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Achieving Energy Efficiency Fairness in Multicell

MISO Downlink
Kien-Giang Nguyen, Le-Nam Tran, Oskari Tervo, Quang-Doanh Vu, and Markku Juntti

Abstract—We investigate the fairness of achievable energy
efficiency in a multicell multiuser multiple-input single-output
(MISO) downlink system, where a beamforming scheme is
designed to maximize the minimum energy efficiency among all
base stations. The resulting optimization problem is a nonconvex
max-min fractional program, which is generally difficult to solve
optimally. We propose an iterative beamformer design based
on an inner approximation algorithm which aims at locating
a Karush-Kuhn-Tucker solution to the nonconvex program. By
novel transformations, we arrive at a convex problem at each
iteration of the proposed algorithm, which is amendable for being
approximated by a second order cone program. The numerical
results demonstrate that the proposed algorithm outperforms the
existing schemes in terms of the convergence rate and processing
time.

Index Terms—Energy efficiency, max-min fractional program-
ming, inner approximation algorithm.

I. INTRODUCTION

Multi-antenna technologies have been a key element to

increase the capacity of wireless communications. Tradition-

ally, design criteria for communications systems have mainly

concerned with spectral efficiency maximization or sum power

minimization. Recently, energy efficiency (EE) has emerged as

an important criterion to address a growing concern over the

global climate and sustainable economic growth.

Decreasing cell sizes and employing small-cell networks

are potential solutions to the problem of capacity crunch

in future cellular networks. However, this may cause the

transceiver processing power to be a significant portion of the

total power budget. Taking this additional power into account,

energy-efficient approaches have been investigated in multiple-

input multiple-output (MIMO) systems, by optimizing the EE

subject to sum power and quality of service constraints [1].

Another important problem is to maintain the fairness of the

achievable EE among involving parties. To do so, a widely

used method is to maximize the minimum EE of the system,

which was studied in, e.g., [2], [3], [4].
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The problem encountered in max-min EE is basically a

max-min fractional program which is nonconvex and, thus,

generally difficult to solve to global optimum [5]. In [2], max-

min EE among base stations (BSs) with total transmit power

and signal-to-interference-plus-noise ratio (SINR) constraints

was studied for single-input single-output interference chan-

nels. In [3], max-min EE among users for multiuser multiple-

input single-output (MISO) channels was considered. Both of

these use Dinkelbach (DB) type algorithms, requiring two-

layer iterative procedures to yield a solution. This may result

in a relatively large number of iterations to solve the problem.

In this letter, we consider the problem of max-min EE

among BSs with BS-specific power constraints in multicell

MISO downlink, and propose an iterative beamformer design

to solve this problem. The proposed design is based on

an inner approximation algorithm originally introduced in

[6], which aims at locating the Karush-Kuhn-Tucker (KKT)

solution to the nonconvex program. Furthermore, exploiting

the structure of the convex problem that needs to be solved

at each iteration and invoking an interesting result in [7], we

are able to approximate it as a second order cone program

(SOCP). This helps to reduce the overall runtime of the

proposed algorithm thanks to extremely efficient state-of-

the-art SOCP solvers. The numerical results show that the

proposed algorithm greatly improves the convergence rate and

processing time compared to the existing schemes. It is worth

mentioning that sequential convex programming (similar to

inner approximation method) was used to study the problem

of energy-efficient power control in [4].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a B-cell MISO downlink system where each

cell consists of a single BS equipped with N antennas. The BS

b, b ∈ B = {1, . . . , B}, is assumed to serve Kb single-antenna

users in its own cell. The set of users receiving the data from

BS b is denoted by Kb = {1, . . . ,Kb}. We define the kth user

of cell b as bk for b ∈ B and k ∈ Kb. The received signal at

user bk can be written as

ybk =

Kb
∑

j=1

hb,bkwbjsbj +
B
∑

i=1,i6=b

Ki
∑

j=1

hi,bkwijsij + nbk (1)

where hi,bk ∈ C1×N is the channel vector from BS i to user

bk, wbk ∈ C
N×1 and sbk are the beamforming vector and the

transmit data symbol from BS b to user bk, respectively, and

nbk ∼ CN (0, σ2
bk
) is the additive white Gaussian noise with

variance σ2
bk

. We can write the SINR for user bk as

γbk(w) = |hb,bkwbk |
2/(Ibk(w) + σ2

bk
) (2)
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where w is a vector encompassing the beamformers

of all users, and Ibk(w) ,
∑Kb

j=1,j 6=k |hb,bkwbj |
2 +

∑B

i=1,i6=b

∑Ki

j=1|hi,bkwij |
2 is the interference to user bk,

which is treated as Gaussian noise. Then, the EE of BS b
can be expressed as

fb (w) =

∑Kb

k=1 log
(

1 + γbk(w)
)

