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Abstract—In this letter, sufficient conditions for the determi-
nation of the girth are studied from the perspective of matroid
theory. The girth of a Tanner graph is at least 2(¢1 + 2) if ¢
specific conditions are simultaneously met. A novel method of
constructing high-rate low-density parity-check (LDPC) codes is
proposed based on the matroid theory. The parity-check matrices
of the constructed LDPC codes are in the form of H = [I|H;]
with H constructed under the conditions of a given girth and
a fixed column weight (e.g., W. = 4 or W, = 6). Simulation
results verify that the proposed LDPC codes outperform those
in the literature over additive white Gaussian noise channels in
terms of bit error rate performance.

Index Terms—Girth condition, high rate, matroid theory,
parity-check matrix, Bit error rate

I. INTRODUCTION

In the pioneering paper A Mathematical Theory of Com-
munication, Shannon proved the existence of a channel code
which ensures reliable communications provided that the in-
formation rate for the given code does not exceed the capacity
of the channel. Several decades since Shannon’s paper was
published, great efforts were devoted to finding the practical
capacity-achieving error correction codes. Until the 1990s, the
invention of turbo codes and rediscovery of low-density parity-
check (LDPC) codes make approaching Shannon’s theoretical
performance limits practically feasible.

LDPC codes were initially invented by Gallager in 1960.
Tanner further introduced a graphical representation for the
LDPC codes, well-known as Tanner graph. LDPC codes
belong to the class of linear block codes with implementable
decoders, which bring near-capacity performance on a variety
of channels, e.g., binary-input additive white Gaussian noise
(AWGN) channels in [1]. In [2], a novel family of protograph
LDPC codes has been proposed, which can achieve not only
linear complexity encoding and high-speed decoding by means
of a quasi-cyclic (QC) structure but also near-interruption
performance over different block fading channels. LDPC codes
was also used to design bit-interleaved coded modulation
(BICM) with iterative demapping and decoding functions,
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which bring improved throughput under the constraints of
limited bandwidth [3].

In the literature, there exist two major construction methods
for LDPC codes: 1) random construction approach, e.g., ran-
dom or semi-random methods in [4], 2) algebraic construction
approach, e.g., algebraic construction of geometric LDPC
codes and quasi-cyclic LDPC codes in [5]-[9]. However, when
constructing short- or medium-length high-rate LDPC codes,
the two aforementioned construction methods can not bring
satisfactory performance in terms of bit error rate (BER).
The research on short-length error correction codes primarily
concentrates on the algebraic codes, such as Golay codes and
quadratic residue (QR) codes. Their minimum Hamming dis-
tances can be equivalent to the theoretical maximum, but they
are not tailored for low- and medium-complexity decoding
algorithms, e.g., iterative message passing algorithm and its
variants. These motivates the study of construction of short-
or medium-length high-rate LDPC codes by leveraging other
novel construction methods in this letter.

Matroid theory was first proposed by Whitney, and the
relationship between matroids and graphs was built by. Ed-
monds and Fulkerson realized that matroids play an critical
role in the transversal theory. Greene derived the MacWilliams
identities from matroid theory, which are now widely used in
the fields of combinatorial optimization, network theory [10],
and coding theory [11]. In the letter, we study the construction
of LDPC codes with a given girth, which is well interpreted
by the matriod theory.

II. PRELIMINARIES

A. Fundamentals of LDPC Codes

LDPC codes fall into the category of linear block codes
with their parity-check matrices being sparse. The parity-check
matrix of a LDPC code (n, k) is defined as H € B(»—*)x»
with B = {0,1}. A regular LDPC code has fixed column
weight W, and row weight W,., where W,. = W, (n/(n—k)),
W, < n —k, and W,. < n. The code rate R for a regular
LDPC code is

)

Unlike regular LDPC codes, an irregular LDPC code has
more than one column weights and row weights. Usually, the
irregular LDPC code is characterized by the degree distribution
(i.e., distribution of column weights and row weights) [12].
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Fig. 1: Tanner graphical representation of H.

