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Abstract—Considering a Manhattan mobility model in vehicle-
to-vehicle networks, this work studies a power minimization
problem subject to second-order statistical constraints on latency
and reliability, captured by a network-wide maximal data queue
length. We invoke results in extreme value theory to characterize
statistics of extreme events in terms of the maximal queue length.
Subsequently, leveraging Lyapunov stochastic optimization to
deal with network dynamics, we propose two queue-aware power
allocation solutions. In contrast with the baseline, our approaches
achieve lower mean and variance of the maximal queue length.
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I. INTRODUCTION

V
EHICLE-TO-VEHICLE (V2V) communication is one of

the most promising enablers for intelligent transportation

systems in which latency and reliability are prime concerns.

Nevertheless, the vast majority of the existing V2V literature

does not address latency and reliability while some others

focus on the coverage probability of radio signal transmis-

sion [1]. To ensure ultra-reliable low latency communication

(URLLC), queuing latency plays a pivotal role when the traffic

arrival and service rates are dynamic and non-deterministic.

Particularly in V2V communication, the quality of wireless

links varies significantly due to vehicles’ high mobility. The

authors in [2] take into account the dynamics of queue length

and aim at bounding the average queue length within a finite

value. While interesting, focusing only on average perfor-

mance metrics (e.g., average queue length and average delay)

is not sufficient to enable URLLC, which instead requires

looking into the higher-order statistics or the tail behavior

of the distribution. To this end, we define a new reliability

measure in terms of maximal queue length among all vehicle

pairs and characterize its statistics. Analyzing the statistics of

the network-wide maximal queue length provides key insight

for the URLLC system design. The studied problem is cast as

a power minimization problem subject to statistical constraints

on the network-wide maximal queue length. However, to get

the network-wide maximal queue length, all vehicles and the

roadside unit (RSU) need to exchange queue state information

(QSI) which can incur significant signaling overhead in V2V

communication. To alleviate this issue, we leverage principles

of extreme value theory (EVT) [3] to locally characterize

Manuscript received March 22, 2018; accepted April 16, 2018. This work
was supported in part by the Academy of Finland project CARMA, in part by
the INFOTECH project NOOR, and in part by the Kvantum Institute strategic
project SAFARI. The associate editor coordinating the review of this letter
and approving it for publication was C. Masouros. (Corresponding author:

Chen-Feng Liu.)

C.-F. Liu and M. Bennis are with the Centre for Wireless Communications,
University of Oulu, 90014 Oulu, Finland (e-mail: chen-feng.liu@oulu.fi;
mehdi.bennis@oulu.fi).

the maximal queue length, which is incorporated as a con-

straint into the stochastic optimization problem. Our proposed

solutions include one semi-centralized and one distributed

extreme queue-aware power allocation approaches for V2V

communication. Numerical results show the effectiveness of

using EVT for the study of ultra-reliable and low-latency

vehicular communication.

II. SYSTEM MODEL

We consider a Manhattan mobility model (i.e., grid road

topology in urban areas) in which a set K of K vehicular user

equipment (VUE) transmitter-receiver pairs transmits over a

set N of N resource blocks (RBs) with equal bandwidth W.
In each pair, the transmitter-receiver association is fixed during

the communication lifetime. One RSU is deployed to coordi-

nate the network. We further assume that the communication

timeline is slotted and indexed by t. The instantaneous channel

gain, including path loss and channel fading, from the trans-

mitter of pair k to the receiver of pair k′ over RB n in slot t is

denoted by hnkk′ (t). Thus, given VUE pair k’s transmit power

Pn
k (t) over RB n in slot t with

∑

n∈N Pn
k (t) ≤ NPmax, the

VUE pair k’s transmission rate in time slot t is expressed

as Rk(t) =
∑

n∈N W log2

(

1 +
Pn

k (t)hn
kk(t)

N0W+
∑

k′∈K\k Pn

k′ (t)h
n

k′k
(t)

)

.

