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Antti Tölli∗, Hadi Ghauch†, Jarkko Kaleva∗, Petri Komulainen‡, Mats Bengtsson†, Mikael Skoglund†, Michael
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Abstract—Coordinated multipoint (CoMP) transmission and
reception have been considered in cellular networks for enabling
larger coverage, improved rates, and interference mitigation. To
harness the gains of coordinated beamforming, fast information
exchange over a backhaul connecting the cooperating base
stations (BSs) is required. In practice, the bandwidth and delay
limitations of the backhaul may not be able to meet such stringent
demands. These impairments motivate the study of cooperative
approaches based only on local channel state information (CSI)
and which require minimal or no information exchange between
the BSs. To this end, several distributed approaches are intro-
duced for coordinated beamforming (CB)-CoMP. The proposed
methods rely on the channel reciprocity and iterative spatially
precoded over-the-air pilot signaling. We elaborate how forward-
backward (F-B) training facilitates distributed CB by allowing
BSs and user equipments (UEs) to iteratively optimize their
respective transmitters/receivers based on only locally measured
CSI. The trade-off due to the overhead from the F-B iterations
is discussed. We also consider the challenge of dynamic TDD
where the UE-UE channel knowledge cannot be acquired at the
BSs by exploiting channel reciprocity. Finally, standardization
activities and practical requirements for enabling the proposed
F-B training schemes in 5G radio access are discussed.

I. INTRODUCTION

The performance of mobile networks is significantly limited

by inter-cell interference due to the reuse of radio resources

in nearby cells. Consequently, designing advanced interference

coordination techniques is of utmost importance for improving

the performance of a cellular network. Different coordinated

multipoint (CoMP) variants have been included for the down-

link in the 3GPP LTE-Advanced standard such as coordinated

beamforming (CB) and joint transmission (JT). For JT-CoMP,

users in the cluster are served by all the cooperating BSs,

which have access to the user data. To enable such cooperation,

data and CSI for the users in the cluster have to be exchanged

among the cooperating BSs and possibly a centralized pro-

cessor. This imposes certain requirements on the capacity

and delay of the backhaul, which may not be possible in

practice. Furthermore, the deployment of small cells and ultra-

dense networks in future communication systems may further

degrade the backhaul quality in an area of cooperating BSs.

This research was supported by Academy of Finland (Decision no. 279101
and 284590), Business Finland and Nokia. Part of this work has been
performed in the framework of the FP7 project ICT-317669 METIS funded
by the European Union.

Fig. 1: Locally measured CSI.

In fact, the imperfect backhaul has been recognized as one of

the key issues in fast multi-cell cooperation [1].

Enabling coordination or cooperation among network en-

tities is always beneficial but the best coordination strategy

depends on a variety of conditions including channel state

information (CSI) and data availability, backhaul constraints,

and network connectivity (level of interference). The main

design aspects are related to how much the cooperation is

centrally managed (CSI sharing) and whether terminals should

be served by multiple BSs (data sharing). The level of coor-

dination can be divided into four basic categories based on

the different combinations of local or global CSI, and local

or global data available at the network nodes. In this paper,

we focus on distributed CB-CoMP schemes [2]–[6] with only

local CSI and data available at each transmit node as depicted

in Fig. 1. An extension to distributed JT-CoMP scenario with

minimal central controller involvement was considered in [7],

assuming the user data is shared by the cooperating BSs while

the CSI is available only locally.

We present iterative distributed CB schemes that rely on

http://arxiv.org/abs/1802.04309v2
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Fig. 2: Simplified TDD frame structure with F-B training.

uplink-downlink (UL-DL) channel reciprocity and spatially

precoded pilots [2]–[6]. To this end, we first elaborate on

how distributed CB can be facilitated via iterative forward-

backward (F-B) training allowing the nodes (BSs and users)

to optimize their transmitters (TX) and receivers (RX) in an

iterative manner based on local CSI only. Furthermore, we

discuss the overhead resulting from the F-B iterations as well

as the effect of imperfect CSI on distributed iterative schemes.

