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Abstract—To reap its full benefits, 5G must evolve into 

a scalable decentralized architecture by exploiting 

intelligence ubiquitously and securely across different 

technologies, network layers and segments. In this 

article, we propose an end-to-end (e2e) and ubiquitous, 

secure Machine Learning (ML)-powered Intent-Based 

Networking (IBN). The IBN framework is aware of its 

state and context to autonomously take proactive 

actions for service assurance. It is integrated in a zero-

touch control and orchestration framework featuring a 

ML Function Orchestrator to manage ML pipelines. 

The objective is to create an elastic and dynamic 

infrastructure supporting per-domain and end-to-end 

network and services operation. The solution is 

supported by a Radio Access Network (RAN) and 

forwarding plane, and a cloud/edge virtualization 

infrastructure with ML acceleration. The resulting 

framework supports application-level resilience and 

intelligence through replication and elasticity. An 

illustrative intelligent application use case is presented. 

Keywords: Smart Networks and Services; Intent-based 

Networking; Network Automation. 

1 INTRODUCTION 

The new generation of Real Time (RT) mission-critical 

applications require high resilience and low latency 

coordinated actions. To that end, 5G and beyond (B5G) 

infrastructures must make extra decisions at the network 

edge [1], faster and more reliably. In that regard, the 

proliferation of autonomous devices sensing, 

communicating, and acting within their environments is 

posing unprecedented challenges in terms of the generated 

data at the network edge. This massive amount of data 

cannot be conveyed to the cloud without incurring in large 

delay and high capacity. To solve this scalability challenge 

while addressing privacy, latency, reliability, and 

bandwidth efficiency, intelligence needs to be pushed to 

the network edge, while exhibiting tight coordination 

among RAN, transport, and computation resources. 

However, the relation between applications and the 

infrastructure is currently limited and mainly focused on 

provisioning aspects, which is managed independently at 

every network segment. Current efforts are focused on 

defining a control and orchestration architecture for the 

RAN (see Open RAN Alliance -O-RAN- [2]). The 

architecture consists of a hierarchy of systems, where RAN 

Intelligent Controllers (RIC) are close to the network and 
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provide near-RT operation (i.e., times from 10 ms to 1 sec) 

and abstraction to the Service Management and 

Orchestration, which involves non-RT operation (i.e., 

times above 1 sec) [2]. In parallel, other initiatives have 

proposed orchestration solutions considering e2e service 

creation and operations for the RAN, transport, and 

computing from edge to cloud [3]. 

Smart orchestration requires collecting and analyzing large 

amounts of data, not only related to RAN, transport, and 

computation Key Performance Indicators (KPI) [4], but 

also from the applications to deal with the committed 

Quality of Experience (QoE). A recent study anticipates 

that application and infrastructure monitoring tools will be 

augmented with ML capabilities over the next five years 

[5]. Such capabilities facilitate the adoption of the IBN 

concept to data center (DC) operation to simplify operation 

and reduce overprovisioning for service assurance [6]. 

Hence, IBN is receiving great attention for its application 

to the operators’ networks context [7]. 

In addition, relying on ML for network and service 

operation requires from security measures to mitigate 

weaknesses. Note that ML models can be subject to 

attacks, e.g.: i) injecting malicious data to produce ML 

model bias when used for training; ii) tampering telemetry 

data to alter ML model inference; or iii) embedding 

backdoors in the ML models [8]. 

In this article, we propose a secure smart e2e platform 

targeting network and computing self-optimization to 

provide committed QoE to intelligent applications. 

2 E2E SOLUTION 

For illustrative purposes, Fig. 1a shows a control and e2e 

service orchestration solution based on [3], allowing the 

deployment of e2e services. At every domain (i.e., RAN, 

transport, and computing from the edge to the metro/core), 

a technology-dependent orchestrator provides an 

abstracted view of the domain resources and coordinates a 

set of underlying Software Defined Networking (SDN) 

controllers and Virtual Infrastructure Managers (VIM) in 

charge of data plane programmability. 