Here, Pmax andN0 are the power budget per RB and the power

spectral density of the additive white Gaussian noise, respec-

tively. Moreover, each VUE transmitter has a queue buffer to

store the data destined to its VUE receiver. Denoting VUE

pair k’s queue length in slot t as Qk(t), the queue dynamics

is given by Qk(t+ 1) = max
{

Qk(t) + λk(t)− TcRk(t), 0
}

,
where Tc is the time slot length, and λk(t) is the traffic

arrival at the transmitter of VUE pair k in slot t with the

average arrival rate λavg = E[λk(t)]/Tc. We also assume

that traffic arrivals are independent and identically distributed

(i.i.d.) among VUE pairs. In order to mitigate interference

coming from simultaneous transmissions on the same RB, the

RSU clusters vehicles into g > 1 disjoint groups based on their

geographic locations in which nearby VUE pairs are grouped

together, and all RBs are orthogonally allocated within each

group. Note that the vehicles’ geographic locations vary slowly

with respect to the slotted time length (i.e., coherence time

of fading channels). Therefore, the RSU clusters VUE pairs

and allocates RBs in a long timescale, i.e., every T0 > 1
time slots. Vehicle grouping is done by means of spectral

clustering [4]. In this regard, firstly denoting vk ∈ R
2 as the

midpoint Euclidean coordinate of the VUE transmitter-receiver

pair k, we use the distance-based Gaussian similarity matrix

S to represent the geographic proximity information, in which

the (k, k′)-th element is defined as skk′ := e−‖vk−vk′‖2/ζ2

if

‖vk − vk′‖ ≤ φ, and skk′ := 0 otherwise. Here, φ captures

the neighborhood size while ζ controls the impact of the
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Algorithm 1 Spectral Clustering for VUE Grouping

1: Calculate matrix S and the diagonal matrix D with the

i-th diagonal element dii =
∑K

j=1 sij .

2: Let U = [u1, · · · ,ug] in which ug is the eigenvector of

the g-th smallest eigenvalue of I−D−1/2SD−1/2.

3: Numerically, e.g., by Matlab, use the k-means clustering

approach to cluster K normalized row vectors (which

represent K VUE pairs) of matrix U into g groups.

neighborhood size. Subsequently, S is used to group VUE

pairs using spectral clustering as shown in Algorithm 1. After

forming the groups, the RSU orthogonally allocates all RBs to

the VUE pairs in each group. Herein, we further denote VUE

pair k’s available RBs as a set Nk which implicitly imposes

Pn
k (t) = 0, ∀n /∈ Nk, and modify the power constraints as
∑

n∈Nk
Pn
k (t) ≤ NPmax and Pn

k (t) ≥ 0, ∀ t, n ∈ Nk, (1)

for all VUE pairs k ∈ K. Additionally, since the RBs

are reused by distant VUE transmitters in multiple groups,

we treat the aggregate interference power as a constant

term I and approximate the transmission rate as Rk(t) ≈
∑

n∈Nk
W log2

(

1 +
Pn

k (t)hn
kk(t)

N0W+I

)

.

III. EXTREME QUEUE-AWARE POWER ALLOCATION

A. RSU-Aided Power Allocation

As motivated in Section I, this work is concerned about

the maximal queue length among all VUE pairs which is

mathematically defined as M(t) := maxk∈K{Qk(t)} in slot

t. The network-wide maximal queue length also reflects the

worst-case sustained queuing delay. As a reliability measure,

we leverage the notion of risk in financial mathematics, where

risk is synonymous with gaining or losing something valuable.

In our considered V2V communication, higher delay (or queue

length) can result in an urgent-message loss undermining

traffic safety. Therefore, to ensure reliable V2V communi-

cation, we aim at minimizing the “risk”. To do that, we

use the entropic risk measure ln(E[eδM(t)])/δ with a risk-

sensitivity parameter δ > 0 as our reliability metric [5].

