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Kenta Umebayashi, Member, IEEE, Kazuhiro Hayashi, and Janne J. Lehtomäki, Member, IEEE

Abstract—The use of prior information related to spectrum us-
age of primary users can enhance spectrum sensing performance.
However, to the best of our knowledge, no analytical threshold-
setting method to achieve target sensing performance, such as
detection probability, is reported in the literature. In this letter,
a threshold-setting method based on approximate analysis for
achieving target detection probability or false alarm probability is
proposed. Numerical results confirm that the proposed threshold-
setting method is effective when the number of samples for the
spectrum sensing is large or signal to noise power ratio is high.

Index Terms—Dynamic spectrum access, Spectrum sensing,
Statistical information, Cognitive radio, Smart spectrum access.

I. INTRODUCTION

IN dynamic spectrum access (DSA), a secondary user (SU)
can utilize spectrum licensed to a primary user (PU), while

the spectrum is not occupied by the PU. Spectrum sensing [1]–
[4] techniques have been investigated to detect the state of the
spectrum part that is of interest. The state of spectrum can be
either unoccupied (H0) or occupied (H1).

Energy detector (ED) is the simplest spectrum sensing
method. It does not require any a priori information about
PU signal [5]. However, the detection performance is not
very good. One possible way to enhance spectrum sensing
performance is to use statistical information of the PU’s spec-
trum utilization as prior information [2]–[4]. In [2], spectrum
utilization ratio is used to reduce detection error rate, which
is defined as (PFA = P (x̂ = 1|H0)) + (PM = P (x̂ = 0|H1))
where PFA is false alarm probability, PM is mis-detection
probability, x̂ denotes a spectrum sensing result, i.e., x̂ = 0
and x̂ = 1 indicates H0 and H1, respectively. Detection
probability is defined by (PD = P (x̂ = 1|H1)) and obviously
PD = 1−PM. In [4], it is assumed that spectrum utilization by
the PU follows a two states (H0 or H1) discrete Markov model
and transition probabilities are exploited in test statistics to
enhance the detection performance. This method is denoted by
Soft decision based Spectrum Sensing (SSS) in this letter and
soft decision corresponds to probabilities of previous state Hi

(i ∈ {0, 1}). There is one important open issue in the spectrum
sensing based on statistical information: analytical threshold-
setting to achieve target false alarm probability ṖFA or target
detection probability ṖD has not been presented. Being able
to reach a target false alarm or detection probability is the
most important issue for spectrum sensing design. Especially,
a satisfaction of ṖD is necessary for a protection of PU.
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In this letter, threshold setting is proposed based on Ideal
Spectrum Sensing (ISS), which assumes that the previous
spectrum state is known. We obtain analytical expressions for
PD and PFA as a function of threshold γ. In the analysis, we
will show that the spectrum sensing can be converted to ED
that selects threshold according to probability of H1. Based
on this investigation, a generalized form of analysis is shown.
Specifically, this generalized analysis is applicable in not only
in the two-state discrete Markov model but also spectrum
usage models with more than two states. The assumption about
the previous spectrum state in ISS is not practical. Therefore,
we evaluate suitability of the proposed threshold setting under
SSS, and Hard decision based Spectrum Sensing (HSS) where
hard decision corresponds to previous spectrum sensing result.

II. SPECTRUM SENSING MODEL

A state of PU spectrum utilization in each time slot follows a
two-state (H0 or H1) discrete Markov model. Transition prob-
ability of the Markov model is denoted by gk,j (k, i ∈ {0, 1}),
which indicates a probability that the state changes from Hk

in the current time slot to Hi in the next time slot. The nth
observed signal (n = 0, 1, · · · , N − 1) by the SU in the tth
time slot is given by

H0 : yt(n) = w(n)