The proposed solution augments such architecture with an 

e2e intent-based service orchestration layer to deploy e2e 

services with tighter coordination among domains, as well 

as for e2e service assurance and automation (Fig. 1b). The 

solution is data-driven, that is, measurements are 

continuously collected from the data plane by the domain 

controllers, processed and analyzed and an abstracted 
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Fig. 1. End-to-end orchestration (a) and end-to-end IBN framework (b). 

representation is exported to the e2e orchestrator. The 

received data are then correlated with context, analyzed, 

abstracted, and made available for the upper-layer 

applications [9]. The logical functions that implement 

collection, data processing and analysis, etc., are part of 

the intents and are connected to create a ML pipeline to 

provide policy-based network/service automation. All this 

is part of the IBN and closed loop automation solution. 

The adopted technologies support near-RT resource 

allocation to adapt services to changing network 

conditions with both per-domain and e2e perspectives. ML 

algorithms are in charge, among others, of predicting 

changes in traffic patterns and cells loads, anticipating 

service degradation, and detecting anomalies at early 

stages. With such information, optimization algorithms, 

forming part of the defined ML pipelines, can make 

proactive decisions finding the best resource configuration 

to deal with the future network conditions focused on 

service assurance. Note that changes in future conditions 

impacting KPIs (e.g., increasing latency) detected in one 

domain (e.g., in the RAN) might require reconfiguration of 

resources in a different domain (e.g., more capacity in the 

transport) or network wide (e.g., e2e recovery). 

An important aspect is the programmable data plane, 

tailored to meet multiple objectives like measurability and 

observability, elastic networking and reliability, and 

embedded security. Quality of Service (QoS) telemetry 

needs to be e2e, from terminals to the cloud, with high 

accuracy and sub-ms granularity. In this context, telemetry 

data feeds ML algorithms for training, inference, and rapid 

detection of anomalies and performance degradations, 

which makes the data plane highly predictable and reliable 

and includes embedded security to create a distributed 

barrier to mitigate distributed attacks. In the computing 

and virtualization platform, software and hardware ML 

accelerators and high-capacity inter-DC interconnects 

create a cloud-to-edge continuum to support the ML 

sandbox domains and the applications. 

Intelligent applications can benefit from the devised  
 

platform, as it enables dynamic resource adaptation, 

including the placement of virtual functions and 

connectivity services for perceived zero latency and 

application-level resilience to achieve superior QoE. 

The next sections tackle the key components of the 

proposed solution. 

3 SMART CONTROL AND ORCHESTRATION 

3.1 Secure Intent and Closed Loop Automation 

IBN complements orchestration functions by abstracting 

operational processes and focusing on behavior. The 

proposed solution starts from the design tool in the 

orchestrator; service definition uses templates specifying 

the Intent in terms of policy rules that guide the service 

behavior, analytics, and closed loop events needed for 

elastic service management. The solution includes the 

translation and validation of the intent into a network 

configuration. The ML pipeline associated to the service is 

also created [10]; it consists of a set of ML logical 

functions that are combined to form an analytics function, 

which is managed by an ML Function Orchestrator 

(MLFO) and hosted in a variety of network functions. The 

optimal network configuration for the services and the 

related ML pipeline are computed before the deployment. 

During the service lifecycle, the service assurance system 

enforces that the network continues to deliver that intent 

based on the specified design, analytics, and policies and 

with the help of ML algorithms; training can be carried in 

a ML sandbox domain based on data from the network and 

simulation [11]. The target is to deal with situations 

ranging from those that require elastic resource scaling or 

reallocation to fulfill eventual demand variations, to those 

that require healing and recovery. Actionable insights and 

rich context together with policy-driven closed loops can 

take automated actions whenever the network deviates 

from the intent. The next scenarios are subject to special  
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Fig. 2. End-to-End Service Orchestration framework architecture. 

attention and addressed from an e2e perspective: i) 

automated provisioning phase; ii) service assurance, 

anomaly and degradation detection, and resource 

reconfiguration; iii) resources assignment under 

competition for resources. 

The solution implements IBN at both levels: e2e 

orchestration and per-domain. Intents are propagated from 

the service orchestrator to the domains, and thus, 

coordination of the different domain-intents is needed. The 

functionalities for multi-domain ML pipelines are part of 

those of the interface between the e2e service orchestrator 

and the domains. The solution goes beyond standalone ML 

algorithms by considering both vertical (customer and 

infrastructure) and horizontal relations among intents and 

leveraging on transfer knowledge techniques [12]. 

