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Antenna Correlation Under Geometry-Based

Stochastic Channel Models
Yilin Ji, Wei Fan, Pekka Kyösti, Jinxing Li, and Gert Frølund Pedersen

Abstract—Antenna correlation is an important measure for
designing multiple-input multiple-output (MIMO) antenna sys-
tems. A lower antenna correlation indicates a better MIMO
performance that can be achieved with the underlying antenna
systems. In the antenna design community, it is very common to
evaluate the antenna correlation with isotropic or non-isotropic
(e.g. Gaussian-distributed) angular power spectrum (APS) as
baselines. On the other hand, antenna correlation can also be
evaluated via channel transfer function (CTF) under the a given
propagation channel, e.g. drawn from the bi-directional geometry-
based stochastic channel model. In this paper, the analytic forms
for the antenna correlation based on the APS and the CTF
are derived, respectively, with their similarities and differences
explained. Moreover, a numerical example is also given with a
standard channel model to support our findings.

Index Terms—MIMO, antenna correlation, GSCM models,
spread function, angular power spectrum.

I. INTRODUCTION

Antenna correlation (also known as envelope correlation

if absolute-squared) is widely used as a measure in both

the antenna field and the propagation field for multiple-input

multiple-output (MIMO) communications. It shows how much

the received signals at different antenna ports correlate with

each other. A lower antenna correlation indicates that a better

performance can be expected for MIMO communications.

Without loss of generality, if we take the antenna correlation

on the receive (Rx) side for example, the Rx antenna corre-

lation can be analytically calculated with arbitrary incident

angular power spectrum (APS) and Rx antenna field pattern

[1]–[3]. It is very common in the antenna design community to

evaluate the antenna correlation with some simplified channel

models such as APS following the isotropic or non-isotropic

(e.g. Gaussian or Laplacian) distributions as baselines [4].

On the other hand, Rx antenna correlation can also be calcu-

lated with another fundamental approach, i.e. through the cross

correlation of the received signals at Rx antennas [5], [6]. This

approach requires the knowledge of the channel transfer func-

tion (CTF) which describes the input-output relation between

the transmit (Tx) and the Rx antenna ports of a communication

system under a given propagation channel. However, not only

the Rx antenna radiation pattern but also the Tx antenna

radiation pattern are inherently embedded in the CTF, whereas
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the APS only describes the pure channel spatial characteristics

with the Tx and Rx antenna radiation pattern de-embedded.

Therefore, there might be some discrepancy between the two

approaches introduced by the additional Tx antenna spatial

selectivity in the second approach. Straightforwardly, stronger

Tx antenna spatial selectivity, e.g. the fifth-generation (5G)

base stations operating in beam forming modes, potentially

alters the effective APS observed on the Rx side more severely,

and hence leads to a more pronounced inconsistency between

the two Rx antenna correlation approaches.

In this paper, we go through the derivation of the two an-

tenna correlation approaches from APS and CTF, respectively.

Both the two approaches are evaluated under the geometry-

based stochastic channel model (GSCM), which has been

developed in the propagation field and adopted in the standard

[5], [7], [8], and the analytic form of the antenna correlation

under the GSCM model is given explicitly. The connection

between the two approaches is built through the spread func-

tion [9]. The difference between the end results of the antenna

correlation from the two approaches are clarified, which shows

the effect of the Tx antenna spatial selectivity on the resulting

Rx correlation with the CTF approach. Finally, a numerical

example is given with a standard channel model [5]. The main

contribution of this paper is to bridge the gap between the

two approaches via both theoretical analysis and numerical

simulation, which has not been reported in the literature to

our best knowledge.

The notations used in the paper are summarized as follow:

(·)T, (·)∗, | · |, and ⊙ are the transpose, the complex conju-

gate, the absolute value, and the Hadamard product operator,

respectively. Moreover, cov{·, ·}, var{·}, and E{·} are the

covariance, variance, and expectation operator, respectively.