A flexible TDD frame structure is an essential component of

the upcoming 5G standard in 3GPP [8], [9]. The new 5G air in-

terface must meet the low physical layer latency requirements

without restrictions on assigning resources to UL or DL, or in

addition, to self-backhauling or direct D2D links [10], [11].

We also consider the required signaling to enable distributed

coordination via F-B training in a challenging interference

scenario with a fully dynamic/flexible TDD frame structure.

Finally, practical requirements for enabling the proposed F-

B training schemes in the 3GPP new radio (NR) 5G radio

access are discussed. The impact on the frame structure, UE

requirements, CSI uncertainty, etc. will be assessed.

II. DISTRIBUTED COORDINATION VIA F-B TRAINING

Forward-Backward iterations are often also referred to

as over-the-air (OTA) iterations, or bi-directional train-

ing/signaling. A generic TDD frame structure for the proposed

OTA F-B training framework is depicted in Fig. 2, where each

F-B signaling round (iteration) in the beamformer training

consists of two phases: a forward (F) phase and a backward

(B) phase. Let us now focus on DL data transmission, where

the BSs transmit precoded pilots in the forward phase enabling

the users to estimate their local CSI consisting of the effective

channel, i.e. the cascade of channel and precoder, of its desired

link as well as of the interfering links. The users proceed to

optimize their receive beamformers based on the acquired local

CSI. The same process holds for the backward UL phase,

where the transmit beamformers are computed at the BSs

based on the precoded backward link pilots. Flexible UL/DL

transmission is discussed in Section III.

F-B training allows a fully distributed coordinated com-

putation of transmit/receive beamformers of the BSs/users in

the cluster, without full CSI exchange over a backhaul. The

beamformers can be computed based on different optimization

criteria such as minimizing the interference leakage [5] or

the (weighted) sum MSE, or maximizing SINR [4] or the

(weighted) sum rate [2], [3], [6], [7], [12]. Moreover, if every

step of the global optimization problem can be decoupled

among the nodes, the distributed iterative scheme incurs no

loss in optimality (besides the overhead) compared to the

centralized approaches [2].

Each F-B iteration has an associated overhead due to

transmitting precoded UL/DL pilots. A coarse measure of

communication overhead can thus be given as the number

of orthogonal pilot symbols needed for each F-B iteration.

For a system with L cells (K users/cell), and d data-streams

per-user, Ω = T 2KLd pilot symbols are needed, where T

indicates the number of F-B iterations as shown in Fig. 2,

and the factor 2 follows from the even split between the

number of forward and backward pilots (due to channel

reciprocity) [13]. Thus, the minimal number of orthogonal

pilots, Ω, increases with the number of data streams, cells,

users, and F-B iterations. In practice, assuming Ω exceeds

the amount of available pilot resources, the pilots must be

reused across the network. This non-orthogonal pilot allocation

causes pilot contamination where the actual estimated channel

is a superposition of all user channels reusing the same pilot

resource [14].

The pilot overhead Ω may become excessive for a large

T , even with relatively low mobility, thereby destroying any

potential gains from coordination. In this paper, the rate

of the beamformer convergence is emphasized in practical

environments with time-varying channels. Faster beamformer

convergence rate requires less F-B iterations, which in turn

lowers the beamformer training overhead. The purpose of

this section is to review recent work [2]–[6], where fast-

converging F-B training and signaling algorithms are proposed

(e.g, T < 10), based on several design criteria. In all papers,

the general downlink CB-CoMP problem with linear TX-

RX beamforming in the multiantenna interference broadcast

channel (IBC) is considered. The proposed iterative methods

naturally decouple the transmitter and receiver beamformer

designs leading to fully distributed algorithms. Basic pilot

signaling schemes for TX-RX beamformer training are intro-

duced in [2] while alternative direct beamformer estimation

approach is proposed in [4]. Further algorithmic convergence

improvements are introduced in [2], [3], [5], [6] allowing each

BS/UE to quickly discard the weak streams while focusing the

power to streams with large gain.