Data, ML models, and inference require confidentiality 

and integrity. For this very reason, a centralized ML 

security enforcer, running in a trusted execution 

environment, generates and delivers execution tokens. 

Tokens are generated according to trust received from 

various sources with trust metrics and attack alerts to 

enforce different security policies and considers the 

interaction between the distributed ML nodes. Tokens are 

delivered to ML nodes and used on the inference process 

or on specific kernel modules. 

3.2 E2E Service Orchestration 

The orchestration framework is designed to enable 

automatic and zero-touch network configuration. 

Containers can be used to deploy applications and allow 

for self-healing and horizontal scaling leveraging 

lightweight virtualization and orchestration. In addition, a 

new level of flexibility is provided through the serverless 

computing paradigm, where resources are allocated on 

demand only while the function is running. Both 

computing models can be used together and this flexibility 

in virtualization enables the dynamic resource allocation 

based on application requirements. 

Different layers/spaces coexist (Fig. 2). The layer 

including B5G managed systems includes: i) orchestrators 

and functions for heterogeneous computing and 

networking resources from edge to cloud; and ii) systems 

supporting context-dependent non-network activities that 

might help in the decision-making process. 

Simple events generated by the managed systems are 

published as topics to the Information Bus Service (IBS). 

The Event Correlation engine is devoted to analyze and 

discover correlation between events, highlighting possibly 

common patterns that might be indicators of a 

network/service degradation, guaranteeing fast anomaly 

detection. The output is an additional set of complex events 

that are consumed by the MLFO and the Persistency and 

Correlation engine. The Orchestration engine receives 

network reconfiguration requests from the MLFO, 

translates them into specific configurations for the network 

and the virtualization systems, and then executes the 

proper set of actions for the requested configurations. 

The Data Lake system represents the logically centralized 

repository where data are stored, aggregated, and 

transformed; it includes structured data from relational 

databases, semi-structured data, unstructured data, and 

binary data. Finally, the MLFO manages and monitors all 

the elements building a ML pipeline. The MLFO takes its 

orchestration decisions based on the data/events retrieved 

by the IBS and the Data Lake and on the current 

performance status of the ML Modules trained in the ML 

Sandbox domain. When needed, the MLFO will send 

complex re-configuration requests to the Orchestration 

Service for service assurance. 

3.3 Adaptive Network Operations 

To deal with the complex B5G manageability, the industry 

is increasingly adopting an open, software-defined, 

virtualized, and disaggregated RAN (vRAN) and is 

pushing for automated ML control-plane functionality [2]. 

The latter includes requirements for dynamic 

reconfiguration of the B5G vRAN, like service creation 

time in the sub-second time scale. In addition, the O-RAN 

architecture enables the application of ML techniques for 

RT (below 10 ms), as well as near-RT and non-RT control. 

The proposed solution is O-RAN-aligned, with a ML 

extensible Open vRAN control plane based on a 



containerized cloud-native architecture, supporting zero-

touch operation and reconfiguration. Telemetry and 

control-plane data from location / positioning sub-systems 

are ingested into the near-RT RIC, which provides the 

extensible framework for advanced B5G network 

operation at the edge. vRAN network function placement 

is also service aware to fulfil service performance via 

intents, e.g., for low-delay ultra-reliable and low-latency 

communication (URLLC) services. As in the O-RAN 

architecture, the non-RT RIC enables non-RT control and 

optimization of RAN elements and resources, ML 

pipeline, and policy-based guidance in the near-RT RIC 

via O1/A1 interfaces [2]. Non-RT and near-RT RICs fine-

tune RAN behavior to assure specific KPIs dynamically; 

the non-RT RIC monitors long-term trends and patterns 

and train models to be deployed at the near-RT RICs, and 

it exposes an intent-based API providing high-level 

abstraction as NorthBound Interface to the e2e service 

orchestrator [13]. 

Regarding the transport network, it encompasses both 

metro and core network segments supporting heterogenous 

technologies (e.g., packet and optical) to provide the 

required transport capacity and connectivity from edge to 

core. Such Network Services (NS) are requested by the e2e 

service orchestrator and processed by the network 

orchestrator. As for the RAN, an intent-based API 

providing high-level abstraction is used. Several SDN 

controllers handle the actual programmability of a set of 

network devices within a defined area. The definition of 

the areas can follow different criteria, like geographical 

aiming to reduce control latency, technology/vendor, etc. 