H1 : yt(n) = s(n) + w(n), (1)

where the time duration of N samples is assumed to be
smaller than the time duration of one time slot, s(n) de-
notes a deterministic (but unknown) complex PU signal, and
w(n) is complex additive white Gaussian noise (AWGN), i.e.,
CN (0, σ2

n), where σ2
n is the variance. The effect of multi-path

fading is not considered. The signal to noise power ratio is
defined by ν = σ2

s/σ
2
n, where σ2

s denotes the power of s(n).
The output of ED at the tth time slot is

Yt =

N−1∑
n=0

|yt(n)|2. (2)

The statistical information-based spectrum sensing result in
the tth time slot is obtained by an estimated probability of H0,
P (xt = 0), as [4]

x̂t =

{
0 (if P (xt = 0|Y0→t;Φ) ≥ γ) : H0

1 (otherwise) : H1
(3)

where xt denotes a state of spectrum utilization by PU at the
tth time slot and it can be either 0 or 1, Y0→t denotes a
vector of outputs of ED from the 0th to the tth time slots,
and Φ denotes a vector of parameters in terms of a priori
information of PU signal and statistical information of PU
spectrum usage. The state decision is obtained on the basis of
thresholding the estimated probability with γ, where 0 ≤ γ ≤
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1. The vector of parameters, Φ, consists of initial probabilities
πi, transition probabilities gk,i, mean of observed ED outputs
µi, and variance of observed ED outputs σ2

i , where the suffix
i indicates the state of spectrum Hi, i.e., [4]

Φ =
[
π0, π1, g0,0, g0,1, g1,0, g1,1, µ0, µ1, σ

2
0 , σ

2
1

]
.

For estimating the parameters in Φ, the Baum-Welch algo-
rithm [6] is applied in [4]. In SSS, estimated probability of
Hi in the tth time slot is [4]

P (S)(xt = i|Y0→t;Φ)

=
1

ct

(
1∑

k=0

P (xt−1 = k|Y0→t−1;Φ) · gk,i

)
· p(Yt|µi, σ

2
i ), (4)

where ct is the normalization coefficient

ct=

1∑
i=0

1∑
k=0

P (xt−1 = k|Y0→t−1;Φ) · gk,i · p(Yt|µi, σ
2
i ) (5)

and p(Yt) is the probability of density function (PDF) of Yt.
Equation (4) implies that the probability can be obtained in a
recursive manner, while the probability for x0 = i is given by

P (x0 = i|Y0;Φ) =
πip(Y0|µi, σ

2
i )∑1

k=0 πkp(Y0|xt = k;µk, σ2
k)

, (6)

where the initial probability πi indicates probability of Hi

in the 0th time slot. It may be available from a prior in-
formation by spectrum usage measurement [7], but if π is
not available, arbitrary value for π may be used. In SSS,
the soft decision corresponds to the estimated probability
P (xt−1 = k|Y0→t−1;Φ) in (4).

In ISS, since the actual state xt−1 is assumed to be known,
the probability of xt = i is obtained by

P (I)(xt = i|Yt;Φ, xt−1) = gxt−1,ip(Yt|µi, σ
2
i )/c

(I)
t , (7)

where c
(I)
t =

1∑
i=0

gxt−1,ip(Yt|µi, σ
2
i ). In HSS, the probability

of xt = i is obtained by the hard decision, which is the
previous sensing result x̂t−1, as

P (P)(xt = i|Yt;Φ, x̂t−1) = gx̂t−1,ip(Yt|µi, σ
2
i )/c

(P)
t , (8)

where c
(P)
t =

1∑
i=0

gx̂t−1,ip(Yt|µi, σ
2
i ). Decision result for ISS

(or HSS) can be obtained by substituting P (I) (or P (P)) into
P (xt = 0|Y0→t;Φ) in (3). In the spectrum sensing problem in
(3), probability of xt = 0 is enough, but probability of xt = i
is used in (4-8) for the sake of generality.

