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Massive Wireless Energy Transfer
with Statistical CSI Beamforming

Francisco A. Monteiro, Member, IEEE, Onel L. A. López, Member, IEEE, Hirley Alves, Member, IEEE

Abstract—Wireless energy transfer (WET) is a promising so-
lution to enable massive machine-type communications (mMTC)
with low-complexity and low-powered wireless devices. Given
the energy restrictions of the devices, instant channel state
information at the transmitter (CSIT) is not expected to be
available in practical WET-enabled mMTC. However, because
it is common that the terminals appear spatially clustered, some
degree of spatial correlation between their channels to the base
station (BS) is expected to occur. The paper considers a massive
antenna array at the BS for WET that only has access to i) the
first and second order statistics of the Rician channel component
of the multiple-input multiple-output (MIMO) channel and also
to ii) the line-of-sight MIMO component. The optimal precoding
scheme that maximizes the total energy available to the single-
antenna devices is derived considering a continuous alphabet
for the precoders, permitting any modulated or deterministic
waveform. This may lead to some devices in the clusters being
assigned a low fraction of the total available power in the cluster,
creating a rather uneven situation among them. Consequently, a
fairness criterion is introduced, imposing a minimum amount of
power allocated to the terminals. A piece-wise linear harvesting
circuit is considered at the terminals, with both saturation
and a minimum sensitivity, and a constrained version of the
precoder is also proposed by solving a non-linear programming
problem. A paramount benefit of the constrained precoder is the
encompassment of fairness in the power allocation to the different
clusters. Moreover, given the polynomial complexity increase of
the proposed unconstrained precoder, and the observed linear
gain of the system’s available sum-power with an increasing
number of antennas at the ULA, the use of massive antenna
arrays is desirable.

Index Terms—WET, mMTC, massive MIMO, beamforming,
clustering, statistical CSI

I. INTRODUCTION

The internet of things (IoT) presupposes a large number
of low-complexity devices, most of them wireless, and a
number of them placed in hardly accessible locations (e.g.,
for infrastructure monitoring). Even though most of these
terminals are not supposed to transmit continuously, they are
supposed to be able to operate for long periods of time without
batteries replacement. One way of achieving that is by having
devices that can harvest energy from incoming electromagnetic

This work was supported by the Academy of Finland (Aka) (Grants
n.307492, n.318927 (6Genesis Flagship), n.319008 (EE-IoT)). The work of
Francisco Monteiro was supported by a joint scholarship from Fundación Car-
olina and Fundación Endesa (both from Spain) and funded by FCT/MCTES
(Portugal) through national funds and when applicable co-funded EU funds
under the project UIDB/50008/2020.

F. A. Monteiro is with Instituto de Telecomunicações, and ISCTE - Instituto
Universitário de Lisboa, Portugal, e-mail: {francisco.monteiro@lx.it.pt}.
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radiation. Much work has been recently done on simultaneous
wireless information and power transmission (SWIPT) [1],
wireless-powered communication networks (WPCN), in which
terminals harvest energy during a first time slot and use it
to power the transmission of information in a second time
slot [2], and also on systems dedicated to wireless energy
transfer (WET) per se [3]–[12]. WET systems differ from the
former two by only focusing on the transfer of energy without
spending resources on any type of data transfer.

As it is thoroughly described in [13], the idea of WET
is as old as radio transmission but, until quite recently, the
idea typically involved high transmission power and very large
antennas at both ends of a link, and often aimed at very long
distances (e.g., satellite-to-Earth links). Using low-power WET
to power devices over a few meters (tens or even hundreds of
meters) is a quite recent endeavor. The WET approach is easier
to deploy massively given that the energy source, or power
beacon (also still called base station (BS) for legacy reasons),
does not need to have any connection to a core data network
apart from the connection to the electrical grid. Note that the
WET component of a system is often the one responsible
for performance bottleneck in practical WPCN and SWIPT
systems, and for that reason it is worthy of dedicated study
and consideration of different optimization approaches. Other
examples of systems that may also need to rely on WET are
backscatter communications [14], and the new long-distance
tags based on quantum tunneling radio positioning [15].