1
ǫ

∑Kb

k=1 ‖ wbk ‖22 +NPdp + Psp

(3)

where ǫ and P0 , NPdp + Psp are the power amplifier

efficiency and the total circuit power, respectively, Pdp is

the dynamic power consumption corresponding to the power

radiation of all circuit blocks in each active radio frequency

chain, and Psp is the static power spent by the cooling system,

power supply, etc. [8]. We are interested in the problem of

maximizing the minimum EE to achieve the EE fairness

among all the BSs, which is mathematically stated as

max
w

min
b∈B

{fb (w) |
∑Kb

k=1 ‖ wbk ‖22≤ Pb} (4)

where Pb is the transmit power budget of BS b.

III. PROPOSED LOW-COMPLEXITY BEAMFORMING

DESIGN

Problem (4) is a max-min fractional program, for which a

common approach is based on solving a parametric program

and a two-layer iterative procedure, i.e., a Dinkelbach-type

algorithm [9], [10]. As numerically shown in Sect. IV, ap-

plying a Dinkelbach-type method such as the one in [3] to

problem (4) results in a slow convergence rate. To address this

issue, we propose a one-layer iterative algorithm based on an

inner approximation framework. Let us start by rewriting (4)

equivalently as

max
w,η,z,t,g

η (5a)

subject to z2b/tb ≥ η, ∀b ∈ B (5b)
∑Kb

k=1 log(1 + gbk) ≥ z2b , ∀b ∈ B (5c)

|hb,bkwbk |
2/(Ibk(w) + σ2

bk
) ≥ gbk (5d)

1

ǫ

∑Kb

k=1 ‖ wbk ‖22 +P0 ≤ tb ∀b ∈ B (5e)
∑Kb

k=1 ‖ wbk ‖22≤ Pb, ∀b ∈ B (5f)

where η, z , {zb}b∈B, t , {tb}b∈B and g , {gbk}b∈B,k∈Kb

are newly introduced variables. The equivalence between (4)

and (5) follows from the fact that the constraints from (5b)

to (5e) hold with equality at optimality, which can be proved

using the same arguments as those in [11]. In the same spirit,

we further split (5d) into two constraints as

|hb,bkwbk |
2/qbk ≥ gbk (6a)

qbk ≥ Ibk (w) + σ2
bk

(6b)

where qbk ∈ q , {qbk}b∈B,k∈Kb
is the newly introduced

variable, which can be interpreted as the soft interference

at user bk. In summary, we have arrived at an equivalent

formulation of (4) given by

max
w,η,z,t,g,q

η (7a)

subject to z2b/tb ≥ η, ∀b ∈ B (7b)

|hb,bkwbk |
2/qbk ≥ gbk , ∀b ∈ B, k ∈ Kb (7c)

(5c), (5e), (5f), (6b). (7d)

It is now clear that the difficulty in solving (7) is due to (7b)

and (7c) since the remaining constraints in (7) are convex. We

remark that (7b) and (7c) are of the same type where the right

side of the constraint is an affine function and the left side is

a quadratic-over-affine function, which is jointly convex w.r.t.

the involved variables. Let us focus on the constraints in (7b)

first. In particular, due to the convexity of z2b/tb, we have

z2b/tb ≥ 2(z
(n)
b /t

(n)
b )zb − (z

(n)
b /t

(n)
b )2tb , φ

(n)
b (zb, tb) (8)

where the superscript n denotes the nth iteration of the

iterative algorithm presented shortly. Note that φ
(n)
b (zb, tb) is

in fact the first order of z2b/tb around the point (z
(n)
b , t

(n)
b ).

In light of [6], we can iteratively replace z2b/tb in (7b)

by φ
(n)
b (zb, tb) to achieve a convex approximation of (7b).

Similarly, we can approximate (7c) by the linear constraint

ψ
(n)
bk

(wbk , qbk) ≥ gbk where ψ
(n)
bk

(wbk , qbk) is the first order

of |hb,bkwbk |
2/qbk around w

(n)
bk

and q
(n)
bk

, which is given by

ψ
(n)
bk

(wbk , qbk) , 2ℜ
((

w
(n)
bk

)H
hH
b,bk

hb,bkwbk

)

/q
(n)
bk

− (|hb,bkw
(n)
bk

|/q
(n)
bk

)2qbk .
(9)

From the above discussions, the approximate convex problem

solved at iteration n+ 1 of the proposed design is given by

max
w,η,z,t,g,q

η (10a)

subject to φ
(n)
b (zb, tb) ≥ η, ∀b ∈ B (10b)

