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Abstract—In wireless industrial networks, the information of
time-sensitive control systems needs to be transmitted in an ultra-
reliable and low-latency manner. This letter studies the resource
allocation problem in finite blocklength transmission, in which
the information freshness is measured as the age of information
(AoI) whose maximal AoI is characterized using extreme value
theory (EVT). The considered system design is to minimize the
sensors’ transmit power and transmission blocklength subject
to constraints on the maximal AoI’s tail behavior. The studied
problem is solved using Lyapunov stochastic optimization, and a
dynamic reliability and age-aware policy for resource allocation
and status updates is proposed. Simulation results validate the
effectiveness of using EVT to characterize the maximal AoI. It
is shown that sensors need to send larger-size data with longer
transmission blocklength at lower transmit power. Moreover, the
maximal AoI’s tail decays faster at the expense of higher average
information age.

Index Terms—5G and beyond, URLLC, industrial IoT, finite
blocklength, age of information (AoI), extreme value theory.

I. INTRODUCTION

THE TIMELY delivery of control information in industrial
Internet of things (IoT) with ultra reliability and low

latency is of paramount importance [1]–[4]. In industrial au-
tomation applications, e.g., process monitoring, motion control
of packaging machines, and mobile crane control, typical
payload sizes range from 20 bytes to 250 bytes [2], making
a system design based on Shannon capacity (i.e., assuming
infinite blocklength1) inadequate. To address this issue, the
finite-blocklength transmission rate [5] has been considered
in the wireless industrial setting [3], [4]. Nevertheless, an
information decoding error occurs because the blocklength is
not long enough to average out the effects of thermal noise
and other distortions. At the central controller, the freshness
of the received status information is important since any
outdated information can potentially degrade the performance.
However, to the best of our knowledge, maintaining informa-
tion freshness and optimizing the status updates under ultra-
reliable low latency communication have received little atten-
tion within the industrial automation setting. The main goal of
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1Following reference [5], we use the terminology “blocklength” to refer to
the codeword length of the error-correcting code in channel coding.

this letter is to characterize the information freshness in ultra-
reliable and low-latency industrial IoT, where multiple sensors
wirelessly transmit their latest sampled status information to
a central controller. To measure the freshness of the status
information, we leverage the notion of age of information
(AoI) [6], [7], which is defined as the elapsed time since
the status data was generated at the sensor until the current
time instant, while focusing on the maximal AoI over a given
time interval. Note that extreme value theory (EVT) provides
a powerful tool to investigate the asymptotic statistics of
maximal metrics [8]. Thus, we first characterize the maximal
AoI using EVT and then impose time-averaged constraints
on the maximal AoI’s tail/decay behavior [9]. Moreover, in
order to keep the central controller’s received information
as fresh as possible, sensors need to sample and update the
status information more frequently at the cost of depleting
their batteries. The studied problem is cast as sensors’ time-
averaged transmit power minimization subject to the imposed
constraints on the maximal AoI’s tail behavior. To deal with
the time-averaged objective and constraints of the studied
problem, we resort to Lyapunov stochastic optimization [10]
and propose a dynamic reliability and age-aware policy for
sensors’ transmit power, blocklength allocation, and status
update. Numerical results show several key tradeoffs: 1) To
meet the transmission rate requirement, sensors require longer
transmission blocklength and consume more energy, but use
lower transmit power as data size increases; 2) More frequent
status updates are required for denser networks; 3) A lower
occurrence probability of extremely high information age is
obtained at the expense of higher average age. Moreover, we
numerically verify the effectiveness of characterizing the tail
behavior of the maximal AoI using EVT.

II. SYSTEM MODEL

Considering a wireless industrial network, we focus on
the uplink transmission in which K wireless sensors send
their status information (e.g., for process monitoring in in-
dustrial automation) to a central controller. During the en-
tire communication timeline, the transmissions are indexed
by n ∈ Z+, and the time instant of transmission n is
denoted by tn. Given the initial time instant t0 = 0, the
time interval between two successive transmissions or status
updates is Sn = tn − tn−1. Further, one sensor transmits
its updated information in each transmission n. Note that a
moderate number K is considered in this work.2 As men-

2When the number of sensors grows significantly, multiple orthogonal
resource blocks are required.
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tioned previously, the payload size in industrial automation
is less than 250 bytes. Then based on Shannon capacity,
the blocklength with a 3 dB signal-to-noise ratio is lower
than 1200, making capacity-based design inappropriate [5].
Instead, we consider the finite-blocklength transmission rate