II. PROPAGATION CHANNEL MODEL

A. Channel Transfer Function

The propagation channel is usually modelled as the super-

position of a number of paths. For a MIMO system consisting

of S Tx antennas and U Rx antennas, the CTF from the sth

Tx antenna to the uth Rx antenna at time t and frequency f

can be expressed as [9]

Hu,s(t, f)

=

∫∫∫∫ [
FV
s (Ω

Tx)
FH
s (Ω

Tx)

]T

h(τ, υ,ΩTx,ΩRx)

[
FV
u (Ω

Rx)
FH
u (Ω

Rx)

]

· exp(j2πυt) · exp(−j2πfτ) dτ dυ dΩTx dΩRx, (1)

where τ, υ,ΩTx,ΩRx are the domains of delay, Doppler fre-

quency, direction of departure (DoD), direction of arrival
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(DoA), respectively. FV
s (Ω) and FH

s (Ω) are the antenna field

patterns of the sth Tx antenna at direction Ω for vertical

polarization (V-pol) and horizontal polarization (H-pol), re-

spectively. Similarly, FV
u (Ω) and FH

u (Ω) are those for the

uth Rx antenna. The antenna field pattern is defined with a

common phase center for the respective Tx and Rx antenna

arrays. The integration is conducted over the full span of the

respective domains.

In (1), the matrix h is the so-called spread function [9], and

within the context of the GSCM models it can be written as

h(τ, υ,ΩTx,ΩRx) =

M∑

m=1

√
Pm ·A · δ(τ − τm) · δ(υ − υm)

· δ(ΩTx −Ω
Tx
m ) · δ(ΩRx −Ω

Rx
m ), (2)

where M is the number of paths, Pm is the power of the mth

path, τm, υm,ΩTx
m ,ΩRx

m are the parameters of the mth path in

their respective domains, and δ(·) is the Dirac delta function.

The matrix A is the polarization matrix

A =


 exp(jΦVV

m )
√
κ−1

1,m exp(jΦVH
m )√

κ−1

2,mχ−1
m exp(jΦHV

m )
√
χ−1
m exp(jΦHH

m )


 , (3)

where

• ΦVV
m , ΦVH

m , ΦHV
m , and ΦHH

m are the initial phases of

the mth path of vertical-to-vertical (VV-pol), vertical-

to-horizontal (VH-pol), horizontal-to-vertical (HV-pol),

and horizontal-to-horizontal (HH-pol) polarizations, re-

spectively. They are assumed independent and identically

distributed (i.i.d.) random variables following the uniform

distribution over [0, 2π].
• κ1,m and κ2,m are the cross-polarization ratios (XPR) of

the mth path, where κ1,m is the power ratio of VV-pol

over VH-pol, and κ2,m HH-pol over HV-pol. It is usually

assumed κ1,m = κ2,m = κm.

• χm is the co-polarization ratio (CPR) of the mth path

defined as the power ratio of VV-pol over HH-pol.

Inserting (2) and (3) into (1) yields

Hu,s(t, f) =

M∑

m=1

√
Pm

[
FV
s (Ω

Tx
m)

FH
s (Ω

Tx
m)

]T

A

[
FV
u (Ω

Rx
m )

FH
u (Ω

Rx
m )

]

· exp(j2πυmt) · exp(−j2πfτm). (4)

For brevity, in the following we abbreviate some of the no-

tation as: Hu,s(t, f) = Hu,s; FV
s (Ω

Tx
m ) = FV

s,m; FH
s (Ω

Tx
m ) =

FH
s,m; FV

u (Ω
Rx
m ) = FV

u,m; FH
u (Ω

Rx
m ) = FH

u,m,.

B. Angular Power Spectrum Derived from Spread Function

The joint delay-Doppler-DoD-DoA power spectrum can be

derived from the spread function as [9]

P (τ, υ,ΩTx,ΩRx)

= E
{
h(τ, υ,ΩTx,ΩRx)⊙ h(τ, υ,ΩTx,ΩRx)∗

}
. (5)

Inserting (2) into (5), and defining |δ(x)|2 .
= δ(x) with x being

the dummy variable, we can obtain

P (τ, υ,ΩTx,ΩRx) =

M∑

m=1

Pm ·A2 · δ(τ − τm) · δ(υ − υm)

· δ(ΩTx −Ω
Tx
m ) · δ(ΩRx −Ω

Rx
m ), (6)

where

A
2 = E {A⊙A

∗} =

[
1 κ−1

m

κ−1

m χ−1

m χ−1

m

]
, (7)

using the i.i.d. property of the initial phases of the paths [10].