Thereby, the network orchestrator coordinates operations 

with the involved SDN controllers when a network service 

is deployed or reconfigured. 

The considered network control and orchestration 

architecture is devised to provide fast and effective 

network automation to permanently ensure and preserve 

the performance requirements of the network services. To 

this end, closed loop automation at different levels is 

adopted, within a single area or e2e. Depending on each 

level and the complexity, the goal is to complete the 

provisioning and re-configuration processes in the sub-

second time scale. Closed-loop automation entails 

gathering performance monitoring data from different 

sources, e.g., In-band Network Telemetry (INT) [14], 

active and passive probes, etc., via a Telemetry API. 

4 PROGRAMMABLE DATA PLANE 

The proposed solution includes a programmable RAN and 

transport forwarding plane based on P4 [14], for a more 

granular control of the forwarding plane, as well as a 

computing platform with ML acceleration that extends 

from edge to cloud.  

4.1 Radio Access Network 

To make RAN topology configuration more flexible, the 

RAN must be highly programmable. ML techniques can 

be adopted to implement radio resource scheduling and 

multi-hop path selection and RAN configuration in tight 

coordination with the control and orchestration 

architecture. The O-RAN architecture [2] is built to offer 

an open functional architecture which can integrate and 

implement these functionalities (Fig. 1b). 

On a per-service basis, customized RT control and 

protocol support can be the market differentiator enabling 

novel application-network interactions. Moreover, there is 

a need for flexible cross-service resource sharing, 

depending on the level of isolation and RT performance 

requirements. Scheduling schemes and new protocols are 

instantiated on demand at the RAN: i) on a per-service 

manner to control the behavior of the service traffic, or ii) 

across services to e.g., ensure fairness and performance 

requirements. Towards that end, appropriate low-level 

hardware scheduling primitives need to be defined and 

used by the disaggregated cell site, programmed in high-

level languages such as P4. 

Scheduling performed together with RT control loops still 

needs policies received from the near-RT RIC. The near-

RT needs to be updated periodically based on the state of 

the network, as well as on contextual data, which is also 

provided by the non-RT RIC and, ultimately, the e2e 

service orchestrator. The scenario is even more complex in 

ultra-dense deployments with overlapping coverage areas 

and multi-hop self-backhauled networks with dynamic 

cell-less-based topology reconfiguration. 

4.2 Forwarding plane 

Extending the current forwarding plane solutions with 

programmable traffic management and cross-layer 

interactions provide significant benefits for meeting the 

diverse requirements of different services. The application 

of customizable and programmable traffic management is 

supported e2e, focusing on bottlenecks along the traffic 

forwarding paths. In addition, a highly programmable 

network forwarding plane provides: 

a) Measurability. Telemetry streams are activated among 

network nodes and controllers to provide continuous and 

accurate monitoring of node performance with sub-second 

granularity. INT is also extensively exploited to retrieve 

accurate statistics of selected services, on a per-packet 

basis and enforced at the terminal side, enabling the 

collection of precise geo-localization data, while providing 

accurate e2e connectivity monitoring. 

b) Elastic networking. Novel elastic network technologies 

are being designed to support changing network topologies 

at runtime. Stateful extensions to P4 programmability are 

exploited to provide finite state machines directly in the 

data plane. This way, elastic e2e adaptations predicted at 

the orchestrator can be pre-enforced at the node, enabling 

the dynamic evaluation of complex conditions 

implemented at wire speed. 

c) Reliability. Selected application-aware packet 

replication can be performed at the ingress/egress sections. 

In addition, application-aware failure/congestion detection 

can be implemented. 

d) In-network operations. By leveraging on P4-based 

stateful features, pre-planned and dynamic countable 

hardware resources can be dynamically allocated to 

implement aggregation functionalities. 
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Fig. 3. Cloud-to-edge continuum with ML acceleration. 

e) Embedded security. Stateful and inspection 

functionalities are exploited to perform cyber-security 

firewalling at wire-speed, e.g., against distributed attacks. 

ML feature extraction and telemetry-enabled correlation of 

network events among different nodes can be exploited to 

build a distributed barrier for smart anomaly detection. 