Imposing a threshold κ on the the entropic risk measure,

i.e., lim
t→∞

ln(E[eδM(t)])/δ ≤ κ, we aim at minimizing the

VUEs’ long-term transmit power consumption. By taking

the Maclaurin series expansion, we get ln(E[eδM(t)])/δ =
E[M(t)]+ δ

2Var(M(t))+O(δ2). Next, we focus on the mean

and variance of M(t) by considering 0 < δ ≪ 1, and leave

the studies of other high-order statistics, e.g., skewness, for

future works. Thus, the studied problem is formulated as

minimize
P(t)

lim
T→∞

1
T

∑T
t=1

∑

k∈K
∑

n∈Nk
Pn
k (t) (2a)

subject to lim
T→∞

1
T

∑T
t=1 E[M(t)] ≤ M̄th, (2b)

lim
T→∞

1
T

∑T
t=1 E[(M(t))2] ≤ B̄th, (2c)

with P(t) = (Pn
k (t), k ∈ K, n ∈ Nk) satisfying (1) and

B̄th = (M̄th)
2 +2(κ− M̄th)/δ. To solve problem (2), we use

tools from Lyapunov stochastic optimization to dynamically

allocate VUEs’ transmit power. In order to ensure (2b) and

(2c), we respectively introduce two virtual queues which

evolve as follows:

Q(M)(t+ 1) = max
{

Q(M)(t) +M(t+ 1)− M̄th, 0
}

, (3)

Q(B)(t+ 1) = max
{

Q(B)(t) + [M(t+ 1)]2 − B̄th, 0
}

. (4)

Due to space limitations, we skip the rest of the derivations

related to the Lyapunov optimization. The interested readers

please refer to [6] for the details. Here, we directly show the

results after applying Lyapunov optimization. In each slot t,
each VUE pair k ∈ K solves the convex optimization problem,

minimize
Pn

k
(t)

∑

n∈Nk

[

V Pn
k (t)− Jk(t) log2

(

1 +
Pn

k (t)hn
kk(t)

N0W+I

)]

(5)

with Pn
k (t) satisfying (1) and Jk(t) = WTc

[

Q(M)(t) +
(

2Q(B)(t) + 1
)(

Qk(t) + λk(t)
)

+ 2
(

Qk(t) + λk(t)
)3]

. Here,

the parameter V ≥ 0 trades off the power cost optimality and

queue length reduction of (2). Applying the Karush-Kuhn-

Tucker (KKT) conditions to (5), the VUE transmitter finds

a transmit power Pn∗
k (t) > 0, ∀n ∈ Nk, which satisfies

Jk(t)h
n
kk(t)

(N0W+I+Pn∗
k

(t)hn
kk

(t)) ln 2 = V + η, if
Jk(t)h

n
kk(t)

(N0W+I) ln 2 > V + η.

Otherwise, Pn∗
k (t) = 0. Moreover, the Lagrange multi-

plier η is 0 if
∑

n∈Nk
Pn∗
k (t) < NPmax, and we have

∑

n∈Nk
Pn∗
k (t) = NPmax when η > 0. Note that given a

small value of V, the derived power Pn∗
k (t) provides a sub-

optimal solution to problem (2) whose optimal solution is

asymptotically obtained by increasing V. After sending data,

the VUE pair k updates Qk(t+1) for the next time slot t+1.

Note that to obtain Jk(t) at the VUE, the RSU requires all

VUEs’ QSI in each time slot to calculate M(t), update (3)

and (4), and feed Q(M)(t) and Q(B)(t) back to all VUE pairs.

However, frequent information exchange between the RSU and

VUEs incurs significant overhead. To address this issue, we

propose a solution based on EVT to locally characterize the

distribution of the network-wide maximal queue length.

B. EVT-Based Power Allocation

Theorem 1 (Fisher–Tippett–Gnedenko theorem [3]). Given

K i.i.d. random variables (RVs), Q1, · · · , QK , and defining

M := max{Q1, · · · , QK}, as K → ∞, we can approximate

M as a generalized extreme value (GEV) distributed RV which

is characterized by three parameters µ ∈ R, σ > 0, and ξ ∈ R.

The support of M is {m : 1 + ξ(m− µ)/σ ≥ 0}.

Considering that VUE pairs are uniformly distributed on

the lanes, we can assume that VUEs’ transmission rates are

i.i.d. since Rk(t), approximately, does not vary with the other

VUEs’ transmit power. The traffic arrivals are also i.i.d. among

VUE pairs. Thus, we deduce that Q1(t), · · · , QK(t) are i.i.d.,

and M(t) converges to a GEV distributed RV as K → ∞.