B. Graphical Representation of LDPC Codes

The parity-check matrix of LDPC codes can be represented
by a bipartite Tanner graph, composed of two kinds of nodes,
i.e., variable nodes (VNs) and the check nodes (CNs), denoted
by V; and C;, respectively, for ¢ = 1,--- ,n — k, and j =
1,---,n. If h;; = 1, the i-th check node (C;) is connected
to the j-th variable node (V) in the associated Tanner graph.
For the purpose of better illustration, an example of H with
n =8 and k = 3 is provided as

10000711010
0100010110
H=|00 10010101/, @
0001001101
00001010 1 1

with its corresponding Tanner graph shown in Fig. 1.

C. Cycles in Tanner Graphs

A cycle in a Tanner graph refers to a trajectory that begins
with one of the vertices, traverses through several vertices, and
finally returns to the original vertice [13]. For instance, the four
tandem connected thick edges in Fig. 1 form a cycle of length
4. The girth is defined as the length of the shortest cycle in
the Tanner graph (e.g., the girth is 4 for Fig. 1), which has a
great impact on the performance of iterative messaging passing
decoding. Therefore, in the construction process of a parity-
check matrix, great efforts should be put on maximizing the
girth. In this letter, we construct short-length high-rate LDPC
codes with enhanced performance through the matroid theory.

III. NOVEL CONSTRUCTION OF HIGH-RATE LDPC CODES

In principle, short cycles should be avoided in the process
of constructing the parity-check matrix. In the literature, the
theorems on the girth are proposed from the perspective of
matrix or graph theory. In this letter, matrix and graph theory
are transformed into set problem via matroid theory, and
the theorems on determining the girth are provided from the
perspective of matroid theory.

A. Definition and Theorems

Each column of the parity-check matrix can be represented
by a set. The support of non-zero elements in vector h;
(i.e., the i-th column of H) is represented by the set L;, for
i=1,---,n. For example, the parity-check matrix in (2) can
be represented by the following sets: Ly, = {1}, Ly = {2},
Ly = {3}, Ly = {4}, Ls = {6}, L = {1,2,3}, Ly =
{1,4,5}, Ls = {2,3,4}, Ly = {1,2,5}, Lo = {3,4,5}.
Equivalently, the corresponding parity-check matrix can be
constructed according to L;, fori =1,--- | n.

2

Definition 1. A matroid M is an ordered pair of (E, Z),
where E is a finite set, and Z is a collection of subsets of E.
They satisfy the following three conditions [14]:

Hoel.

2)IfE; € Z, and E; CE; CE, then E; € 7.

3) IfE; € Z, E; € 7 and |Eq| < |Ez|, then there exists
e € Ey \ E; such that E; U {e} € 7.

Following the matroid theory, we first construct a matroid
with all sets whose cardinalities are less than or equal to
W., and then select parts of the sets which satisfy the pre-
determined conditions to form a parity-check matrix. The
matroid theory is leveraged for analyzing the relationship
among sets, which represent the columns of the corresponding
parity-check matrix.

A series of theorems on the girth of the LDPC code, listed
in the sequel, are obtained by transforming the relationship
among columns into that among sets based on the matroid
theory [6], [15].

Theorem 1. If 3 |L; NL;| > 2 for Vi, j, where i # j, then
the girth of the LDPC code is 4.

Proof. 1t can be easily seen from the relationship between the
parity-check matrix and its corresponding Tanner graph in the
previous example. If |L; NL;| =2, e.g., |[Lg NLg| =2 for H
in (2), a length-4 cycle exists. O

Theorem 2. If L;, for i = 1,--- ,n, satisfies the following
two conditions, then the girth of the LDPC code is greater
than or equal to 8.

Condition 1: |L; NL;| < 2,i # j,Vi,j € {1,2,--- ,n}.
Condition 2: |(L; NL;) U (L; NLy) U (L; NLy)| < 3,4 #
j#k,W,j,kG {172a 7n}'

Proof. If there exists a Tanner graph with girth 6, there exist
3 sets and the unions of intersections of every 2 sets out of the
3 sets must have no less than 3 elements, e.g., |(Lg NLg) U
(LeNLyg)U(LgNLyg)| = 3 for H in (2). Therefore, the girth
of the LDPC code is at least 8. O

Theorem 3. Let L(n) = {1,2,--- ,n} denote a set having n
elements, and T(t) represent a subset of IL(n) with t elements
(t < n) IfL,; for i = 1,--- n, satisfies the following t,
conditions, the girth of the Tanner graph is at least 2(t1 + 2).