A. Pilot Signalling Schemes for TX-RX Beamformer Training

In [2], the weighted sum rate (WSR) maximization is

implemented via weighted sum mean squared error (WSMSE)

minimization and alternating optimization of the transmit

precoders and receivers. In decentralized optimization with

local CSI and data, the update of variables is distributed among

the nodes in the network. Signaling schemes for effective CSI

exchange facilitating decentralized processing are proposed

in [2], allowing the network nodes to locally participate in

the network adaptation. Three different signaling strategies are
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Fig. 3: F-B training strategies for T = 2 iterations with sep-

arate forward phase demodulation (DM) pilots and backward

phase busy burst (BB) and whitened channel sounding (CS)

pilots

illustrated in Fig. 3 for a special case of T = 2 F-B iterations.

The figure depicts the pilot signals employed in a network of

two cells. It is worth noting that in general, the pilot signals

propagate over the whole network so that all the BSs are

receiving all the uplink pilots, and also all the terminals are

receiving all the downlink pilots.

In the first pilot signaling option, called Strategy A, the

TXs and the RXs are optimized consecutively using F-B

training [2, Alg. 3]. In the forward (F) phase, the user

terminals calculate RX beamformers locally, based on the

DL demodulation (DM) pilot responses. In the backward

(B) phase, the resulting effective DL channels are indicated

via UL pilots that are precoded by using the RX minimum

mean-squared error (MMSE) filter coefficients, termed as busy

bursts (BB). Based on the measured pilot responses, each BS

locally deduces scalar weights for their own data streams,

and share the weight information with other BSs through

backhaul. Alternatively, the backhaul information exchange

can be avoided by incorporating the weights into additional

precoded backward pilots (as done in Section III). Finally, each

BS optimizes its transmit precoders to be used as precoders

for DM pilots in the next forward phase. The process is then

repeated until convergence or a predefined number of F-B

iteration rounds.

The idea of the second signaling option, called Strategy B,

is that the network-wide WSR maximization problem is split

into cell-specific sub-problems, and the BSs optimize their

beamformers one at a time so that each round of F-B pilot

signaling involves just one cell [2, Alg. 4]. Here, a combination

of channel sounding (CS) and BB backward phase pilots is

used. The CS pilots are used to provide the effective CSI to

the serving BSs such that the other-cell interference seen at

the user end becomes whitened. Based on this single round of

CS signals, the BS is then directly able to (iteratively) solve

internally its cell-specific downlink multi-user transmit-receive

design problem, which significantly reduces the amount of the

required OTA signaling. On the other hand, similarly to Strat-

egy A, the role of the BB pilots is to provide the adjacent BSs

with the knowledge of active effective channels, concatenated

with MMSE receivers and stream specific weights. Another

benefit of Strategy B is that it requires virtually no dynamic

backhaul between the BSs, as all the required information is

directly exchanged via OTA signaling.

In Strategy B, the monotonic convergence of the WSR

objective is guaranteed by updating the beamformers one cell

at a time. However, when the number of coordinating BSs

increases, the convergence will be slower. To speed up the

process, Strategy B can be modified so that cells update their

beamformers in parallel. However, this approach increases the

required pilot overhead. To further reduce the pilot overhead of

the parallel adaptation, one more approach, called Strategy C,

is proposed. In this scheme, the effective channels both at the

serving and interfering BSs for each F-B signaling round can

be constructed solely based on specifically designed whitening

CS pilot responses and additional backhaul information [2,

Alg. 5].

Fig. 4 illustrates the sum spectral efficiency evolution of

Strategies A–C over F-B adaptation steps, at 25 dB SNR in a

2-BS cell-edge scenario [2]. Note that SNR is representative

of the total normalized power budget per BS shared among

the selected multiple users/streams, and hence, the stream

specific SNR can be significantly lower.1 In addition to per-BS

constraints, the performance of Strategy A with more restric-

tive antenna specific power (AP) constraints is also plotted

in Fig. 4. Here, the convergence behavior of the algorithms is

emphasized while the impact of OTA signaling overhead per F-

B round is considered in Section III. The convergence speed is

greatly improved by performing internal cell-specific iterations

one BS at a time, as in Strategy B. Strategy C accelerates

the convergence further as parallel iterations are allowed. The

results demonstrate that most of the objective improvement

occurs during the first 4-10 F-B iterations. For example, if we

set a limit for F-B iterations to be T = 4 in Fig. 4, the fast

converging Strategy C would give a 55% throughput increase

as compared to the baseline case.

