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Abstract—Hybrid beamforming antenna arrays are a promi-
nent component in communications at mm-wave frequencies.
Multiple analogue beamforming arrays will be used for spatial
multiplexing of signals also in hand held devices. In this work
we derive the correlation coefficient for signals received by two
ideal arrays in simple power angular distribution schemes. The
purpose is to develop tools for evaluating over-the-air setups for
testing of hybrid beamforming devices. We show a few exemplary
correlation error evaluations that compare near field multi-probe
OTA setups with a perfect target channel model. Results indicate
that the correlation error increases with decreasing range length
and channel angular spread. Moreover, larger inter-array spacing
and sub-array sizes increase the correlation error.

Index Terms—Spatial correlation; antenna arrays; near field;
testing.

I. INTRODUCTION

The transmission loss is high at millimetre wave (mm-wave)
frequency bands. More specifically, the free space path loss
increases proportional to the frequency squared [1]. Antenna
arrays can and must be used to compensate the severe trans-
mission losses by array gains [2]. Especially at mm-wave, the
antenna arrays are expected to operate in the hybrid beam-
forming mode. Each antenna element may not be supported
by separate radio frequency (RF) chains for practical imple-
mentation reasons, mainly related to the power consumption
[3]. Instead, the arrays are connected to a base band unit by
only a small number of RF chains. The antenna elements are
divided to sub-arrays, where elements are combined to a single
RF port by an analogue weighting matrix. The matrix enables
composing a predefined set of fixed antenna beams. Thus each
RF port, feeding a number of antenna elements (sub-array),
may compose a number of predefined beam shapes. 3GPP
standardization directions on 5G New Radio beamforming are
described in [4].

The spatial correlation has been a useful measure to charac-
terize radio channel. Clarke derived the spatial auto-covariance
function of electric field in [5]. Often the spatial correlation
has been considered as the correlation of signals received
by antenna elements. Antennas must be assumed isotropic
if we define literally the spatial correlation, not the antenna
correlation. Correlation of signals received and integrated
by antenna arrays has not been widely investigated. In the
mentioned hybrid beamforming schemes the correlation of
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signals received by two spatially separated, independently
analogue beamforming antenna arrays becomes interesting.

In this work we develop the spatial correlation function for
two ideal arrays and discretized far field angular power distri-
butions. We determine the corresponding correlation function
also for the case of near field sources. The intention is to
determine tools to evaluate the impact of a short range length
[6] in the over the air (OTA) testing of radio devices [7]. The
near field sources are probe antennas and the far field sources
represent a target channel model in this context. Channel
models and OTA methodologies for 3GPP New Radio radiated
testing are described in the draft report [8].

The polarization dimension is omitted in this work. Most
often signals transmitted with two orthogonal polarizations are
separable by a receiver with orthogonally polarized antennas.
The mutual coupling between antennas is ignored in this work.

II. SPATIAL CORRELATION OF ARRAYS

The spatial correlation between beamforming sub-arrays
may be important in the (potentially rare) cases when: 1) more
than two multiplexed signal streams are communicated and the
polarization domain is not capable to separate the streams and
2) beams of sub-arrays are pointing to the same direction, i.e.,
same weight vectors are used for different sub-arrays. In [9]
the spatial correlation coefficient for two isotropic elements
in arbitrary locations was defined based on literature in the
ideal case and derived assuming limited range length in a
practical case. Now our intention is to derive similar formulas
considering simple beamforming antenna arrays with variable
inter-array spacing. The starting point for our analysis will be
the array factor. A reverse relationship between array factors
and correlation matrices is presented in [10], where the former
is determined based on the latter.

For mainly notational simplicity, we consider linear horizon-
tal arrays instead of planar arrays in the following analysis.
However, we expect that the observations done on the impact
of limited range length are applicable also with more complex
array structures.

The system function for a beamforming array of U elements
can be written as (neglecting noise)

y=BixvHuxoXgx1, (D

where y is the combined signal, the weight vector B =
{Yu}u=1..u, H is the transfer matrix from @ sources to U
antenna elements, and X is the signal vector radiated by @
sources. Furthermore, the array has element locations specified



by position vectors 7. A perfect plane wave from direction
of the gth source is denoted by the wave vector ;. Now the
array factor [11] for the direction 3, is

U
By) = D e Porrut), o)
u=1
where I, is the current induced to the uth element, - denotes
the dot product operation, and 7, is the phase weight of uth
element.

A. Inter-array correlation in ideal case

Assume an antenna system composed of two sub-arrays
that are parallel and identically oriented uniform linear arrays
(ULAs) U and V as illustrated in Fig. 1. They have the inter-
array spacing D and inter-element spacing d. The number of
ideal isotropic elements in sub-arrays is U and V', respectively.
The polarization is not in the focus of this analysis, thus we
may assume all antennas are vertically polarized ideal ele-
ments with unity gain. Both sub-arrays perform beamforming
independently. The signals received by elements of array U
are combined with weights ~, and of array V with «,,.

The complex array factors of V and U to direction ), are

AV(Gq) =
Au(by) =
where 5 = 27 /wavelength is the wave number. Assume () dis-
crete sources (probes) radiating independent (fading) signals
with directions and mean powers 6, and ag, q = 1,...,Q,

respectively. The covariance of combined signals Cyy =
E [yUy\I/{ ] can be developed to form
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where ()* denotes the complex conjugate operation.

It is assumed that the sub-arrays perform analogue beam-
forming with a pre-defined code book, i.e., with a limited
set of weight vectors. Further, it is assumed that both sub-
arrays are perfectly calibrated. In the following analysis of
this section, we consider only the case v, = a, = 0, i.e.,
the beams are pointing to the broad side direction of arrays,
and drop out the weight terms. This limitation is taken, since
calculating correlation coefficients with different beamforming
weights would expand the number of considered alternatives
very high.!