Conventionally, power spectrum is considered as a property

of propagation channels, and it is independent on the antennas

used on both the Tx and the Rx. In other words, the antenna

pattern is de-embedded from the channel. It follows that the

power spectrum in one (either marginal or joint) domain can

be obtained by integrating the joint power spectrum of higher

dimensions over the remaining domains [9]. Therefore, the

joint DoD-DoA power spectrum can be derived as

P (ΩTx,ΩRx)

=

∫∫
P (τ, υ,ΩTx,ΩRx) dτ dυ

=
M∑

m=1

Pm ·A2 · δ(ΩTx −Ω
Tx
m ) · δ(ΩRx −Ω

Rx
m ), (8)

which is a 2× 2 matrix with the polarization relation between

the Tx and the Rx described in A
2.

The power spectrum in the DoA domain can be further

derived in a similar way as

P (ΩRx) =

∫ [
1
1

]T

P (ΩTx,ΩRx) dΩTx, (9)

where the vector of ones describes the antenna de-embedding

assumption, and merges the V-pol and H-pol contribution from

the Tx side. Inserting (8) into (9), P (ΩRx) can be explicitly

expressed in both polarizations as

P (ΩRx) =

[
PV(ΩRx)
PH(ΩRx)

]T

, (10)

where

PV(ΩRx) =

M∑

m=1

Pm · (1 + κ−1

m χ−1

m ) · δ(ΩRx −Ω
Rx
m ), (11a)

PH(ΩRx) =

M∑

m=1

Pm · (κ−1

m + χ−1

m ) · δ(ΩRx −Ω
Rx
m ). (11b)

In many GSCM models [5], [7], [8], it is often assumed the

CPR χm = 1, which leads to PV(ΩRx) = PH(ΩRx).

III. ANTENNA CORRELATION

A. Antenna Correlation from Channel Transfer Function

The antenna correlation between two Rx antenna u1 and u2

can be calculated as [5], [6]

ρCTF
u1,u2

=
cov{Hu1,s, Hu2,s}√

var{Hu1,s} ·
√
var{Hu2,s}

. (12)
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Inserting (3) and (4) into (12), and using the i.i.d. property of

the initial phases of the paths [10], it yields

ρCTF
u1,u2

=
βu1,u2√

βu1
·
√
βu2

, (13)

where

βu1,u2

=

M∑

m=1

{
Pm(|FV

s,m|2 + κ−1

m χ−1

m |FH
s,m|2) · FV

u1,m
· FV∗

u2,m

+ Pm(κ−1

m |FV
s,m|2 + χ−1

m |FH
s,m|2) · FH

u1,m
· FH∗

u2,m

}
, (14a)

βu =

M∑

m=1

{
Pm(|FV

s,m|2 + κ−1

m χ−1

m |FH
s,m|2) · |FV

u,m|2

+ Pm(κ−1

m |FV
s,m|2 + χ−1

m |FH
s,m|2) · |FH

u,m|2
}
. (14b)

B. Antenna Correlation from Angular Power Spectrum

The antenna correlation between two Rx antennas, u1 and

u2, can also be calculated as [1] (c.f. (13))

ρAPS
u1,u2

=
γu1,u2√

γu1
· √γu2

, (15)

where

γu1,u2
=

∫ {
η · pV(ΩRx) · FV

u1
(ΩRx) · FV

u2
(ΩRx)∗

+ pH(ΩRx) · FH
u1
(ΩRx) · FH

u2
(ΩRx)∗

}
dΩRx, (16a)

γu =

∫ {
η · pV(ΩRx) · |FV

u (Ω
Rx)|2

+ pH(ΩRx) · |FH
u (Ω

Rx)|2
}
dΩRx, (16b)

with pV(ΩRx) and pH(ΩRx) being the normalized APS, i.e.∫
pV(ΩRx) dΩRx =

∫
pH(ΩRx) dΩRx = 1, in the DoA domain

for V-pol and H-pol, respectively. The term η is the so-called

V/H ratio [5], and is defined as the ratio of the total power of

the incident signal of the V-pol over that of the H-pol.

It must be noted that in the literature the V/H ratio is often

termed also as XPR depending on the background, which is

sometimes confusing to that defined in the GSCM model as

described in Section II-A. Therefore, additional care shall be

taken for those values in practice for calculation.