B. Improved convergence rate of beamformer updates

The convergence of WSMSE based algorithms [2], [12] can

be still fairly slow, especially at high SNR. In this subsection,

alternative WSR algorithms with significantly faster conver-

gence are introduced [3], [6]. The precoded pilot signaling

strategies introduced in Section II-A can be straightforwardly

1 A more thorough comparison in various operational settings can be found
in [2]. The higher the cell edge SNR the larger are the relative gains from
inter-cell coordination.
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Fig. 4: Average convergence of the sum rate in the cell edge

at 25 dB SNR. Number of TX antennas M = 4, RX antennas

N = 2, users per cell K = 5 [2].

incorporated into the faster converging beamformer design

algorithms [3], [6]. As a result, the number of required F-

B iterations T in Fig. 2 can be potentially reduced, further

minimizing the OTA beamformer training overhead.

A WSR maximization framework based on successive con-

vex approximation was proposed in [3], also with additional

per-user QoS/rate constraints. Similarly to [2], [12], the pre-

coder design is based on MSE minimizing reformulation of

the original WSR maximization problem, where the com-

plexity is restricted to a set of non-convex MSE constraints.

The framework in [3] reveals a structure that enables the

use of heuristic approximation methods that can be used to

significantly improve the rate of convergence and lower the

required number of over-the-air iterations as compared to the

baseline case [12]. These approximation techniques are based

on a prediction of the stream specific rate progression and

overestimating the next point of approximation.

The WSR maximization is also tackled in [6], where the

sum-rate is lower bounded using a Difference of Log and Trace

(DLT) bound, and its relative tightness is established. Similarly

to weighted MSE reformulation approaches used in [2], [3],

[12], the DLT bound naturally decouples at the transmitters

and receivers, thus leading to fully distributed algorithms.

The proposed method has an inherent feature to switch off

streams exhibiting low SINR levels, thereby significantly ac-

celerating the algorithm’s convergence. The DLT algorithm

is benchmarked in [6] against several known schemes, e.g.,

distributed Interference Alignment (IA), max-SINR, weighted

MMSE, in terms of performance and overhead, where the fast-

converging nature of the proposed algorithms is made clear:

more than 95% of the final performance is reached in just

2 iterations, allowing 2-3 times faster convergence (and a

corresponding reduction in overhead). We refer the readers

to [6] for extensive simulation results.

Apart from WSR maximization, the proposed F-B training

framework can be adopted to any network optimization ob-

jective solved via iterative TX-RX beamformer optimization.

For example, the interference leakage utility is tackled in [5],

by relaxing the constraint on the well-known leakage mini-

mization problem. A rank-reducing filter update structure is

introduced, to solve the resulting non-convex problem, and

gradually reduce the BS/UE filter rank, thus decreasing the

dimension of the interference subspace, and greatly speeding

up the convergence. Similarly to Strategy B/C introduced in

Section II-A, a turbo-like structure is also proposed for the

interference leakage minimization in [5], where, in addition

to the outer F-B iteration loop, a separate inner optimization

is carried out at each receiver. The proposed algorithms are

shown to converge to locally optimal solutions with dras-

tically reduced F-B iterations as compared to the hundreds

of iterations required by conventional distributed interference

alignment algorithms [5, Fig. 2]. Moreover, the performance

gap between proposed and conventional algorithms increases

with the system dimensions (e.g., antennas, users, cells). We

refer interested readers to extensive numerical results in [5].

C. Impact of non-orthogonal pilots and direct filter estimation

Pilot contamination or non-orthogonality has been widely

studied in the literature [14]. More generally, the impact

of imperfect CSI has been a popular topic. Many different

strategies can be developed for estimating and sharing effec-

tive CSI and/or directly estimating beamformers from pilots.

Some of these possibilities are investigated in [13], providing

different trade-off among pilot overhead, CSI sharing over the

air and via backhaul, computational complexity and resulting

performance. Also, the importance of adding robustness to

estimation errors is highlighted.