The auto-covariance of sub-array U is

u=1u
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'We expect that if arrays U and V applied different weight vectors, i.e.
Yu F# ouw, the arrays were further de-correlated and the impact of possible
limitations of the test setup became less significant anyhow.

and the auto-covariance Cyy is defined correspondingly. If
U = V then Cyy = Cyu.

Finally the cross-correlation coefficient for sub-arrays U and
V in the ideal far field condition, when v, = o, = OVu €
U,veV,is

ooy = SOV
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where the index set @ = {1,...

V={1,...,V.

U}, and

B. Inter-array correlation in limited range length case

The settings and assumptions are identical to the ideal case,
except that now the ) sources are located in a coordinate
system. The configuration is illustrated in Fig. 2. The corre-
lation is affected both by the varying angles ¢,,, and 6, and
path loss variation resulting from distances d,, and d,,. The
location of probe ¢ is specified by the distance R and angle
o4 as observed from the centre of the test zone, i.e., midpoint
of the antenna system.

The transfer function from probe ¢ to element v is defined
simply, assuming unity antenna gains and the free space path
loss [1], as

1
25dvq

The inter-array cross-covariance of combined signals from )
probes is

hog = elPv, (7)
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The correlation between sub-arrays U and V, limiting to the
case of zero weights, can be developed to form
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With definitions of Fig. 2 the distance between element u
and probe g is

dyq = \/R2 cosog + le (d2u—-U-1)+D - 2Rsinaq)2
(11
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Fig. 1. Definitions for inter-array correlation in the ideal plane wave case.
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Fig. 2. Definitions for inter-array correlation in the spherical wave case.

and the distance between element v and probe q is

dyg = \/R2 cosoy + i (d(—2v+U+1)+ D+ 2Rsin aq)2.

(12)
Alternatively, the antenna element and probe locations can
be specified by coordinate points or position vectors. In this
case, the distances can be determined with simple analytical
geometry or vector norm calculations.

III. RESULTS

Spatial correlation coefficients are calculated for various
inter-array spacings D, sub-array sizes U (= V'), range lengths
R, probe sector widths ¥ and offsets ¢) from the broad side
direction. The offset parameter v indicates how much the
centre of the probe array is rotated w.r.t. the broad side of
U and V. In the illustration of Fig. 2 the offset 1) = 0°.

In this analysis the angular spacing of probes is always one
degree and the radiated power across sources ¢ € Q is uniform
(i.e. ag = 1). The inter-element spacing within sub-arrays is
always d = 0.5\ and the frequency is 28 GHz. The correlation
error is calculated as

Perror = |p(Da Ua Ra \Ila 1/)) - ﬁ(Da U7 Ra \117 ?/’)| € [Oﬂ 2]
13)
Ranges of the parameters are specified in Table I. The
correlation error is calculated as specified in eq. (13) for all

TABLE I
THE RANGE OF PARAMETERS IN

spatial correlation analysis.

Parameter symbol min max
inter-array spacing D 0 m 0.2 m
sub-array size Uu/v 1 20
range length R 0.1m 1m
probe sector width 3\ 1° 90°
probe sector offset P 0° 45°

Pp=5,¥=10°,U=V=8,R=05m
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Fig. 3. Example spatial correlation curves in the ideal and practical cases as
a function of inter array spacing.

combinations of the five-dimensional parameter space. The
maximum error over the full parameter space is 1.998, which
results in the case of almost unity absolute correlations values
(i.e. minimal magnitude error) on both p and p, but almost
180° phase deviation (=phase error).

The impact of varied parameters on the resulting sub-array
correlation error are illustrated in Figures from 3 to 9. As
five-dimensional spaces are difficult to visualize the results
are shown by fixing three or four parameters and letting only
two or one parameter to vary. Fig. 3 shows example correlation
curves as a function of D with all other four parameters fixed
to values indicated in the title of the figure. Then surface plots
of Fig. 4 to 9 visualize the correlation error as a function of
parameter pairs like, e.g., the range length and offset angle.

The following general trends can be observed. The correla-
tion error increases with increasing D, U, V, and v, and with
decreasing R and V. In other words, larger inter-array spacing,
larger sub-arrays and stronger power angular spectrum (PAS)
offset from the broad side of arrays provides higher correlation
error. Moreover, narrower PAS and evidently a shorter range
length results also to higher correlation error.

IV. CONCLUSIONS

In this work we derived spatial correlation functions for
two spatially separated ULAs. This was done both for the
ideal case of far field signal sources that represent a target
channel model, and for the near field case where sources
represent probe antennas. We showed some exemplary results
of correlation error evaluations, though the main contribution
are the correlation functions.
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Fig. 4. Correlation error as a function of the offset angle v and range length
R.
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Fig. 5. Correlation error as a function of the sector width W and range length
R.

At least two messages can be extracted. The first one might
be evident. The spatial correlation between arrays is not iden-
tical to the spatial correlation between two spatial locations.
The second is that the error of complex correlation can be
high because of phase term while the absolute correlation
coefficient can be close to the target value. Therefore, it is
good to be careful when evaluating complex correlation errors.

As a numerical result we could mention that, when R =
0.5 m and the sub-array spacing D is limited to 10 cm, the
maximum error is 0.11.
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Fig. 6. Correlation error as a function of the offset angle 1) and inter array
spacing D.
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Fig. 7. Correlation error as a function of the sector width ¥ and number of
sub-array elements U, V.
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Fig. 8. Correlation error as a function of the range length R and number of
sub-array elements U, V.
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