ψ
(n)
bk

(wbk , qbk) ≥ gbk , ∀b ∈ B, k ∈ Kb (10c)

(5c), (5e), (5f), (6b). (10d)

After solving (10), we update the involved variables for

the next iteration until convergence. Algorithm 1 outlines

the proposed iterative algorithm for solving the consid-

ered problem. In Algorithm 1, we generate initial points

(w(0), z(0), t(0),q(0)) as follows. First, a set of beamformers

that satisfy (5f) is created. Then the initial values of other

variables are obtained by setting all the constrains in (7) to be

equality. In this way, Algorithm 1 always starts with a feasible

solution of (7).

Convergence analysis: It is readily seen that the optimal

solutions returned at the iteration n are also feasible for

the problem at the iteration n + 1, which is due to the

approximations in (10b) and (10c) [6]. This implies that

Algorithm 1 yields a nondecreasing sequence of the objective,

i.e., η(n+1) ≥ η(n). It is easy to see that the sequence {η(n)}
is bounded above due to the power constraints in (5f). Thus,

Algorithm 1 is guaranteed to converge. Following the same

arguments as those in [6], we can prove that the proposed

algorithm converges to a KKT solution of (7).

Solving (10) using a conic programming solver

We note that the formulation given in (10) is classified as

a generic convex program (GCP). Although it can be solved

efficiently by a modern convex solver such as MOSEK [12],

it generally requires more computation time, compared to

other standard convex programs such as the second order cone
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Algorithm 1 Proposed beamformer design for max-min EE

in multicell MISO downlink
Initialization: Set n = 0, generate initial points

(w(n), z(n), t(n),q(n)).
1: Repeat: n := n+ 1.

2: Solve (10) with (w(n−1), z(n−1), t(n−1),q(n−1)), then

obtain the optimal (w∗, z∗, t∗,q∗).
3: Update (w(n), z(n), t(n),q(n)) = (w∗, z∗, t∗,q∗).
4: Until: Convergence.

programming. Exploiting the specific structure of (10), we

are able to show that it can be approximated as an SOCP

to a desired accuracy. Towards this end, we remark that all

the constraints in (10), excluding (5c), are linear or SOC

representable (see [13, Sect. 3.3] for further details). To see

that (5c) can be approximated as SOCs, we first rewrite (5c)
∑Kb

k=1βbk ≥ z2b (11)

1 + gbk ≥ eβbk . (12)

where βbk is newly introduced variable. Again note that (11)

is SOC representable [13, Sect. 3.3]. A result in [7] states that

(12) can be approximated by a system of conic constraints as

1 + gbk ≥ κ0

1 + κ1 ≥ ‖[ 1− κ1 2 + βbk/2
m−1 ]‖2

1 + κ2 ≥ ‖[ 1− κ2 5/3 + βbk/2
m ]‖2

1 + κ3 ≥ ‖[ 1− κ3 2κ1 ]‖2
κ4 ≥ κ2 + κ3/24 + 19/72

1 + κl ≥ ‖[ 1− κl 2κl−1 ]‖2, l ∈ {5, . . . ,m+ 3}

1 + κ0 ≥ ‖[ 1− κ0 2κm+3 ]‖2

(13)

where κl, l = 0, 1, . . . ,m+3, are newly introduced variables,

and the accuracy of the approximation increases with m.

Assuming zero-interference, we can bound βbk as 0 ≤ βbk ≤
log(1 + |hb,bkwbk |

2/σ2
bk
) ≤ log

(

1 + Pb||hb,bk ||
2
2/σ

2
bk

)

=
β̄bk . For a given accuracy ε, the value of m is given by

m = O(ln
β̄bk

ε
) to approximate (12) by (13) [7]. Invoking

(13), we can approximate the problem solved at the iteration

n + 1 of the proposed algorithm as an SOCP given by

max{η|(5e), (5f), (6b), (10b), (10c), (11), (13)}. We have nu-

merically observed that the error between the objectives of

(10) and the approximate SOCP is smaller than 10−5 when

m = 10.