The normalized APS for both polarizations can be obtained

with (11) as

pV(ΩRx) =
PV(ΩRx)

PV
tot

, (17a)

pH(ΩRx) =
PH(ΩRx)

PH
tot

, (17b)

with

PV
tot =

M∑

m=1

Pm(1 + κ−1

m χ−1

m ), (18a)

PH
tot =

M∑

m=1

Pm(κ−1

m + χ−1

m ), (18b)

being the total incident power for both polarizations. In

addition, the V/H ratio η can be obtained as

η =
PV

tot

PH
tot

. (19)

Equation (19) also indicates the V/H ratio η can be uniquely

determined from the XPR κm and CPR χm but not vice versa.

Inserting (17), (18), and (19) into (16) and with some

equation manipulation, we can obtain the antenna correlation

ρAPS
u1,u2

under the same channel model as for ρCTF
u1,u2

as

γu1,u2
=

M∑

m=1

{
Pm(1 + κ−1

m χ−1

m ) · FV
u1,m

· FV∗

u2,m

+ Pm(κ−1

m + χ−1

m ) · FH
u1,m

· FH∗

u2,m

}
, (20a)

γu =
M∑

m=1

{
Pm(1 + κ−1

m χ−1

m ) · |FV
u,m|2

+ Pm(κ−1

m + χ−1

m ) · |FH
u,m|2

}
. (20b)

C. Relation Between the Two Antenna Correlation Approaches

By comparing (14) and (20), we can find that the difference

between ρAPS
u1,u2

and ρCTF
u1,u2

is solely caused by the discrepancy

of the antenna de-embedding assumption between the two

approaches. Since the CTF describes the input-output relation

between the Tx antenna ports and the Rx antenna ports, an-

tenna pattern is not de-embedded from the CTF (1). Therefore,

the effective power spectrum in the DoA domain for the CTF

case accounting for the Tx antenna pattern can be alternatively

formulated as (c.f. (9))

P̃ (ΩRx) =

∫ [
|FV

s (Ω
Tx)|2

|FH
s (Ω

Tx)|2
]T

P (ΩTx,ΩRx) dΩTx. (21)

If we derive the antenna correlation ρAPS
u1,u2

with respect to

P̃ (ΩRx) following the same way in Section III-B, and denote

that as ρ̃APS
u1,u2

, it is very straightforward to find

ρ̃APS
u1,u2

= ρCTF
u1,u2

. (22)

Alternatively, we can also consider ρAPS
u1,u2

as a special case

of ρCTF
u1,u2

with |FV
s (Ω

Tx)|2 = |FH
s (Ω

Tx)|2 = 1. Given

clarification on the antenna de-embedding assumption for both

approaches, the discrepancy can be resolved resulting in the

same antenna correlation results.

Another interesting effect of the discrepancy is that since the

effective APS P̃ (ΩRx) is ruled by both the joint P (ΩTx,ΩRx)
and the Tx antenna pattern as shown in (21), the resulting

ρCTF
u1,u2

becomes dependent on the joint P (ΩTx,ΩRx) instead of

just the marginal P (ΩRx) as for ρAPS
u1,u2

. An intuitive example

of this effect can be made by changing the pairing order

between the DoD Ω
Tx
m and the DoA Ω

Rx
m′ with m,m′ ∈ [1,M ]

in the channel according to [7]. Different pairing orders

result in different joint P (ΩTx,ΩRx), while the corresponding

marginal P (ΩRx) always remains the same. As a result, ρAPS
u1,u2

remains unchanged, whereas ρCTF
u1,u2

changes with different

joint P (ΩTx,ΩRx) filtered by the Tx the spatial selectivity.

Those findings show the effect of the Tx spatial selectivity on

the resulting Rx antenna correlation with the CTF approach.
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Fig. 1. The azimuth antenna pattern of (Tx-1) the 45◦ slanted ideal dipole
[5], and (Tx-2) the V-pol dipole with 65◦ HPBW and boresight at 60◦ [7].
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Fig. 2. The APS in the azimuth angle of departure (AoD) domain for (left)
the SCME UMa scenario and (right) the SCME UMi scenario [5]. Colors and
markers differ the 18 clusters and each cluster are modelled with 20 subpaths
(denoted as scatterers).