Referring to the support of M(t), we focus on VUE pair

k’s queue length conditioned on 1 + ξ(Qk(t) − µ)/σ ≥ 0.

In other words, we consider the situation in which VUE

pair k is likely to achieve the largest queue length in the

network. Subsequently, imposing the constraints on the mean

and second moment of the conditional queue length, i.e.,

lim
T→∞

1
T

∑T
t=1 E

[

Qk(t)|1{1+ξ(Qk(t)−µ)/σ≥0}
]

≤ M̄th, (6)
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lim
T→∞

1
T

∑T
t=1 E

[

(Qk(t))
2|1{1+ξ(Qk(t)−µ)/σ≥0}

]

≤ B̄th, (7)

each VUE pair k locally focuses on the power minimization

problem which is modeled as follows:

minimize
Pn

k
(t)

lim
T→∞

1
T

∑T
t=1

∑

n∈Nk
Pn
k (t) (8)

subject to lim
t→∞

E[|Qk(t)|] <∞, (1), (6), and (7).

In (6) and (7), the VUE requires the parameters µ, σ, and

ξ of the network-wide maximal queue length M(t), which

are unknown beforehand. To deal with this, we introduce the

following Theorem and then specify a local and empirical

estimation mechanism for these parameters.

Theorem 2 (Pickands–Balkema–de Haan theorem [3]).

Consider any RV Qk of Theorem 1 and a high threshold d. As

d → F−1
Qk

(1), we can approximately characterize the excess

value S = Qk − d > 0 by a generalized Pareto distribution

(GPD) with two parameters σ̃ = E[S2]E[S]
2E[S2]−2E[S]2 > 0 and

ξ = E[S2]−2E[S]2

2E[S2]−2E[S]2 ∈ R.

In Theorems 1 and 2, ξ is identical while σ = σ̃+ξ(µ−d).
From von Mises conditions [3], we can asymptotically find

µ = lim
K→∞

F−1
Qk

(1 − 1
K ). Based on the above results, VUE

pair k empirically estimates µ, σ, and ξ of (6) and (7) as per







































dk(t) = F̂−1
Qk

(1 − ψ),

cmk (t) =
∑t

τ=1(Qk(τ)−dk(t))·1{Qk(τ)−dk(t)>0}
∑

t
τ=1 1{Qk(τ)−dk(t)>0}

,

cvk(t) =
∑

t
τ=1(Qk(τ)−dk(t))

2·1{Qk(τ)−dk(t)>0}∑
t
τ=1 1{Qk(τ)−dk(t)>0}

,

µ̂k(t) = F̂−1
Qk

(1− 1
K ), ξ̂k(t) =

cvk(t)−2[cmk (t)]2

2cv
k
(t)−2[cm

k
(t)]2 ,

σ̂k(t) =
cvk(t)c

m
k (t)+(cvk(t)−2[cmk (t)]2)(µ̂k(t)−dk(t))

2cv
k
(t)−2[cm

k
(t)]2 ,

(9)

with ψ ≈ 0, and F̂Qk
is the empirically estimated cumulative

distribution function (CDF) of Qk. Analogously to Section

III-A, we solve problem (8) using the Lyapunov optimization

by introducing two virtual queues,

Q
(M)
k (t+ 1) = max

{

Q
(M)
k (t) +

(

Qk(t+ 1)− M̄th

)

× 1{1+ξ̂k(t)(Qk(t+1)−µ̂k(t))/σ̂k(t)≥0}, 0
}

, (10)

Q
(B)
k (t+ 1) = max

{

Q
(B)
k (t) +

(

[Qk(t+ 1)]2 − B̄th

)

× 1{1+ξ̂k(t)(Qk(t+1)−µ̂k(t))/σ̂k(t)≥0}, 0
}

, (11)

for constraints (6) and (7), respectively. VUE pair k then

finds its transmit power by solving the optimization problem

(5) with Jk(t) = WTc
(

Qk(t) + λk(t)
)