Conditions: | Uy; jerycrm) (Li N Ly)| < ¢, t =

2,3, ,t + 1.

Proof. The proof can be done by the method proof by con-
tradiction. If there exists a length-4 cycle, 3i,j € T(2) C
L(n), |L; NL;| = 2, which contradicts with the first condition
when ¢ = 2. If there exists a length-6 cycle, 3,5,k € T(3) C
L(n), |(L;NL;)U(L; NLg)U(L;NLg)| = 3, which contradicts
with the second condition when ¢ = 3. By analogy, if there
exists a length-2(¢; + 1) cycle, Jiq,...,40,,+1 € T(t1 + 1) C
L(n), |(Li, Ny ) U (L, ML, )U- - - U (L, N, )] = 2141,
which contradicts with the last condition when ¢ = ¢; + 1.
In other words, if all the ¢; conditions in Theorem 3 are
simultaneously satisfied, there does not exist any cycles with
length less than or equal to 2(¢; + 1), i.e., the girth of the
Tanner graph is at least 2(¢1 + 2). O
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B. Construction of High-Rate LDPC Codes

Algorithm 1 CONSTRUCTION OF Hj

Input:
1: r, W¢; > row number and column weight of Hs.
Output:
2: Hy: initialized as Hy = [].
3: Begin
4: Ly = {11717"' ,ZLWC} C {1, ,T‘};
5: Hy = [hy,|; > hy, is the first column with 1 indexed by
L;.
6: for j:2:1:(mr,c) do
L; = {lj71’ T 7lj,Wc} c{l,---,rh
if ¢y, < 2 then
> Cp, is the column number of current H.

9: for m=1:1:cy, do

10: g(m) = cal(L;,Ly,); > cal(L;,L,,) calculates
IL; NL,y,|.

11: end for

12: if max(q) < 2 then
> max(q) returns the maximum value in the vector q.

13: H; = [H2|h[Lj];

14: else

15: H, = [HQ];

16: end if

17:  else

18: for s=1:1:cu, do

19: q(s) = cal(L;,Ly);

20: fort=s+1:1:cug, do

21: Q(s,t) = cal(L;,Ls,Ly); > cal(Ly, Ly, L)

calculates |(L; NLs) U (L NLy) U (Lg NLy)|.
22: end for
23: end for
24: if (max(Q) < 3)&&(max(q) < 2) then
> max(Q) returns the maximum value in the matrix Q.

25: H> = [H2|th];
26: else

27: H; = [Hg];

28: end if

29:  end if

30: end for

31: End

Given W, and r (i.e., 7 = n — k), the maximum number
of columns of Hy can be roughly determined by Theorem 4,
shown in the sequel.

Theorem 4. The parity-check matrix of the LDPC code is
assumed to be in the form of H = [I|Hz]!, where Hy is a
submatrix with column weight being W, without length-4 and
length-6 cycles. The column number of Hy is upper bounded
as

7"—1J T
W.—1" W,

3)

cH, < |

IThe structure is favorable since the generator matrix can be easily obtained.
Moreover, we only need to focus on the construction of a smaller matrix Ho
instead of H.

3

Proof. If [LI2 ML | < 2,i # j,Vi,j € {1,2,-- ,cm,}. the

weight of each row in Hy is less than or equal to |5,

where 72 denotes the set representation for the i-th column
of Hy and |z ] returns the greatest integer less than or equal to
x. The total number of 1’s in Hy can be expressed as W.-cm,,
so we get:

r—1
W.,—-1

| Jr>We-cn,. “4)

O

This letter focuses on the construction of high-rate LDPC
codes, which avoid length-4 and length-6 cycles in the Tanner
graphs. The algorithm for constructing Hy is presented as
follows:?

Step 1: List (mr,) sets with each set containing W, elements
out of {1,---,r}.

Step 2: Randomly select one set out of the (V;) sets as the
first column of Ho.