An alternative approach to joint optimization of TX and

RX beamformers is proposed in [4]. There the beamformers

are estimated directly as adaptive filters, e.g., using a least

squares criterion. All UL/DL pilots must then be transmitted

synchronously across the cells. That is, the UL pilots are

transmitted synchronously from the mobiles to estimate the

TX beamformers, while the RX beamformers are estimated

directly from the synchronous DL pilots. This scheme auto-

matically suppresses both intra- and inter-cell interference, in

the MMSE sense given sufficient training, and is well-suited to

the scenario in which each BS must compute its beamformers

with limited or no information exchange with neighboring

BSs. The pilot synchronization requirement effectively re-

places the pilot coordination problem in CSI-based estimation.

That is, BSs can choose the pilot sequences independently

without knowledge of the neighboring cell pilots. As with

CSI-based estimation, orthogonalizing and jointly designing

the pilot sequences can reduce the estimation error given a

fixed training duration.

The direct beamformer estimation approach potentially re-

duces the pilot overhead in dense systems, relative to estimat-

ing CSI. This is due to the large number of cross-channels

causing significant inter-cell interference. All those channels

must be estimated when computing the beamformers, requiring
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knowledge of all interfering pilot sequences. In contrast, the

direct beamformer-estimation approach requires only local

pilot sequence information and sufficient pilots to estimate the

beamformer (not channel) coefficients. In [7], a direct beam-

former estimation method combined with F-B OTA training

was developed for distributed JT-CoMP operation, where the

user data is presumed to be shared by the cooperating BSs

while the CSI is available only locally.

III. DYNAMIC/FLEXIBLE TDD

In small cell environments, the instantaneous traffic in UL

and DL may exhibit significant variation with time and among

the neighboring cells. In such a scenario, Dynamic or Flexible

TDD may provide vastly enhanced resource utilization by

dynamically changing the amount of resources allocated to the

UL and DL at each time instant. In addition to the traditional

DL-to-DL and UL-to-UL interference, UL-to-DL and DL-

to-UL interference are also associated with flexible TDD

operation. Effective resource allocation in such demanding en-

vironment requires that the gains of flexible UL/DL allocation

(e.g. packet delivery time reduction) and the potential losses

(excess interference) are properly balanced.

In order to mitigate the cross-link interference, joint re-

source allocation and beamforming may be employed within

a coordinating set of cells. In TDD networks, the CSI of the

BS-user and BS-BS links can be acquired assuming the UL-

DL channel reciprocity holds. A specific challenge with the

dynamic TDD setting is the CSI acquisition of the cross-

link interference channels (among mutually interfering user

terminals). Explicit feedback of the user-to-user channels in

addition to a full CSI exchange between BSs would be

required to enable optimal beamformer design. However, such

an impractical centralized approach can be circumvented by

employing F-B training to convey implicit information to the

BSs about the interference and receivers at the users [15]. A

flexible frame structure similar to Fig. 2 can be used for the bi-

directional beamformer training, where the data payload can be

allocated either for DL or UL depending on the instantaneous

traffic requirements of a given cell.

In Fig. 5, the performance of distributed CB with dynamic

TDD is evaluated in a 2-tier cellular system with a wrap-

around hexagonal grid consisting of 19 cells with 200m inter-

site distance. Each cell is randomly allocated to operate either

in UL or DL. Each BS has 8 antennas and serves four 2-

antenna users in its cell. Two bi-directional F-B signaling

strategies (A and B) introduced in Section II-A are investi-

gated. The forward (F) pilots correspond to precoded pilots

transmitted by UL users and DL BSs while in the backward

(B) phase precoded pilots are transmitted by UL BSs and

DL users. In Dynamic TDD operation, both users and BSs

participate in the iterative beamformer optimization process.

Hence, wired backhaul is not available for exchanging weight

information among mutually interfering UL and DL users.

However, the stream specific weights can be incorporated into

additional backward pilots as illustrated in [15, Fig. 1]. Thus,

both Strategies A and B introduced in Section II-A necessitate

two precoded pilots for each backward iteration. As a low
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Fig. 5: Sum throughput performance vs training overhead of

distributed CB in a 19-cell dynamic TDD network with 20 dB

and 5 dB cell edge SNR. The probability for a cell to be in

UL mode is 30%.

overhead alternative solution, a heuristic scheme denoted as

Strategy D is also proposed. The weight variables are assumed

to be all ones for the other cell users, while the MSE weights

for the own cell users are calculated based on locally available

information [15]. Thus, only a single backward pilot per

stream is required in Strategy D.