III. ANALYSIS AND THRESHOLD-SETTING

In ISS, the decision result would be x̂t = 0, if the following
inequality is satisfied:

P (I)(xt = 0|Yt;Φ, xt−1) ≥ γ. (9)

The PDF p(Yt) required in (7) is approximated by Gaussian
distribution. By substituting (7) with Gaussian distribution into
(9), we get

gxt−1,0√
2πσ2

0

exp
(
−(Yt − µ0)

2/(2σ2
0)
)

1∑
i=0

gxt−1,i√
2πσ2

i

exp (−(Yt − µi)2/(2σ2
i ))

≥ γ (10)

and this equation can be considered as a quadratic inequality
in terms of Yt. Therefore, (10) can be expressed by

aY 2
t + 2bYt + c ≥ 0, (11)

where a, b, and c are the coefficients for the quadratic
inequality and a = σ2

0 − σ2
1 < 0, b = µ0σ

2
1 − µ1σ

2
0 , and

c = µ2
1σ

2
0 − µ2

0σ
2
1 − 2σ2

0σ
2
1 ln

(
γgxt−1,1σ0

(1− γ)gxt−1,0σ1

)
.

Statistics of Yt are given by µ0 = Nσ2
n, σ2

0 = Nσ4
n, µ1 =

Nσ2
n(σ

2
s + 1), and σ2

1 = Nσ4
n(2σ

2
s + 1) [8]. Then, we obtain

the following two inequalities for x̂t = 0:

µ0/2±
√
u(xt−1)/(2σ

2
s) ≷ Yt (12)

where

u(xt−1) = Nσ4
nσ

2
s(2σ

2
s + 1) ·(

Nσ2
s − 4 ln

(
γgxt−1,1

(1− γ)gxt−1,0

√
2σ2

s + 1

))
.

In (12), only µ0/2+
√

u(xt−1)/(2σ
2
s)>Yt provides proper de-

cision. The other decision rule (if µ0/2−
√

u(xt−1)/(2σ
2
s) <

Yt, xt = 0 ) may be always satisfied under H1 and this leads
to PD ≃ 0. The decision rule (µ0/2+

√
u(xt−1)/(2σ

2
s) > Yt)

can be interpreted to ED as

x̂t =

{
0
(
if Yt < γ

(ED)
xt−1

)
: H0

1 (otherwise) : H1

(13)

where γ
(ED)
xt−1 = Nσ2

n/2 +
√

u(xt−1)/(2σ
2
s) corresponds to

threshold for ED. The threshold γ
(ED)
xt−1 is selected according

to the previous state xt−1. A similar aspect can be confirmed
in (7), in which the probability depends on the previous state
xt−1. Averaging the detection probability achieved by each
thresholds γ

(ED)
k , the achievable detection probability with a

given γ is given as

PD =

1∑
k=0

Pr(Hk) · gk,1
Pr(H0) · g0,1 + Pr(H1) · g1,1

·Q

(
γ
(ED)
k − µ1√

σ2
1

)

=

1∑
k=0

g1,k ·

Q


√
σ2
s

(
Nσ2

s − 4 ln
(

γgk,1

(1−γ)gk,0

√
Λ

))
−
√
Nσ4

s(Λ)

2σ2
s

, (14)

where Q(x) is the Q-function given by Q(x) =
1/
√
2π
∫∞
x

exp(−t2/2)dt, and represents the detection prob-
ability with γ

(ED)
k , and Λ = 2σ2

s + 1. In fact, PD is a
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monotonically increasing function of γ and the region of γ
is limited to 0 < γ < 1. Therefore, the threshold satisfying
ṖD can be found according to (14) in a numerical manner. In
addition, achieved false alarm probability is given as

PFA =

1∑
k=0

Pr(Hk) · gk,0
Pr(H0) · g0,0 + Pr(H1) · g1,0

·Q

(
γ
(ED)
k − µ0√

σ2
0

)