4.3 Edge to Cloud Platform with ML Acceleration 

As applications become more intelligent more decisions 

are made at the edge. To support foreseen B5G application 

scenarios, the computing platform (Fig. 3) needs to be 

deployed as a one-stop white box at edge; this is flexibly 

and fully interconnected to the cloud for conducting 

extensive workloads, e.g., those related to ML, by 

distributing the various processing, learning and inference 

functions in a seamless and efficient way. The edge white 

box is based on a high-performance adapter card with 

internal processors, GPU units, and reprogrammable units 

for ad-hoc processing. This platform allows to create a 

cloud-to-edge continuum, enabling to process workloads 

locally, as well as e2e network acceleration to interconnect 

to cloud services through high-capacity transport links 

when large resources need to be accessed. 

Unfortunately, hardware specialization introduces 

significant barriers for algorithm portability, while ML 

software platforms are heterogeneous and in continuous 

evolution. Given such heterogeneity, there is a need to face 

the challenge of supporting ML applications with seamless 

portability. Such portability can be supported by the 

introduction of a novel compiler technology that translates 

an ML algorithm into a device-specific runnable binary, 

which is ready to be deployed and optimized for the given 

device. This would enable scalable function placement 

over the computing platform from edge to cloud, 

independently of the specific hardware resources. 

Finally, the platform relies on containers orchestration to 

provide a portable, extensible, open platform for managing 

containerized workloads and services, to facilitate 

declarative configuration and automation. 

5 INTELLIGENCE AT THE EDGE 

5.1 Intelligent Applications 

The possibility to move intelligence to the edge has 

sparked a groundswell interest in distributed on-device 

ML, in which training data is stored across many 

geographically dispersed nodes [1]. Training is done 

locally, and aggregated updates are shared with other 

nodes directly or through a federating server. However, a 

learning model may have many parameters, and hence a 

model update can be bandwidth consuming. Moreover, 

since devices have limited resources, on-device ML must 

minimize the size of the model running on the device and 

power usage, while also considering prediction accuracy 

and privacy constraints. Note that the applications of 

federated ML enabled by URLLC are instrumental in 

verticals, such as vehicle communications, etc. 

The proposed orchestration, network and computing 

technologies enable intelligent applications with 

distributed ML by providing computation and connectivity 

resources that provide enough QoS to support the required 

QoE. Furthermore, the provided infrastructure-level 

resiliency can dynamically and coordinately self-

reconfigure to adapt the resources to anomalies and 

degradation before they impact the QoE of many 

applications. However, some services, e.g., those relying 

on URLLC and/or massive mobility might still be 

impacted by a failure. In that regard, geo-replication can 

be used to provide geographical redundancy, which results 

into increased reliability and availability of applications 

against failures. Indeed, geo-replication is one of the 

enablers for perceived zero latency. The proposed solution 

provides the applications with resilience capabilities that 

go beyond the infrastructure level. Such functionalities 

include: i) e2e QoS performance monitoring and context 

metadata; ii) scaling in/out resources and extending 

topologies from edge to cloud to meet application 

requirements; and iii) container and serverless function 

placement with topology adaptation that enables seamless 

replication and redundancy. Application autonomous 

operations are performed based on the defined customer 

intent and are closely followed at the infrastructure level. 

Infrastructure intents not only collect performance 

monitoring data, but also receive data from customer 

intents and use them to reconfigure resources in advance. 

5.2 Illustrative use case 

To illustrate benefits of the proposed solution, Fig. 4a-b 

present a VR/AR application that takes advantage of 

application-level resilience based on federated learning. 

Three drones (labeled D1-D3) and one car (C1) are 

capturing images and each one learns a ML model before 

sending it to the edge, where such model is combined with 

others coming from multiple sources and sent back to the 

terminals for better accuracy. A ML pipeline with a 



connected set of containers / serverless functions is 

deployed [15]. Nodes in the ML pipeline collect individual 

ML models from and distribute combined ML models to 

the devices (labeled with the device’s name), combine ML 

models (Process), store data (DB) and provide user 

interface (UI). Model combination requires strict delay 

from the local ML model computation until the reception 

of the combined ML model. To meet the desired 

performance, collection and processing containers should 

be placed at the edge in nodes with ML acceleration, 

whereas other functions can be deployed at the metro/core. 