Rkn(Ln, ε) = log2(1 + γkn) −
√

2γkn(γ
k
n+2)erfc−1

(2ε)√
Ln(1+γkn) ln 2

, which
incorporates the blocklength Ln � ∞ and a decoding error
probability ε > 0, in the n-th transmission. The notation k
represents the scheduled sensor in the n-th transmission. In
addition, we have γkn =

Pknh
k
n

N0W
in which P kn is the sensor’s

transmit power, and hkn is the channel gain, including path
loss and channel fading, between the sensor and controller.
We also assume that the wireless channel experiences block
fading and stays invariant in each transmission. N0, W , and
erfc−1(·) are the power spectral density of the additive white
Gaussian noise, bandwidth, and inverse complementary error
function, respectively. For each transmission, the controller
calculates the sensor’s transmit power with 0 ≤ P kn ≤ P kmax,
blocklength Ln ∈ Z+, and status-updating time interval with
Sn ≥ Smin. Here, P kmax and Smin are the sensor k’s power
budget and the smallest interval value, respectively. When the
controller allocates the transmit power and blocklength, the
rate requirement Rkn ≥ Dk/Ln has to be taken into account
to ensure a sufficient rate for sending the status data with size
Dk. Let us denote the AoI (measured at the central controller)
of sensor k’s monitored status data at any continuous time
instant t ≥ 0 as τk(t) and specify its details as follows.
Firstly, once the sensor k is granted access to the controller,
it samples the status information and transmits it immediately.
Since data size is small, we neglect the signal processing time
and transmission time in the AoI calculation. Hence, provided
that sensor k correctly delivers the updated data in the n-th
transmission, its AoI at time instant t = tn is reset to zero.
Otherwise, the age increases by Sn. We formally express the
AoI function as τk(tn) = (τk(tn−1)+Sn)(1−Bkn×1{Pkn>0})
with the indicator function 1{·}. Here, a Bernoulli random
variable, Bkn ∼ B(1, 1−ε), is introduced to capture the success
(by Bkn = 1) and failure (by Bkn = 0) of information decoding.
For any time instant between two successive transmissions, the
AoI increases linearly as per τk(t) = τk(tn−1) + t− tn−1.

III. STATISTICAL CONSTRAINTS ON THE TAIL BEHAVIOR
OF THE MAXIMAL AGE OF INFORMATION

As time elapses, the available data at the controller be-
comes outdated. This inaccurate status information can cause
manufacturing failures or other adverse artifacts. Thus, we
model the impact of information aging as a cost function
f(·) and impose a constraint on the average cost (over all
transmission time instants) of every sensor’s AoI as f̄ k̃ ≡
lim
N→∞

1
N

∑N
n=1 E[f(τ k̃(tn))] ≤ f k̃th,∀ k̃ ∈ K. Here, f k̃th is

the threshold for the cost, and k̃ refers to every sensor. In
addition to the AoI in each transmission, we are concerned
with a worst-case metric maxt∈[Ti,Ti+1){τ k̃(t)},∀Ti ≥ 0, i ∈
Z+, namely, the maximal AoI over a time interval, which
can be explained as the “oldest age” of status information
during the considered time period. Given that the status
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Fig. 1. Illustrations of the transmission index n, transmission time instant
tn, status-updating time interval Sn, AoI function τk(t), and peak AoI bkm.
For instance, if sensor k is scheduled at n ∈ {2, 4, 6, 8}, then Bk

n = 1 when
n = 2, 4, 8, and Bk

n = 0 at n = 6.

update is successfully delivered to the controller in the n-
th transmission, we denote the peak AoI before the AoI is
reset as bkm = lim

θ→0
τk(tn − θ) = τk(tn−1) + Sn, where

m =
∑n
ñ=1 1{τk(tñ)=0} represents the m-th successful de-

livery of sensor k’s status updates since t = 0. From
Fig. 1, it can be straightforwardly seen that the maximal AoI
over a time interval is equivalent to the maximum of all
peak AoI within this interval, i.e., maxt∈[Ti,Ti+1){τ k̃(t)} =

maxm∈{Mi,··· ,Mi+1−1}{bk̃m}. Here, Mi ∈ Z+ is the corre-
sponding order of successful information delivery. As shown
in Fig. 1, the AoI is reset to zero after successful information
delivery, in which the successes of decoding, i.e., Bkn, are
i.i.d. in different transmissions. In addition, the wireless chan-
nel experiences block fading, so we can assume a stationary
peak AoI process in which each peak AoI bk̃m,∀m ∈ Z+, has
the same marginal distribution. In order to further characterize
the maximal AoI over a time interval, we next introduce some
useful results of EVT in Theorem 1.