=

1∑
k=0

g0,k ·

Q


√
σ2
sΛ
(
Nσ2

s − 4 ln
(

γgk,1

(1−γ)gk,0

√
Λ

))
−
√
Nσ4

s

2σ2
s

 . (15)

To facilitate the intuitive understanding of the improvement
in the spectrum sensing due to statistical information, the
reason for the improvement is given with an example of a
two-state Markov model (g0,0 = g1,1 = 0.8) as follows.
In the ED without statistical information, a single threshold
satisfying ṖD is used and it can achieve a false alarm rate
P̄FA. The ED with statistical information in (13) utilizes the
two thresholds. In case of xt−1 = 1, the next state is also
xt = 1 with 80% probability and the ED with statistical
information sets the threshold γ

(ED)
1 to increase the detection

probability to (ṖD+∆P
D|γ(ED)

1
), while the false alarm proba-

bility also increases to (P̄FA+∆P
FA|γ(ED)

1
), where ∆P

D|γ(ED)
k

and ∆P
FA|γ(ED)

1
indicates the variations of detection and false

alarm probabilities from ṖD and P̄FA by using two thresholds,
respectively. On the other hand, in case of xt−1 = 0, the
next state is xt = 1 with 20% probability. In this case,
the threshold γ

(ED)
0 is set to decrease the false alarm rate

(P̄FA −∆P
FA|γ(ED)

0
), while the detection probability reduces

to (ṖD −∆P
D|γ(ED)

0
). Note that ∆P

D|γ(ED)
i

,∆P
FA|γ(ED)

i
≥ 0.

The two thresholds have to satisfy

ṖD = 0.8(ṖD +∆P
D|γ(ED)

1
) + 0.2(ṖD −∆P

D|γ(ED)
0

). (16)

In fact, there are multiple solutions (γ
(ED)
1 , γ

(ED)
0 ) satisfying

ṖD. The optimum solution is given by minimizing the false
alarm probability given by

PFA =0.2(P̄FA +∆P
FA|γ(ED)

1
) + 0.8(P̄FA −∆P

FA|γ(ED)
0

).

A gain in spectrum sensing is available if 0.2∆PFA,1 −
0.8∆PFA,0 < 0 while satisfying (16). When the gap of the
above probabilities, 0.2 and 0.8, which are determined by gk,i,
is large, high gain in detection performance may be achieved.

We generalize this ED with statistical information as fol-
lows. We define a set of states Si of PU spectrum usage
as S = {Si}, in which the probability of H1 is given by
Pr(H1|Si). The probability for Si is denoted by Pr(Si).
This model is applicable in cases in which the probability
of H1 varies with Si, such as the deterministic spectrum
usage model [7], but is not limited to the discrete Markov
model. Generalized spectrum sensing exploiting the statistical
information S = {Si} and Pr(H1|Si) selects proper threshold
γi for ED in response to the state Si. Let γ = {γi} denote a

set of thresholds and the number of elements of S is I . In this
case, the optimum threshold set minimizing PFA is given by

γOPT = argmin
γ

PFA

= argmin
γ

1

c
(G)
0

I−1∑
i=0

Pr(H0|Si)Pr(Si)Q

(
γi − µ0√

σ2
0

)
,(17)

subject to

ṖD =
1

c
(G)
1

∑
γi∈γOPT

Pr(H1|Si)Pr(Si)Q

(
γi − µ1√

σ2
1

)
, (18)

where c
(G)
k =

∑
i Pr(Hk|Si)Pr(Si).

IV. NUMERICAL EVALUATIONS

Common simulation parameters are as follows: g0,0 =
g1,1 = 0.8 and ED stands for the conventional ED without
statistical information. The prior information Φ can be esti-
mated by spectrum measurements and is available in SUs [4],
[7]. We assume that Φ is available without estimation error
and this ideal assumption is reasonable when the estimation
error is negligible. The analysis under the ideal assumption
represents basis for analytical threshold setting under non-
negligible estimation error and this arises as an interesting
issue for being investigated in future works.

