
pilot, the RA slot is wasted. Other methods have also been
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Fig. 2: Comparison of the scheduling process in conventional
RA (left) and in a fast uplink grant process (right).

proposed for improving RA such as such as pull-based RA in
which MTDs wait for permissions from BS to send RA pilots,
priority-based RA in which specific RA priorities are assigned
for devices. Code-expanded RA, self-optimizing load control,
dynamic RA slot allocation and spatial grouping of MTDs.
A comprehensive list of such methods and their advantages
and disadvantages is presented in [3]. However, all of these
methods still exhibit high signaling overhead, collisions, and
long delays which limits their applicability to MTC.

The second approach to solve the RA problem for MTC is to
simply eliminate the RA process and use uncoordinated trans-
missions [4]. Here, MTDs do not perform the RA process and,
hence, they are not scheduled. Instead, the MTDs will select a
random RB in uplink channel to transmit data [4]. Obviously,
this method reduces the signaling level and can potentially
increase the efficiency of the system. However, uncoordinated
MTCs will still heavily suffer from collisions since the largely
constrained uplink resources are shared among a potentially
large number of MTDs that actively compete for channel
access. Moreover, to realize uncoordinated MTC in practice,
there is a need to design complicated receiver structures and
retransmission mechanisms. Another major issue is scalability
in terms of the number of supported devices. Since resources
are selected randomly, efficiency is maximized when the
number of devices is equal to number of resources. Clearly,
in massive MTC, such requirement is not met, and, hence,
the performance of the system will suffer. Code division
multiple access (CDMA) is also investigated in [9] for MTC
due to its support for heterogenous QoS requirements and
scalability to support various number of devices. However,
CDMA performance also suffers in the regime of large number
of devices [9]. These drawback of uncoordinated transmissions
limit the scope of their applicability to MTC, in general, and
massive MTC, in particular.

III. FAST UPLINK GRANT

A balanced approach between coordinated with RA process
and uncoordinated transmissions could be developed by using
the concept of a fast uplink grant, as shown in Fig. 2.



TABLE I: Coordinated vs uncoordinated vs fast uplink grant

Signaling Collisions Latency

Coordinated High (6 RBs) +
messages 2 to 4

High (number of MTDs >>
number of RA slots)

Waiting for RA slot +
RA signaling

Uncoordinated Zero High(number of MTDs >>
number of RBs)

High (when number of
MTDs >> number of RBs)

Fast uplink grant Small (one broadcast
message for entire cell) Zero Small (a few ms if grant

is allocated on time)

A. Fast Uplink Grant: Definition and Opportunities

The fast uplink grant was introduced in [5], [6] as an
effective process that a cellular BS can use to select an MTD
and allocate uplink resources to it. As such, by using the fast
uplink grant, the MTDs will no longer need to perform a RA
process. Instead, whenever an MTD has data transmit, it can
simply wait for the fast uplink grant to be allocated to it.

The fast uplink grant presents several benefits compared to
the schemes presented in previous sections. First, the amount
of signaling that is required is much less than RA. This is due
to the fact that, by using the fast uplink grant:

• Only one level of signaling is performed.
• The amount of signaling is smaller since the fast uplink

grant for the entire system can be sent in one broadcast
message.

Second, in a system with large number of devices, collisions
of RA pilots in coordinated access and packet collisions in
uncoordinated transmission can be overcome by using the fast
uplink grant. Also, implementing the fast uplink grant will
not require complicated receiver structures at the BS to solve
problems of uncontrolled transmission. The benefits of fast
uplink grant can be summarized as follows:

• RA congestion is mitigated.
• RA radio resources can be used to transmit uplink data

and hence, larger number of devices can be supported.
• Packet collisions of uncoordinated transmission are

avoided.
• The BS can satisfy the heterogenous QoS requirements of

MTDs by active allocation of fast uplink grant to MTDs
with stricter latency requirements.

• MTDs can save energy by skipping RA process and
retransmission of scheduling requests in case of RA
failure.

• RA prcess delay and delay of waiting for next RA
opportunity in case of collisons are eliminated.

A summary of differences between fast uplink grant with
conventional schems is given Table I.

B. Challenges of Fast Uplink Grant

The first drawback of the fast uplink grant is the possibility
of wasting resources whenever an MTD that has received fast
uplink grant does not have data to transmit [6]. Moreover,
the if fast uplink grant is not received within the maximum
tolerable delay of the data packets, then packet will be dropped
yielding transmission failures. This can potentially lead to
major problems for both latency and reliability in MTC. In
essence, to adopt the fast uplink grant for MTC, one of the

main challenges that must be overcome is the optimal selection
of MTDs by the BS. This MTD selection process, in turn,
faces two key challenges. First, there is a need to predict
the set of nodes that will likely have data to transmit, at any
given time. By doing accurate predictions, the BS can solve
the problem of allocating fast uplink grant to silent MTDs.
Once predictions are properly implemented, the BS must
also be able to determine the scheduling sequence of MTDs.
This challenge is particularly pronounced when the number
of devices significantly exceeds the number of resources.
Hence, sophisticated scheduling algorithms are required to
be developed to enable fast uplink grant allocation. In what
follows, we propose a two-stage approach for leveraging the
fast uplink grant for MTCs.