Theorem 1. Let X1, X2, · · · be a stationary process with the
same marginal distribution as a random variable X and define
ZM ≡ max{X1, · · · , XM}. As M →∞, the complementary
cumulative distribution function (CCDF) of ZM converges to a
generalized extreme value (GEV) distribution whose statistics
are characterized by a location parameter µ ∈ R, a scale
parameter σ > 0, and a shape parameter ξ ∈ R [8].

By applying Theorem 1 to the stationary peak AoI process
{bk̃m}, the maximal AoI, i.e., maxm∈{Mi,··· ,Mi+1−1}{bk̃m}, can
be characterized by a GEV distribution when (Mi+1−Mi)→
∞. Furthermore, governed by the shape parameter ξ for the
tail/decay behavior of the CCDF, the GEV distributions are
categorized into three types according to the shape parameter
ξ [8]: (i) When ξ < 0, the GEV distribution is short-tailed,
having a finite endpoint at zend = F̄−1Z (0) = µ−σ/ξ <∞ in
the CCDF. (ii) The CCDF has a thinner tail than an exponential
function when ξ = 0. In this case, the GEV distribution is
light-tailed. (iii) When ξ > 0, the GEV distribution whose
tail is more weighted than an exponential function is heavy-
tailed. In the latter two types, the endpoints of the CCDFs
approach infinity, i.e., zend = F̄−1Z (0) → ∞. Now let us
impose a constraint on the tail behavior of the approximated
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GEV distribution of the maximal AoI, e.g., ξk̃th < 0, ∀ k̃ ∈ K.
For tractable analysis, we transform ξk̃th < 0 to another
expression by resorting to the Pickands–Balkema–de Haan
theorem [8], in which the shape parameter in Theorem 1
is ξ = E[(X−q)2|X>q]−2E[X−q|X>q]2

2Var(X−q|X>q) given a threshold q

with FX(q) ≈ 1. Incorporating the expression of ξ and the
constraint ξk̃th < 0, we consider the following two statisti-
cal constraints for the tail behavior of sensor k̃’s maximal
AoI, i.e., Ȳ k̃ − δ ≥ ηk̃ and 2(ηk̃)2 ≥ Ῡk̃ + δ, with a
predetermined value ηk̃ and an infinitesimal positive value
δ. Here, Ȳ k̃ ≡ lim

M→∞
1
M

∑M
m=1 E

[
Y k̃m|bk̃m > qk̃

]
, Ῡk̃ ≡

lim
M→∞

1
M

∑M
m=1 E

[
(Y k̃m)2|bk̃m > qk̃

]
, Y k̃m = bk̃m − qk̃, and

qk̃ ≈ F−1
bk̃m

(1). Our studied optimization problem is formulated
as

minimize
Pkn ,Ln,Sn

lim
N→∞

1

N

N∑
n=1

P knLn
SnW

(1a)

subject to Rkn ≥ Dk/Ln, ∀n ∈ Z+, (1b)

f̄ k̃ ≤ f k̃th, ∀ k̃ ∈ K, (1c)

Ȳ k̃ − δ ≥ ηk̃, 2(ηk̃)2 ≥ Ῡk̃ + δ, ∀ k̃ ∈ K, (1d)
0 ≤ P kn ≤ P kmax, ∀n ∈ Z+, (1e)
Ln ∈ Z+, ∀n ∈ Z+, (1f)
Sn ≥ Smin, ∀n ∈ Z+. (1g)

The objective function PknLn
SnW

is the sensor k’s normalized
power consumption with the transmission time length Ln/W .
In the next section, Lyapunov stochastic optimization is used
to solve problem (1).