We confirm the detection performance of spectrum sensing
methods SSS, HSS, ISS, and ED by receiver operating char-
acteristic (ROC) in Fig. 1 with N = 50 and N = 100, and
ν = −5 dB. The results are obtained by Monte Carlo simula-
tions, but analytical result for ISS is also plotted. The detection
performance of ISS is the best since it assumes that xt−1 is
known. The analytical result for ISS substantially coincides
with the simulation result. In SSS, a probability of xt−1 = 0
is estimated based on observed t time slots. On the other
hand, in HSS, the spectrum-sensing result from the previous
time slot, x̂t−1, is used. Therefore, detection performance of
SSS is better than that of HSS. The detection performance of
ED is the poorest since the statistical information is not used.
The differences in terms of spectrum sensing performances are
due to the accuracy of the obtainable statistical information. It
can be also confirmed that increasing N can reduce the gaps
among ISS, SSS, and HSS.

In Fig. 2, PD as a function of N in cases of ν = −5 dB and
ν = −2 dB is evaluated by Monte Carlo simulations for SSS,
HSS and ISS to confirm validity of the proposed threshold
setting. Target detection probability is set to ṖD = 0.9. The
threshold used in SSS and HSS are set based on the proposed
threshold setting (14). The gap between PD and ṖD is caused
by the Gaussian approximation in (10). It can be confirmed
that the gap can be reduced by increasing N .

In case of ν = −5 dB, PD of HSS in the region of N <
30 is significantly high. The reason will be clarified with an
investigation for Fig. 3 later. PD of SSS in the region of N <
200 still does not agree with PD of ISS, but they coincide
in the region where N > 300. This is because in the region
N > 300, P (xt−1 = i|Y0→t−1;Φ) ≈ 1 for xt−1 = i and this
is eventually equivalent to ISS in this region. A comparison
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Fig. 1: Receiver operating characteristic curves of SSS, HSS,
ISS, ISS (analysis), and ED. ν = −5 dB, N = 50, 100, and
g0,0 = g1,1 = 0.8.

between results with ν = −5 dB and ν = −2 dB for all
spectrum sensing scenarios indicates that the threshold is much
more accurate in high ν. We can also confirm that the gap
between PD of HSS and PD of ISS decreases by increasing N .
In fact, this behavior is not very straightforward since ṖD =
0.9 in HSS may cause constant error in gx̂t−1,0 of (8), but in
ISS there is no error.

One reason for the above behavior is the difference between
the two thresholds γ

(ED)
0 and γ

(ED)
1 . To confirm this reason,

achievable detection probabilities for each threshold as a func-
tion of N are plotted in Fig. 3. The results are also obtained by
Monte Carlo simulations. Increment of N inherently enhances
the sensing performance and the difference between the two
thresholds decreases. Therefore, PD of HSS also gets close to
ṖD = 0.9 by increasing N .

In the region where N < 30, both PD and PFA with
threshold γ

(ED)
1 are high. In HSS, this fact leads to biased

detection result x̂t = 1, with γ
(ED)
1 . Specifically, detection

results of γ
(ED)
1 are x̂t = 1 in most of cases under both H0

and H1. Therefore, PD of HSS is high in the region N < 30
in Fig. 2, and in fact PFA of HSS is also significantly high.

V. CONCLUSION

Threshold setting for the spectrum sensing based on statis-
tical information is investigated. The spectrum sensing based
on statistical information can be expressed by ED with two
thresholds. Analysis for the detection probability and false
alarm probability of the spectrum sensing based on statistical
information was obtained. This enables to set the threshold
achieving the target detection probability. Numerical evalua-
tions showed that the detection performance can be improved
by exploiting the statistical information. We also showed that
the analytical threshold setting is effective in case of a large
number of samples for the spectrum sensing and a high signal
to noise power ratio. In addition, a general form to set the
thresholds in a general case in which more than two states
model is assumed was also presented.
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