The e2e latency is constantly monitored by the terminals 

(M) and is combined with other data sources, like the 

received RF signal and geo-localization-based estimated 

trajectory to predict near-future QoE degradations that 

would impact the accuracy of the model predictions at the 

terminals. The ML pipeline is reconfigured accordingly. 

5.3 Experimental implementation and results 

We have prototyped a service orchestrator and a MLFO to 

demonstrate the use case described in the previous 

subsection. Both modules have been developed in Python 

3.8; Kubernetes (K8s) was used as Multi-VIM orchestrator 

and docker as the container technology. The service 

orchestrator uses the Kubernetes API through a python 

client library, and it communicates with the MLFO 

through a RESTFul-based interface. A private image 

repository was hosted in Docker Hub. OpenDayLight 

(ODL) was used as SDN controller. 

Fig. 4c shows the messages exchanged during the 

deployment of the NS in Fig. 4a and the related ML 

pipeline. A NS descriptor is received from the application 

with a template for the ML pipeline and some constraints 

(message 1). The service orchestrator then computes the 

placement and connectivity for the NS and requests the 

MLFO to compute the ML pipeline, which computes the 

ML pipeline to be deployed based on the NS and the 

received constraints (2). Next, the service orchestrator 

coordinates with Kubernetes (3) and ODL (4) for the 

deployment of the NS and the ML pipeline. Containers’ 

deployment is carried out through Kubernetes (5) and 

information includes: the DC identifier, virtual LAN and 

IP address, the image, and other configurations. The total 

deployment time was below 30 sec. 

Fig. 4d shows the exchanged messages during ML pipeline 

reconfiguration (as in Fig. 4b). The workflow is triggered 

when one or more terminals report e2e latency exceeding 

some threshold. This entails solving an optimization 

problem considering the current state. It is worth 

mentioning that the workflow uses replication and a make-

before-break approach for seamless transitions; new 

connectivity is created (2) and containers are deployed (3), 

before removing those unused (4-5). Total reconfiguration 

time was 8.5 sec. and we verified that no data were lost. 

6 SUMMARY 

A framework based on IBN with ubiquitous and secure 

ML has been presented. Specifically, the operation of 

customer and infrastructure services are automated, where 

ML plays an important role to make predictions of future 

network and service conditions, detect anomalies and 

degradations, and support coordinated decisions for 

service assurance. A specific feature is the coordination 

between customer and infrastructure ML-based intents, 

aiming at meeting simultaneously the requirements of all 

the services. All this requires RT decision making, flexible 

placement of functions in the computing platform, RT 

reconfiguration etc., with e2e perspective. Table 1 

summarizes the key components of the proposed solution. 
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Table 1 Summary of the proposed solution. 

Plane Key Component Description 

Control and 

Orchestration 

ML-based IBN 

solution 

Intents are based on accurate ML models and can exchange knowledge among them to 

provide network services with tight coordination and assurance automation. 

Secure ML 

Different heterogenous solutions to enforce data and ML model integrity and 

confidentiality are federated into one fail-safe overarching centralized ML security 

enforcer delivering tokens, itself protected by trusted execution. 

Zero-touch control 

and orchestration 

Hierarchical architecture with an e2e service orchestrator coordinating RAN, transport 

network, computing specific orchestrators. Each orchestrator coordinates underlying 

near-RT controllers. The MLFO manages ML pipelines. Model training performed in 

sandbox domains with data from a Data Lake. 

Adaptive network 

operations and 

service assurance 

Per-domain and e2e network and services proactive adaptation and reconfiguration 

based on ML and near-optimal e2e resource allocation for service assurance. Decisions 

are made autonomously or include the operator in the loop. 

Data / 

Forwarding 

Programmable RAN 

Highly programmable ML-backed RAN that extends from scheduling to multi-hop 

path selection and RAN topology configuration. The E2 interface is key to cover the 

required functionalities [2]. 

Programmable 

forwarding plane 

Network programmability can be exploited to provide measurability, elastic 

networking, reliability, in-network operations, and embedded security. 

End-to-end platform 

from edge to cloud 

Based on a one-stop white box operating in the edge with full interconnection to cloud 

solutions and local capability to conduct extensive workloads (e.g., ML training). 

ML acceleration 
A compiler technology translates ML into a device-specific runnable binary. This 

enables scalable function placement from edge to cloud. 
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