Step 3: Select another set as the second column of Ho by
following Condition 1 of Theorem 2.

Step 4: Construct the remaining columns of Hy according
to Condition 1 and Condition 2 of Theorem 2

The pseudocode for constructing Hy is provided in Algo-
rithm 1.

The algorithm does not have a pre-fixed row weight and
column number for Hy. Nevertheless, the proposed algorithm
can guarantee the girth of constructed LDPC codes is at least
8.

IV. SIMULATION RESULTS

In the simulations, we set W, = 4 and W, = 6 and evaluate
the BER performance over AWGN channels with binary phase
shift keying (BPSK) modulation and sum-product iterative
decoding algorithm. The maximum number of iterations is set
to 100 and the maximum erroneous bits are set 3000 for all
the signal-to-noise ratios (SNRs). Simulation results for the
LDPC codes constructed by Algorithm 1 are shown in Fig. 2
with different code rates and lengths. The code (774,672)
with W, = 4 has the best BER performance due to its
lowest code rate (even though it also has the shortest length),
while the three LDPC codes with W, = 6 have similar BER
performance.

The construction methods from [16]-[18] are taken as the
benchmark schemes. Fig. 3 shows the BER performance be-
tween our constructed LDPC codes and those from [16]—[18].
The code rates of our constructed LDPC codes are slightly
lower than those from [16]-[18], while the code lengths are
(almost) the same. Our constructed LDPC codes outperform
those from [16]-[18] in terms of BER performance. When
the BER is at the level of 10~*, there exist an approximate
0.25 dB gain between our constructed LDPC code and that
from [16] and an approximate 0.7 dB gain between our
constructed LDPC code and that from [17]. When the BER
is at the level of 1077, there exists an approximate 0.25 dB
gain between our constructed LDPC code and that from [18].

2In practice, the number of columns constructed by the proposed algorithm
is difficult to reach the theoretical upper bound, shown in (3).
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Fig. 2: Our constructed LDPC codes with W, =4 and W, =
6.
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Fig. 3: Comparison between our constructed LDPC codes and
those from [16]—[18].

The degree distributions of our constructed LDPC codes are
shown in Tables I, II, and III, respectively. The complexity of
constructing them based on Algorithm 1 are O(r*), O(r®),
and O(r%), respectively.

TABLE 1. THE DEGREE DISTRIBUTION OF OUR CON-
STRUCTED (2121,1974) LDPC CODE

Degree of CNs | 25 | 26 | 27 [ 29 | 30 | 31 | 33 | 34
Number of CNs 2 1 1 1 3 2 2 2
Degree of CNs | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42
Number of CNs 2 3 8 2 3 6 5 5
Degree of CNs | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
Number of CNs 5 9 115|115 | 11 9 11
Degree of CNs | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58
Number of CNs 5 6 4 9 4 3 6 6

TABLE II: THE DEGREE DISTRIBUTION OF
STRUCTED (243, 158) LDPC CODE

Degree of CNs 6 8 9 10 | 11 | 12
Number of CNs 2 2 3 4 20 | 24
Degree of CNs 131141516 | 17
Number of CNs | 11 9 2 5 3

OUR CON-

TABLE III: THE DEGREE DISTRIBUTION OF CON-

STRUCTED (674,520) LDPC CODE

Degree of CNs 12 13|14 ] 15|16 | 17 | 18
Number of CNs 1 2 6 3 2 5 15
Degree of CNs 19 | 20 | 21 | 22 | 23 | 24 | 25
Number of CNs | 11 | 12 | 27 | 31 | 10 5 2
Degree of CNs | 26 | 27 | 28 | 29 | 30 | 31
Number of CNs 4 5 3 3 5 2

OUR

V. CONCLUSIONS

In the paper, a novel high-rate LDPC code (including short-
and medium-length) construction scheme has been proposed
based on the matroid theory. Simulation results have shown
that the BER performance of the constructed LDPC codes
is better than those constructed in the literature over AWGN
channels with avoidance of length-4 and length-6 cycles. It
would be of great interest to study the avoidance of length-8
cycles in order to construct even better LDPC codes as our
future investigation.
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