IV. PROPOSED TWO-STAGE SOLUTION

A. Source Traffic Prediction in MTC

As stated in previous section, if an MTD is selected for fast
uplink grant and does not have data to transmit, uplink radio
resources are wasted. To address this challenge, the BS must
implement advanced traffic prediction mechanisms to predict
the set of MTDs that have data to transmit. Most of the prior
art on traffic modeling for MTC is focused on aggregate traffic
modeling at the BS. Such traffic modeling only estimates the
number of devices or number of packets arriving in the system.
However, source traffic modeling is fundamentally a different
problem since we are interested in precisely predicting which
MTDs will enter the network. In essence, at each time slot, the
BS needs to predict which MTDs will have traffic to send and,
hence, need uplink resources. Such predictions are generally
feasible in an IoT environment due to two facts: a) most of
the MTDs are stationary or exhibit low mobility and b) The
set of MTDs communicating with a BS is often fixed.

For traffic predictions, one needs to distinguish between
two types of MTC traffic: periodic reporting and event-driven
transmissions. In periodic reporting, MTDs periodically trans-
mit data packets at specific, pre-determined times. In event-
driven traffic, often, a large number of MTDs will initiate a
transmission request to provide reports on a certain IoT event.
Clearly, prediction of event-driven traffic is much harder than
periodic traffic. Next, we present mathematical tools that can
be used to develop algorithms for prediction of both MTC
traffic types.

1) Prediction of Periodic Traffic: Many IoT applications,
such as smart metering and weather sensing, rely on MTDs
that periodically transmit sensory data generated from the ob-
servations of the physical environment. Different applications
generate heterogeneous data sizes in various period durations.



These durations could be as low as a few milliseconds and up
to once in a month. An MTD might also transmit data pertain-
ing to multiple IoT appliations. This results in differenet data
packets with different transmission intervals. Hence, the BS
must learn exact time instances at which any given MTD will
generate its data, as well as the associated packet size. Clearly,
the BS must collect data from the past transmissions of all
MTDs and subsequently use machine learning algorithms to
predict the source traffic for each MTD. This prediction must
be precise, since some IoT applications generate data with very
strict latency requirements, as low as 10 ms. Mathematical
methods such as non-homogeneous Poisson Process (NHPP)
could be used to model the arrival rate of packets to the queue
of each MTD at different times. In NHPP, arrivals follow
Poisson distribution, however, at each time, the rate of arrival
is different. Such pattern analysis is called calendar-based
periodic pattern mining and models such as the sequential
association rule and the calendar association rule exist for
analyzing them (e.g, see [10] and reference therein).

2) Prediction of Event-Driven Traffic: In IoT applications
that rely on event-driven MTC, whenever an event occurs,
several MTDs that detect the event must initiate data transmis-
sion to the BS. This leads to a burst of RA scheduling requests
from a large number of MTDs. Such event-driven MTC traffic
will exacerbate the challenges pertaining to scheduling a large
number of MTDs that were identified in Section II-B. Hence,
effective traffic prediction in event-driven MTC is critical.
Naturally, predicting an IoT event that was never observed is
not possible. However, it is possible to detect an event based
on unusual traffic generated by MTDs. If the BS, based on
the data gathered from previous IoT events, can calculate the
likelihood with which other MTDs face the same event, it will
be possible to design algorithms to predict event-driven traffic.
For example, a predictive grant allocation is presented in [11]
for IoT cases in which an event propagates through a system of
sensors located in a line. Here, the BS can learn which MTDs
will initiate transmission in case of an event. However, this
method cannot be generalized to all possible types of MTC
events.

Here, we present novel methods that could be used for
source traffic prediction in event-driven MTCs. First, we
assume that, during past events, the BS has collected the
data about the transmission of MTDs. That is, the BS knows
which devices were transmitting during each event along with
their order of transmission. Second, we assume that the set
of MTDs with periodic traffic is predicted and MTDs do not
send scheduling requests for periodic reporting. Hence, any
scheduling request can be considered as event trigger and used
for detection of events. We could also consider that, once an
event happens, MTDs wait for a short period of time for an
uplink grant, if they do not receive it, they use RA. A flowchart
of decision making at MTD for RA is given in Fig. 3. Now,
once an event happens, some MTDs will report it earlier than
others. The BS considers the first RA request as event trigger.
The event-driven traffic prediction problem is now simplified
to the following question: Once a specific MTD detects an