The effective sum throughput versus the total overhead is

shown in Fig. 5 for each proposed training strategy. The

effective sum throughput is given as (1 − Tγ)R, where R

is the achieved sum rate from the iterative algorithm after T

F-B iterations and γ denotes the relative overhead per one F-B

signaling round. In Fig. 5, one signaling round is assumed to

use up 1% of the available resources per scheduling interval

for Strategies A and B, while the per iteration overhead of

Strategy D is just 2/3 of the two other schemes. The numerical

example in Fig. 5 point out an apparent trade-off between the

number of F-B iterations available and the improvement of

effective throughput due to iterative beamformer updates.

All F-B strategies provide significant gain (up to 110%

at high SNR) as compared to the uncoordinated scenario

where the transmit beamformers are designed locally ignor-

ing the inter-cell interference altogether. In this particular

example, about 4-8% of the resources, depending on the

selected strategy, should be allocated to the F-B training in

order to maximize the total throughput. Moreover, Strategy B

provides a significant additional gain since internal iterations

are allowed at the BS between each F-B round. Despite higher

backward phase training overhead per iteration, both strategies

A and B provide better peak throughput than Strategy D

due to optimized MSE weight variable adjustments among

coordinating cells.

IV. STANDARDIZATION ACTIVITIES AND PRACTICAL

ASPECTS

3GPP new radio (NR) specification [9] will support multiple

OFDM parameter sets and time-frequency scaling of LTE. A
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Fig. 6: New radio slot types agreed in 3GPP NR and the

proposed switching slot structure.

slot consisting of 14 OFDM symbols defines the basic schedul-

ing interval. NR supports at least four slot types, illustrated

in the upper part of Fig. 6, providing the basic support for

both TDD and FDD modes: 1) bi-directional slot with DL

data, 2) bi-directional slot with UL data, 3), DL only slot, 4)

UL only slot. These different slot types can be concatenated

and aggregated in a flexible manner. Bi-directional slot types,

including a bi-directional control signal part embedded in each

slot and time separated from the data payload, are required

in TDD mode to facilitate link direction switching between

DL and UL. They also enable fully flexible traffic adaptation

between the link directions and with opportunity for low

latency. Demodulation reference signal (DMRS) symbols are

located e.g. in the first symbol of the data part and can be

precoded with the data, enabling the receivers to estimate the

equivalent channel of its desired and interfering links. Unlike

LTE, 3GPP NR will support non-codebook based multi-stream

uplink transmission. Furthermore, precoded uplink sounding

reference signals are supported providing means for iterative

TX-RX beamformer training. Since NR needs eventually to

support carrier frequencies up to 100 GHz, the NR frame

structure should eventually also support integrated access

and backhauling scenarios for deployments with high carrier

frequencies.

The aggregated scheduling block should be sufficiently

long to allow for sufficient beamformer convergence and to

avoid excessive overhead due to F-B training. Also, the user

allocation in the adjacent cells should not change during

the F-B training to allow fast adaptation to the interference

scenario. Therefore, a scheduling block consisting of multiple

aggregated slots would be useful in practice. However, there

is a clear trade-off between the channel coherence time and

the size of the scheduling interval, as well as traffic burstiness.

It can be noted that the basic NR bi-directional slot types

defined in 3GPP and illustrated in the upper part of Fig. 6

cannot provide support for multiple TX/RX updates, i.e.,

multiple bi-directional F-B rounds within a slot. In principle,

the related TX/RX switching could be distributed among

consecutive slots within the scheduling block. However, in

order to isolate the impact of sequential TX/RX switching

operation and to minimize the involved latency, it would

make sense to concentrate TX/RX switching functionality into

specific switching slots. As shown in the lower part of Fig. 6,

an additional switching slot type used at the beginning of the

scheduling block could consist of a plurality of TX/RX op-

portunities and also enable multiple bi-directional F-B rounds.