+ WTc
[

Q
(M)
k (t) +

(

2Q
(B)
k (t) + 1

)(

Qk(t) + λk(t)
)

+ 2
(

Qk(t) + λk(t)
)3] ·

1{1+ξ̂k(t)(Qk(t)+λk(t)−µ̂k(t))/σ̂k(t)≥0} in each time slot t. After

sending data, VUE pair k locally updates Qk(t+1), (9), (10),

and (11). In the EVT-based solution, the VUE pair can locally

estimate the statistics of the network-wide maximal queue

length. In other words, the RSU is not needed to track the

network-wide maximal queue length and exchange QSI for

the VUEs. This mechanism remarkably alleviates signaling

overhead for the high-mobility V2V communication.

Table I
SIMULATION PARAMETERS [1], [2], [7], [8]

Para. Value Para. Value Para. Value

K {20, 40, 60, 80} W 180 kHz Tc 3 ms

N0 -174 dBm/Hz Pmax 10 dBm N 20

λavg 0.5 Mbps ψ 10−2 T0 100

ζ 30 m φ 150 m g 10

M̄th 225 kbit l′0 -54.5 dB α 1.61

B̄th 6× 1010 bit2 l0 -68.5 dB △ 15 m

IV. NUMERICAL RESULTS

We simulate a 250×250m2-area Manhattan mobility model

as in [2]. The average vehicle speed is 60 km/h, and the

distance between the transmitter and receiver of each VUE

pair is 15 m. Assuming the 5.9 GHz carrier frequency and

expressing x = (xi, xj) ∈ R
2 and y = (yi, yj) ∈ R

2 as

the transmitter’s and receiver’s Euclidean coordinates, respec-

tively, we consider the path loss model for the urban areas [1].

When the transmitter and receiver are on the same lane, we

have the line-of-sight path loss value l0‖x− y‖−α. Provided

that the transmitter and receiver are separately located on the

perpendicular lanes, we consider the weak-line-of-sight path

loss model l0(|xi − yi|+ |xj − yj |)−α if, at least, one is near

the intersection within the distance △. Otherwise, we have the

non-line-of-sight path loss value l′0(|xi−yi| · |xj−yj |)−α with

l′0 < l0(
△
2 )

α. Finally, if the transmitter and receiver are not

located on the same lane nor on the perpendicular lanes, we

assume no signal propagation. Moreover, all wireless channels

experience Rayleigh fading with unit variance, and Poisson

traffic arrivals are considered. The remaining parameters are

listed in Table I. For performance comparison, we consider a

baseline in which the VUE transmits with a constant rate.

From [9], we know that given a constant service rate Rc,

the complementary cumulative distribution function (CCDF)

of the queue length can be approximately written as F̄Q(q) ≈
Pr(Q > 0) ·e−θq, where exponent θ can be found by equating

the effective bandwidth function β(θ) [9] to the constant

service rate, i.e., θ = β−1(Rc). Furthermore, applying F̄Q(q)
to Theorems 1 and 2, we obtain the corresponding GEV

distribution, with E[M ] ≈ [ln(K · Pr(Q > 0)) + 0.57721]/θ
and Var(M) ≈ π2/(6θ2), of the baseline.

Let us first verify the accuracy of using EVT to characterize

the network-wide maximal queue length M in the EVT-based

scheme. Specifically, in Fig. 1, we plot the CCDFs of M
obtained numerically in the EVT-based scheme as well as

theoretically using Theorem 1. When K = 20, there is a

gap since the number of VUE pairs is not sufficient to have

a converged GEV approximation. However, when K ≥ 40,

numerical values match well with the theoretical approxima-

tion. Thus, even though the number of VUE pairs is moderate,

EVT still provides a powerful framework to characterize the

network-wide metric without resorting to K → ∞. If there are

more VUEs sharing resources, the incurred lower rate results

in higher queue length. Next, we consider K = 80 in the

following simulations. In Fig. 2, we show the throughput-

latency (i.e., power-delay since throughput increases with

transmit power) tradeoffs of our proposed queue-aware ap-

proaches and the baseline. At V = 0, the VUE aims to

boost the transmission rate as per (5), yielding the highest
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Figure 1. Accuracy of the theoretical
approximation using EVT, V = 0.
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average throughput with lowest maximal queue length. On the