event, which other MTDs will experience the same event with a
high probability? Answering this question requires analysis of
the data collected from previous events. One natural solution
here is to use probabilistic models from machine learning.
Using the previously collected data, probabilistic relationship
between two MTDs facing the same event can be calculated.
Another possible solution could be to use the paradigm of
causality. Causality deals with the following problem: Given
than an MTD detects an event, which other MTDs that specific
MTD statistically causes to detect the same event. Granger
causality [12] is one method that is used in machine learning
to investigate the causality between two sequences of random
variables. Another advanced and novel method is based on
directed information [13]. Directed information can be used
to infer causality between sequences of random variables.
Considering two sequences of random variables, past and
present values of the first sequence, and past values of the
second sequence can be used to evaluate the present value of
second sequence. Directed information is a powerful method
that is used for prediction of seizure in Epliepsy patients and
causality between neurons of the human brain. Hence, such
a framework could potentially be used to predict the exact
number of packets that an MTD has to transmit in case of an
event. Once causality is inferred, one can predict which MTDs
face the same IoT event and start allocating fast uplink grant
to them. In Fig. 3, we present the flowchart of an algorithm
to that can use event-detection in the BS for fast uplink grant
allocation.

B. Optimal Fast Uplink Grant Allocation

Once the set of MTDs that have data to transmit is predicted,
the network must select which ones can be granted access.
Due to the limited radio resources, MTDs should be scheduled
based on their QoS requirements, particularly the maximum
tolerable delay of their packets. If fast uplink grants are allo-
cated randomly, it is possible that the network may prioritize
the scheduling of delay-tolerant MTD data, thus jeopardizing
the performance of delay-sensitive MTD data. If the BS has
full knowledge of the QoS requirements of all MTDs, this
scheduling can be performed in a centralized manner. Such
scheduling could take into account performance indicators like
latency, value of data packets, and the wireless channel quality.
However, in a realistic scenario, such information might not
be available to the BS and any fast uplink grant allocation
algorithm should be able to select MTDs in an uncertain
environment. Therefore, the design of sophisticated algorithms
for optimal fast uplink grant allocation is needed. Here, we
present some initial directions toward building such scheduling
algorithms that exploit recent advances in machine learning
and artificial intelligence to optimize the allocation of fast
uplink grants to MTDs [14].

1) Multi-Armed Bandit Theory: Multi-armed bandits
(MABs) are a class of reinforcement learning (RL) problems
that deal with decision making in uncertain environments
with limited or no prior information [15]. The basic MAB
problem consists of a set of arms (available actions) that
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Fig. 3: Flowchart of the proposed algorithm for RA decision making as implemented by any given MTD (left) and event
detection and uplink grant allocation at the BS (right).

can be chosen by a decision-making agent that plays an arm
at each time and receives a reward. The rewards are drawn
from an unknown probability distribution. The agent has no
prior information about the rewards of each arm and has to
randomly select arms, observe the rewards, and, then, try to
find the best possible arm. In MAB, the notion of regret –
defined as the difference between the best possible arm that
could have been played and the arm that is selected – is used
as a measure of performance. The main goal of any MAB
algorithm is to minimize the cumulative regret over time.
To solve conventional MAB problems, algorithms such as ε-
greedy and upper confidence bound (UCB) are often adopted.
There are also special MAB problems such as sleeping MAB
problems in which, at each time, only a subset of arms are
available for the agent, or contextual MAB where at each time
there is some side information provided to the decision maker.
Clearly, such problems are apropos for addressing the MTD
selection problem. For example, the sleeping MAB framework
is particularly suitable to select MTDs for fast uplink grant,
since the availability of MTDs can change at each time.
Moreover, rewards in MAB setting can be defined in terms
of various QoS metrics, and, hence, the algorithms can be

used to optimize the selected metric.

2) Deep Reinforcement Learning: Deep RL is used in RL
problems with extremely large states and actions where it is
not possible to explore all the possible states and actions.
Clearly, MTC scheduling problems with a large number of
MTDs will have to deal with such large action and state spaces.
In deep RL, neural networks (NN) are used to approximate
the environment, and, for the states that were not seen before,
the NN output determines the action [14]. To use deep RL
for MTD selection using the fast uplink grant, one can first
formulate the problem using a Markov decision process (MDP)
[15]. In this MDP formulation, each state is a combination of
set of available MTDs and their associated QoS requirements
and each action of MDP is a subset of set of available MTDs.
Each action will move the system to a new state, that is the
new set of available MTDs. To find the optimal action for each
given set, one can use Deep RL algorithms. The states and
actions are explored to train the NN and for new states, a Deep
RL algorithm can find the optimal action. The key advantage
of Deep RL over other possible scheduling methods is that
after training, it requires low computation, and, it is suitable
for online decision making problems.



V. CONCLUSION

In this paper, we have studied the potential of using the
fast uplink grant as an enabler for massive MTCs in the IoT.
First, we have reviewed the challenges that conventional access
schemes face in MTC, and, discussed the fast uplink grant as a
solution. Then, we have presented challenges of the fast uplink
grant, and, proposed solutions to address them. In particular,
we have presented methods for source traffic prediction, for
both periodic and event-driven traffic. Then, we have proposed
machine learning methods for optimal selection of MTDs for
fast uplink grant. In a nutshell, this work provides a stepping
stone towards a better understanding of how the notion of
a fast uplink grant can be effectively leveraged for massive
MTCs.
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