IV. RELIABILITY AND AGE-AWARE RESOURCE
ALLOCATION AND STATUS UPDATE

In the derivation procedures of Lyapunov optimization,
we first introduce three virtual queues Qk̃(f)(n + 1) =

max
{
Qk̃(f)(n) + f(τ k̃(tn)) − f k̃th, 0

}
, Qk̃(m)(m + 1) =

max
{
Qk̃(m)(m)−(Y k̃m−ηk̃−δ)×1{bk̃m>qk̃}, 0

}
, and Qk̃(v)(m+

1) = max
{
Qk̃(v)(m) +

[
(Y k̃m)2 − 2(ηk̃)2 + δ

]
× 1{bk̃m>qk̃}, 0

}
for each long-term average constraint in (1c) and (1d).3 Due to
space limitations, we skip the intermediate derivations and di-
rectly show the results after applying Lyapunov optimization.
That is, at each transmission n ∈ Z+, the controller solves

MP: minimize
Pkn ,Ln,Sn

φnSn + ψne
Sn +

V P knLn
SnW

subject to (1b), (1e), (1f), and (1g),

considering the exponential cost function f(·) = e(·) and
assuming Bkn = 1 for the scheduled sensor k. Here,4 φn =
2Qk(v)(m)τk(tn−1) + 2[τk(tn−1)]3 − Qk(m)(m)τk(tn−1) −
Qk(m)(m) and ψn =

∑
k̃∈K\kQ

k̃
(f)(n)eτ

k̃(tn−1). To solve MP,
we first fix the variable Sn and obtain a sub-problem SP1 in
which the optimal transmit power and blocklength, denoted

3The transformed statistical constraints and corresponding virtual queues
for the cases ξk̃th = 0 and ξk̃th > 0 are shown in Appendix A.

4φn for the cases ξk̃th = 0 and ξk̃th > 0 is shown in Appendix A.

by P k∗n (Sn) and L∗n(Sn), are functions of Sn in general.
Subsequently, pluging P k∗n (Sn) and L∗n(Sn) into MP, we have
the second sub-problem SP2 which gives the optimal status-
updating time interval S∗n. The details of SP1 and SP2 are
shown as follows:

SP1: minimize
Pkn ,Ln

P knLn subject to (1b), (1e), and (1f),

where Sn is removed without affecting the solution. In other
words, P k∗n and L∗n are the constant functions of Sn.

SP2: minimize
Sn≥Smin

φnSn + ψne
Sn +

V P k∗n L∗n
SnW

whose optimal solution, obtained by differentiation, is S∗n =

max{Smin, S̃n} with S̃n satisfying ψne
S̃n + φn =

V Pk∗n L∗
n

(S̃n)2W
.

In the following derivations, let us solve the mixed-integer
non-convex optimization problem SP1, where the subscript n
is neglected for notational simplicity. We first relax L ∈ Z+

as L ≥ 1 and introduce an auxiliary variable vector α ≡
(ς, η, a, b, g, ρ) ∈ R6 which satisfies

eς ≤ L, eη ≤ N0W + P khk, (2a)
P khk ≤ ea, 2N0W + P khk ≤ eb, (2b)
P k ≤ eg, L≤ eρ. (2c)

Applying (2a) and (2b) to Rk, we obtain Rk ≥ R̃k ≡
log2(1+ Pkhk

N0W
)−
√
2erfc−1(2ε)e(a/2+b/2−η−ς/2)

ln 2 . If we can ensure
R̃k ≥ Dk/L, the rate requirement (1b) will be satisfied.
In addition, (2c) provides an upper bound for the objective
of SP1, i.e., P kL ≤ e(g+ρ). Thus, incorporating the above
auxiliary variables into SP1, we rewrite the optimization
problem as

RP: minimize
Pk,L,α

g + ρ

subject to R̃k ≥ Dk/L, L ≥ 1, (1e), and (2a)–(2c).

Note that solving RP provides a sub-optimal solution for
SP1. Due to the concave nature of (2b) and (2c) while
the objective and the remaining constraints are affine and
convex functions, RP belongs to the difference of convex
programming problems. By iteratively convexifying the con-
cave functions, the convex-concave procedure (CCP) provides
a tractable approach to solve RP. Specifically, in the j-th
iteration, we convexify (2b) and (2c) by the first-order Taylor
series expansion with respect to a reference point α̂j and
obtain the convexified optimization problem as

CP-j: minimize
Pk,L,α

g + ρ (3a)

subject to P khk ≤ eâj (a− âj) + eâj , (3b)

2N0W + P khk ≤ eb̂j (b− b̂j) + eb̂j , (3c)
P k ≤ eĝj (g − ĝj) + eĝj , (3d)
L ≤ eρ̂j (ρ− ρ̂j) + eρ̂j , (3e)

R̃k ≥ Dk/L, L ≥ 1, (1e), and (2a).