In such a case, the beamformer computation both at UEs and

BSs must occur within each TX-RX update, which may pose

challenges for practical implementation. This type of switching

slot functionality may in practice be implemented via a mini-

slot structure also already agreed in NR 3GPP [9]. Utilization

of mini-slot structure allows having more than one TX/RX

(DL/UL) switching points within a 14-symbol slot by using

non-slot-based scheduling. Hence, a flexible frame structure or

scheduling block similar to Fig. 2 can be constructed by proper

concatenation of mini-slots and UL/DL slots (see Fig. 6).

In order to support F-B training functionality, the terminals

should start performing similar functions as BSs have tradi-

tionally done, i.e., being more aware of the neighborhood and

measuring the other nodes (both users and BSs) in the near

vicinity. The UEs should be able to measure pilots, including

the nearby users operating in reverse UL/DL mode in order

to be able to compute their respective TX/RX beamformers to

avoid excessive UE-UE interference. Moreover, F-B training

requires a dedicated radio frequency chain per antenna to allow

for pilot precoding at both the BS and UE. Also, sufficient

calibration of TX/RX radio frequency chains at both ends is

required.

The concatenation of both analog and digital beamforming

functions makes the mmWave communication scenario more

challenging for the F-B training based distributed coordination.

Ideally, with fully digital beamforming, the signal at each

antenna of the BS/UE can by digitally controlled/processed.

However, the hybrid analog-digital precoding, prevalent in

mmWave communications due to the limited number of radio

frequency chains, requires separate beam search mechanisms,

thus complicating the implementation of additional OTA F-

B training procedures. Note that the simulation studies in [6]

assuming all-digital beamformer implementation demonstrate

that simple inter-cell interference coordination mechanisms

still provide significant gains in sub-28 GHz frequencies in

dense deployments.

V. CONCLUSION

Distributed schemes for the multi-cell coordination were

discussed in this paper. Motivated by the fact that several

deployments in future wireless communication networks might

have a backhaul with limited capabilities, approaches based

solely on local CSI were considered. This assumption eases the

burden on the backhaul by avoiding CSI exchange between the

cooperating BSs, thus addressing core aspects for small cell

integration. For this purpose, distributed coordination based

on F-B training was proposed to gradually refine the trans-

mit/receive beamformers of the nodes in a fully distributed

manner. Several relevant issues of such iterative schemes were

addressed like the training overhead, signaling, and imperfect

CSI. We have also shown how F-B training can be employed to

manage interference in a dynamic TDD system. The numerical

experiments demonstrated that the proposed F-B strategies

achieve considerable gain in comparison to the reference case
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without interference coordination. In the dynamic TDD case,

for example, gains of up to 100% can be achieved with an

overhead of less than 5% at an SNR of 20 dB. On the other

hand, both UE and BS capabilities should be enhanced in

order to support F-B training functionality. A new switching

slot structure extension was introduced on top of the already

agreed 3GPP NR slot types to support multiple bi-directional

F-B rounds within a scheduling interval.
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sen, E. Tiirola, and P. Mogensen, “Achieving low latency and energy
consumption by 5G TDD mode optimization,” in Proc. IEEE Int. Conf.

Commun., Jun. 2014, pp. 1–6.
[11] Mobile and wireless communications Enablers for the Twenty-

twenty Information Society (METIS), “Components of a new
air interface – building blocks and performance D2.3,”
European Commission, Tech. Rep., Apr. 2014. [Online]. Available:
https://www.metis2020.com/documents/deliverables/

[12] Q. Shi, M. Razaviyayan, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum utility maximization for a MIMO
interfering broadcast channel,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4331–4340, Sep. 2011.

[13] R. Brandt and M. Bengtsson, “Distributed CSI acquisition and coordi-
nated precoding for TDD multicell MIMO systems,” IEEE Trans. VT,
vol. 65, no. 5, pp. 2890–2906, May 2016.

[14] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, “Pilot contam-
ination and precoding in multi-cell TDD systems,” IEEE Transactions

on Wireless Communications, vol. 10, no. 8, pp. 2640–2651, 2011.
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