IV. NUMERICAL EXAMPLES

In this section, we take the SCME Urban Macro-cell (UMa)

and Urban Micro-cell (UMi) channel model [5] as the refer-

ence channels, and three configurations for the Tx antennas,

to demonstrate the difference of the two antenna correlation

approaches. Tx config-0 (Tx-0) is the case where the Tx

antennas are de-embedded; Tx config-1 (Tx-1) is a 45◦ slanted

ideal dipole with isotropic gain [5]; and Tx config-2 (Tx-2) is

a V-pol dipole with 65◦ half-power beam width and boresight

at 60◦ [7]. The corresponding Tx antenna pattern and APS in

the azimuth plane are shown in Fig. 1 and Fig. 2, respectively.

The V/H ratio η is calculated from P̃ (ΩRx) with the three

Tx configurations. The resulting values are shown in Table I

for both the UMa and UMi scenarios with the input parameters

XPR κm = 9dB and CPR χm = 0dB taken from the SCME

model. The difference between the values of η from different

Tx configurations is significant. More specifically, the large

V/H ratio for Tx-1 under the UMa scenario is caused by the

polarization discrimination around 90◦ between the V-pol and

H-pol Tx antenna pattern, where the AoDs of the paths happen

to be located. When the Tx antenna is only V-pol as for Tx-2,

the V/H ratio equals the XPR.

Further, the antenna correlation is calculated with isotropic

antennas on the Rx side and shown in Fig. 3. The antenna

spacing between the Rx antennas is swept from 0 to 2λ
(wavelength), and the broadside of the two Rx antennas is

aligned to 0◦ in the azimuth plane. The AoDs and the AoAs

of the 20 subpaths of each cluster are first paired up randomly,

and then the resulting pairing order is fixed throughout the

simulation to have a fixed joint AoD-AoA power spectrum for

a fair comparison of ρCTF
u1,u2

with different Tx configurations.

TABLE I
THE EFFECT OF TX ANTENNA PATTERN ON THE RESULTING V/H RATIO.

SCME UMa SCME UMi

Tx Configs κm χm η κm χm η

Tx-0 9dB 0dB 0dB 9dB 0dB 0dB

Tx-1 9dB 0dB 8.14 dB 9dB 0dB 0.74dB

Tx-2 9dB 0dB 9dB 9dB 0dB 9dB
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Fig. 3. The magnitude of the antenna correlation ρ
CTF
u1,u2

against antenna
spacing with the three Tx configurations under the UMa and the UMi channel.
Note that ρCTF

u1,u2
with Tx-0 is equivalent to ρ

APS
u1,u2

.

Note that ρCTF
u1,u2

with Tx-0 is equivalent to ρAPS
u1,u2

as discussed

in Section III-C.

We can see that difference between ρCTF
u1,u2

and ρAPS
u1,u2

is

more significant with Tx-2 than with Tx-1 for both scenarios.

The reason is that the directional antenna pattern of Tx-2

alters P̃ (ΩRx) more severely than Tx-1 does. Moreover, the

difference is more significant under the UMi scenario than

under the UMa scenario for the same Tx configuration. This

is because the larger AoD spread under the UMi scenario

introduces more variation from the Tx antenna pattern to

P̃ (ΩRx) compared to the UMa scenario. Therefore, we can

expect that a more noticeable difference between ρCTF
u1,u2

and

ρAPS
u1,u2

may occur if either the AoD spread of a given channel

is larger or the Tx antenna pattern is more directional.

V. CONCLUSION

In this paper, we derived the analytic forms for the antenna

correlation based on the CTF and the APS, respectively.

The relation between the antenna correlation from the two

approaches is described with the spread function. It is shown

explicitly in the derivation that the difference between them is

caused by the antenna de-embedding assumption made for the

APS, which is not generally assumed for the CTF. It is also

pointed out that the two antenna correlation approaches can

be equivalent if the same assumption is made for the CTF.

Antenna correlation under the two approaches and V/H ratio

are evaluated with the SCME UMa and UMi channel model

as an example, which numerically shows the effect of the

spatial selectivity of the Tx antennas on the results. The APS

approach is generally adopted in the antenna community to

calculate antenna correlation, which is a key measure to design

MIMO antennas, and our theoretical analysis and numerical

simulation show that ignoring Tx antenna pattern might lead

to inaccurate Rx antenna correlation calculation with this

approach.
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