Subsequently, the optimal solution to CP-j is set as the
reference point α̂j+1 of the next iteration. Since providing
the closed-form solution expression for problem CP-j is not
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Algorithm 1 CCP for Solving RP
1: Initialize a feasible point α̂1 of RP and j = 1.
2: repeat
3: Convexify (2b) and (2c) by (3b)–(3e).
4: Solve problem CP-j and denote the optimal solution

as (P ?j , L
?
j ,α

?
j ).

5: Update α̂j+1 = α?j and j ← j + 1.
6: until Stopping criteria are satisfied.

Algorithm 2 Reliability and Age-Aware Resource Allocation
and Status Update Mechanism

1: Initialize m = 0 for each k ∈ K and n = 1, predetermine
the system lifetime as N , and set the initial queue values
Qk̃(f), Q

k̃
(m), and Qk̃(v),∀ k̃ ∈ K, as zero.

2: repeat
3: Find transmit power P k∗n = P ?∞ and blocklength L∗n =
dL?∞e by following Algorithm 1 and the status-updating
time interval S∗n by solving SP2.

4: if Bkn = 1 then
5: Update the queue lengths Qk(m)(m + 1) and
Qk(v)(m+ 1).

6: Update m← m+ 1 for the scheduled sensor k.
7: end if
8: Update the queue lengths Qk̃(f)(n+ 1), ∀ k̃ ∈ K.
9: Update n← n+ 1.

10: until n > N

feasible, we resort to CVX to numerically solve it. Finally,
using (P ?∞, L

?
∞) of the converged solution, we set sensor k’s

transmit power and blocklength in the n-th transmission as
P k∗n = P ?∞ and L∗n = dL?∞e. After receiving the status infor-
mation, the controller updates the sensors’ AoI and the virtual
queue values Qk̃(f), Q

k̃
(m), and Qk̃(v). The steps of the CCP

algorithm are shown in Algorithm 1 while the procedures of
the proposed resource allocation and status update mechanism
are outlined in Algorithm 2.

V. NUMERICAL RESULTS

We simulate the communication environment in a factory,
considering the path loss model 33 log x + 20 log 2.625 + 32
(dB) at the 2.625 GHz carrier frequency [11]. The distance
between the sensor and central controller is x = 15 m. In
addition, the wireless channel experiences Rayleigh fading
with unit variance. The remaining simulation parameters are
N0 = −174 dBm/Hz, W = 1 MHz, K ∈ {2, 3, · · · , 10},
Dk ∈ [20, 250] bytes, P kmax = 0 dBm, V = 1, Smin = 0,
ε ∈ {10−9, 10−5}, f k̃th = 1.03, ηk̃ = 0.02, δ = 10−9, and
qk̃ = F−1

bk̃m
(0.99) [1]–[4], [12].

Fig. 2 shows how the data size impacts the average transmit
power, energy consumption in each transmission, transmission
blocklength, and the 99th percentile blocklength. Note that the
results in Fig. 2 are not affected by the number of sensors
K. Intuitively, larger data sizes consume more energy for
transmission, irrespective of the decoding error probability
ε. While we are concerned with energy minimization in
problem SP1, increasing energy transmission (for sending a
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Fig. 2. 1) Average transmit power or energy consumption in each transmission
(left y-axis), and 2) mean and 99th percentile of the blocklength/transmission
latency (right y-axis), versus data size.
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Fig. 3. Average peak AoI, average status-updating time interval, and their
ratio versus number of sensors.

larger data) by increasing the blocklength is more efficient
given any specific value of ε. In this regard, we can sim-
ply rewrite the rate requirement (1b) as Dk ≤ LnR

k
n ∝

Ln log2(1+P kn )−
√
Lnerfc−1(2ε) in which the data size varies

polynomially with the blocklength and logarithmically with
transmit power. Therefore, the blocklength increases with the
data size (and energy consumption), but the transmit power
behaves oppositely. For different decoding error probabilities
ε, the blocklength and transmission rate are identical given
a fixed data size. However, since erfc−1(2ε) is smaller at
ε = 10−5, the sensor consumes less power and energy to
achieve the same transmission rate.