other hand, the optimal solutions to the power minimization

problems (2) and (8) are asymptotically achieved by increasing

V in (5). Since the average throughput to maintain system

stability is minimized as V → ∞ (via power minimization),

the queue length increases dramatically. Additionally, given

that the VUE can increase its transmit power with a tighter

requirement on M̄ and Var(M), the VUE can estimate the

statistics of M locally and find the transmit power without

global QSI exchange with the RSU. If the VUE has lower

power budget, using the RSU for exchanging the global QSI

helps to alleviate the maximal queue length albeit increasing

signaling overhead. In contrast with the baseline, our two pro-

posed approaches achieve performance enhancement since the

former is oblivious to the queue value. At low average through-

put whereby higher gains are attained, resource scheduling

helps to deliver data efficiently. Subsequently, we consider the

RSU-aided scheme with V = 0 owing to its highest throughput

and lowest queue length performance. Note that due to the

high mobility feature in V2V communication, the small time

slot length Tc (i.e., coherence time) restricts the codeword

length (or blocklength) in each transmission. This hinders

vehicles from achieving the Shannon rate with an infinitesimal

decoding error probability. Taking into account this practical

concern in finite blocklength transmission, we consider the

transmission rate Rf = log2(1 + γ) −
√

2γ(γ+2)erfc−1(2ǫ)√
L(1+γ) ln 2

which incorporates the blocklength L≪ ∞ and a block error

probability ǫ > 0 with the inverse error function erfc−1(·)
[10]. Additionally, the performance of the system design in

Section III can be generalized by letting ǫ = 0.5. Based on

Rf , we investigate the average throughput, denoted by R̄(L, ǫ),
and average queuing latency versus the blocklength for various

block error probabilities in Figs. 3 and 4, where L is varied

by changing the coherence time Tc (i.e., vehicle speed [8]).

For a given L, decreasing the average throughput allows for

more reliable communication, i.e., lower ǫ, as per Rf . On

the other hand, lower throughput increases the queue length,

resulting in longer average queuing latency. Next we vary L
while fixing ǫ. Although decreasing L lowers the transmission

rate, the average queuing latency can be further alleviated

due to the smaller transmission time period Tc. At ǫ = 0.5,

Rf = log2(1 + γ) is not explicitly affected by L. However,

as L (or Tc) is increased, more traffic arrivals require higher

power (i.e., higher throughput) whereas the average latency

increases with L. As the blocklength increases, the average

throughout curves converge to the capacity-achieving bound,
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Figure 3. Average throughput and
queuing latency versus blocklength
with 15 m VUE pair distance,
λavg = 0.5Mbps.
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Figure 4. Average throughput versus
blocklength with 100 m VUE pair
distance, λavg = 0.01Mbps.

Table II
THROUGHPUT RATIO IN THE FINITE BLOCKLENGTH TRANSMISSION

Distance R̄(300,10−9)

R̄(300,0.5)

R̄(800,10−9)

R̄(800,0.5)

R̄(300,10−5)

R̄(300,0.5)

R̄(800,10−5)

R̄(800,0.5)

15 m 95% 95% 96% 96%

100 m 55% 69% 69% 83%

i.e., L → ∞ (unbounded latency) and ǫ → 0. Furthermore,

using the Shannon rate-based design in the finite blocklength

transmission, i.e., ǫ = 0.5, reliable communication is obtained

at the expense of significant throughput loss in the low signal-

to-noise ratio case (i.e., large VUE pair distance). Finally,

Table II shows throughput ratios as a function of different

VUE pair distances.

V. CONCLUSIONS

This letter has studied the problem of transmit power

minimization subject to high-order constraints on the maximal

queue length among all vehicles. We have proposed a semi-

centralized and a distributed dynamic power allocation solu-

tions by marrying tools from Lyapunov stochastic optimization

and EVT. Simulation results have shown the effectiveness of

extreme value theory in designing URLLC systems as well as

the performance improvements of our proposed approaches.
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