Complexity analysis: We now provide worst-case per-

iteration complexity analysis of Algorithm 1 using (12) and

(13), following the results in [13, Sect. 6.6]. Specifically, the

per-iteration cost of solving the GCP using (12) and the SOCP

using (13) is O(N4K4 + B4) and O(N3K3 + B3 + (m +
7)3K3), respectively, where K =

∑B

b=1Kb is the total num-

ber of users. We see that introducing slack variables increases

the per-iteration complexity of Algorithm 1, compared to the

iterative procedure in [3] which iteratively requires solving

an SOCP with per-iteration complexity of O(N3K3). Note

that these complexity estimates are typically conservative in

practice. More importantly, the overall runtime of Algorithm

1 and the iterative algorithm in [3] largely depends on the

actual number of iterations to converge, which is hard to

Table I
SIMULATION PARAMETERS

PARAMETERS VALUE

Pathloss and shadowing 38 log (d) + 34.5+N (0, 8) [dB]
Cell radius 500 [m]

Transmit power constraint Pb 35 [dBm]
Static power consumption Psp 33 [dBm]
Power amplifier efficiency ǫ 0.35

Number of BSs B 3
Signal bandwidth 10 [kHz]

Power spectral density of noise -174 [dBm/Hz]

analytically predict. The numerical comparison of convergence

rate provided in Figs. 2 and 3 shows that the proposed

algorithm converges remarkably fast, and, thus, needs much

less runtime than the one in [3]. Further discussions on the

complexity comparison are given in the next section.

IV. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the

proposed method by numerical experiments. The simulation

parameters are listed in Table I. All the convex problems

considered in this paper are solved using the MOSEK solver

in MATLAB environment.

In particular, we compare the proposed design with the

iterative method introduced in [3] which is referred to as the

WMMSE-DB method. Basically, the WMMSE-DB method

is based on an alternating optimization framework where an

SOCP is solved at each iteration (see [3] for further details).

The initial beamformers w(0) in Algorithm 1 are also used

to start the WMMSE-DB method. All iterative algorithms of

comparison are terminated if the increase of the objective

between two consecutive iterations is smaller than 10−5.

Fig. 1 plots the average runtime of Algorithm 1 and the

WMMSE-DB method as a function of the total number of

users. As can be seen, the proposed algorithm outperforms the

method of [3], especially when using the conic approximation

in (13). The main reason is that the proposed algorithm

converges much faster than the WMMSE-DB method as we

show in Figs. 2 and 3. Particularly, the conic approximation

offers significant reduction of runtime due to the fact that an

SOCP can be solved much more efficiently, compared to a

GCP of the similar size. We remark that SOCPs are well-

structured convex problems which make them easier to solve

[13, Sect. 6.2].
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Fig. 1. Runtime comparison of different algorithms for max-min EE fairness
with Pdp = 40 dBm.
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Fig. 2. Convergence of the algorithms with Kb = 2 and Pdp = 40 dBm.

Fig. 2 compares the convergence speed of Algorithm 1 and

the WMMSE-DB method for a randomly generated channel

realization from two different initial points. We can see that

both methods converge to the same objective value. However,

the proposed algorithm converges after a few iterations, while

it takes hundreds of iterations for the WMMSE-DB method

to stabilize. Recall that the WMMSE-DB method is based on

an alternating optimization framework, in which some of the

variables are updated at each iteration. In the proposed method,

all optimization variables are accounted for to find a better

solution for the next iteration.

To achieve a more complete comparison of convergence

rate of Algorithm 1 and the WMMSE-DB method, we plot

the cumulative distribution function (CDF) of the number of

iterations in Fig. 3. As can be seen, for 90% of the channel

realizations, the proposed method converges after 20 iterations,

while it can be thousands of iterations for the WMMSE-DB

scheme. Another observation is that as Pdp decreases, both

methods of comparison require more iterations to converge.

We note that the variables satisfying (5e) for large Pdp (i.e.,

large P0) also satisfy it for smaller Pdp, meaning that the

feasible set of (5) becomes larger when Pdp is smaller. Thus,

more iterations are generally needed for a larger feasible set.

Fig. 4 illustrates the average EE versus the dynamic power

consumption Pdp for all the BSs with the proposed design. We

have observed that for some channel realizations, the three BSs

do not attain the same EE when the proposed design converges.

However, on an average sense, all BSs achieve almost the same

performance as shown in Fig. 4. This basically implies that the
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Fig. 3. Cumulative distribution of the numbers of iterations for 1000 channel
realizations with Kb = 2 and N = 4.
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Fig. 4. Average energy efficiency versus Pdp with Kb = 2 and N = 4.

proposed design can maintain EE fairness among BSs.

V. CONCLUSION

We have studied the problem of maximizing the minimum

EE among all BSs in multicell multiuser MISO downlink. The

nonconvex optimization problem is approximated by a GCP in

each iteration based on a framework of an inner approximation

algorithm. In particular, we show that the problem at each

iteration can be approximated as an SOCP which is much

more efficiently solved using the modern conic solvers. The

proposed algorithm outperforms the existing solutions in terms

of the convergence rate and processing time, and is able to

guarantee the EE fairness among all the BSs.
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