Considering Dk = 20 bytes and ε = 10−9 in Fig. 3, we
show the average peak AoI and average status-updating time
intervals for various network densities. In order to reduce
the impact of information aging when the number of sensors
grows, the controller decreases the interval between two suc-
cessive transmissions, i.e., updates. Additionally, the average
peak AoI is plainly the product of the number of sensors
and the average status-updating time interval, i.e., b̄ = KS̄.
Additionally, in Figs. 2 and 3, we find that the largest 99th
quantile of transmission time and the lowest status-updating
time interval are 1 ms and around 4 ms, respectively, in the
simulated networks. Thus, when one transmission happens
over a long time, the network still can have a sufficient
time margin between successive updates. Let us further fix
K = 2. Referring to the von Mises conditions and the
runs estimator for the extremal index [8], we normalize the
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Fig. 4. CCDFs of the normalized block maxima of peak AoI and the
theoretically approximated GEV distribution.

maximum of M (i.e., the block size) successive peak AoI
values and show the CCDFs of normalized block maxima and
the theoretically approximated GEV distribution in Fig. 4. We
can see that the numerical results converge to the approximated
GEV distribution when the block size M increases. In other
words, these two figures verify the effectiveness of leveraging
EVT to characterize the tail behavior of the maximal AoI
in the considered wireless industrial network. Furthermore, in
contrast with the case ξk̃th > 0, we have, in general, larger peak
AoI (as shown in Fig. 3) but smaller occurrence probability
of extremely large peak AoI values in the case ξk̃th < 0.
This phenomenon means that the CCDFs of the normalized
block maxima in Fig. 4(a) are short-tailed, i.e., having a finite
endpoint, whereas the curves in Fig. 4(b) have heavy tails in
which the endpoints approach infinity.

VI. CONCLUSIONS

In this letter, we have jointly taken into account reliability
and information freshness to optimize sensors’ status updates
in wireless industrial networks. While allocating transmit
power and transmission blocklength for sensors, we have
taken into account the decoding error due to finite blocklength
transmission. In addition, we have modeled the freshness of
available information by its age and further characterized the
statistics of the maximal AoI by using EVT. Taking into
account the constraint on the tail behavior of the maximal
AoI, we have formulated the studied optimization problem
as sensors’ transmit power minimization. Subsequently, we

have proposed a dynamic reliability and age-aware policy
for resource allocation and status updates. Simulation results
have shown that longer transmission blocklength with lower
transmit power are required for delivering larger-size data, and
have validated the effectiveness of using EVT to characterize
the tail behavior of the maximal AoI. Finally, we have shown
that the smaller occurrence probability of extremely high peak
AoI is obtained at the cost of higher average peak AoI. In our
future work, we will leverage statistical learning techniques to
enhance reliability.

APPENDIX A
For ξk̃th = 0, we impose the constraints Ȳ k̃ = ηk̃ and

Ῡk̃ = 2(ηk̃)2 in (1d). The corresponding virtual queues are
Qk̃(m)(m + 1) = Qk̃(m)(m) + (Y k̃m − ηk̃) × 1{bk̃m>qk̃}

and

Qk̃(v)(m+ 1) = Qk̃(v)(m) + [(Y k̃m)2 − 2(ηk̃)2]× 1{bk̃m>qk̃}, re-
spectively. We have φn = 2Qk(v)(m)τk(tn−1)+2[τk(tn−1)]3+

2τk(tn−1) +Qk(m)(m)τk(tn−1) +Qk(m)(m) in problem SP2.
For ξk̃th > 0, the imposed constraints in (1d) are Ȳ k̃ +

δ ≤ ηk̃ and 2(ηk̃)2 ≤ Ῡk̃ − δ with the corresponding virtual
queues Qk̃(m)(m + 1) = max{Qk̃(m)(m) + (Y k̃m − ηk̃ + δ) ×
1{bk̃m>qk̃}

, 0} and Qk̃(v)(m+ 1) = max{Qk̃(v)(m)− [(Y k̃m)2 −
2(ηk̃)2− δ]×1{bk̃m>qk̃}, 0}, respectively. In problem SP2, we
have φn = −2Qk(v)(m)τk(tn−1)+2[τk(tn−1)]3+2τk(tn−1)+

Qk(m)(m)τk(tn−1) +Qk(m)(m).
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