In [5], one can find a survey of beamforming techniques for
SWIPT, WPCN, and WET systems, and also a list of some
techniques to easy the enormous task of acquiring channel
state information at the transmitter (CSIT), on which those
beamforming techniques depend on. However, instantaneous
CSIT availability is an unrealistic assumption in the context
of mMTC because not only the devices are very energy-
constrained, but also due to the immense number of pilots the
BS would have to deal with in the uplink. Some steps forward
to do away with instantaneous CSIT have been recently taken
in [16], where fading is artificially accentuated such that its
benefits can be further exploited even if CSIT is entirely
absent, and in [8], where a statistical analysis of the harvested
energy in a WET setup assuming no CSIT is presented. In [8],
the authors assessed WET with single antenna terminals and
a multiple antenna transmit array at the BS, and compared
i) single antenna transmission from the BS, ii) equal power
transmission from all the BS’s antenna elements, dubbed as all
antenna at once (AA) scheme, and iii) the switching antennas
(SA) scheme, where only one antenna is active at a time and
the position of the active one runs through all the antennas
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in the array during each block of coherent fading. Their
channel model had all devices experiencing a Rician fading
channel and distributed around the BS without any particular
distinction between devices.

A great part of the literature on WET-enabled systems
(WET only or SWIPT) assumes that full instantaneous channel
knowledge is available at the BS, e.g., [9], [17]–[21], or
even simultaneously available at an intermediate intelligent
reflective surface [22]. Nevertheless, imperfect CSIT has also
been considered in a a number of works [6], [7], [9], [11], [12].
In general, acquiring a more accurate information about the
channel requires more energy expenditure, and consequently
there is a trade-off between the energy that is harvested by
the terminals and the energy spent feed-backing CSI. The
works in [6] and [9] considered point-to-point WET, with a
massive antenna array wirelessly powering only one EH multi-
antenna terminal. In [6] the EH device has multiple antennas
and the aim was the maximization of the net harvested energy
by optimizing the training phase and the WET phase. In [9]
the authors considered a multi-input single-output (MISO)
system, i.e., with a single-antenna EH terminal, and derived
expressions for the outage probability of EH, defining outage
when the harvested energy during a block is less than the sum
of the energy the sensor spent in transmitting the CSI and
the energy spent processing its tasks. In both cases a Rician
channel model was considered and the channel matrix is
written as the sum of a known matrix (representing the partial
CSIT) with a unknown remaining term for a Rician channel,
which is the most common way of incorporating partial CSIT
in the system models. The work in [23] also considers massive
antenna array at the BS but rather a multi-user (MU) system
with single-antenna EH terminals, and formulates partial CSIT
in the same way. Similarly, in the context of SWIPT, the lack
of full-CSIT has also been studied in the same manner, e.g., in
[24] a MU-SWIPT system is considered with single-antenna
terminals.

This paper considers partial CSIT, formulated in a distinct
manner, such that the partial knowledge comprises of statisti-
cal knowledge about the channel, which has been argued to be
beneficial for MIMO WET systems in [4]. Note that in open-
loop WET systems (i.e., CSIT-free), which are oblivious of
the channel state and operate without any CSIT [8], [16], [25],
only a statistical analysis of the harvested energy is possible,
and a sizeable statistical analysis of such open-loop systems
currently exists. In [10], a fair beamforming scheme for WET
that only makes use of the channel’s first order statistics (i.e.,
the channels’ mean) was proposed, also under Rician fading.
The present paper proposes reduced-complexity precoding that
also does not require instantaneous full-CSIT but only the first
and second order statistics of the channel, considering that
both the channel correlation and the LOS components vary
slowly.

In many practical scenarios the terminals are physically
clustered (as in Fig. 1) and thus, besides sharing the same
large-scale gain (pathloss) from the BS to the terminals, they
also share a common slow-fading component, which can be
characterized by its second order statistics, i.e., the covariance
of the channel matrix. This paper proposes to take advantage

Cluster 1

Cluster L

Cluster l

Figure 1. WET system model with L clusters, each one with K MTC
terminals, powered by a BS with M -antennas applying MIMO precoding
with limited CSIT.

of that partial CSIT, which can be estimated with pilots
transmitted from the terminals to the BS at a low rate.

The Karhunen–Loève (KL) channel representation allows
one to use beamforming techniques reminiscent of the ini-
tial ideas for low-CSIT MIMO precoding with reduced CSI
feedback [26]. Similar considerations about the correlation
between the channels experienced by nearby terminals lead to
a proposal combining massive MU-MIMO, MIMO precoding,
and user clustering [27]. In that scenario, beamforming is
performed for the different clusters of users, and then the intra-
cluster users use non-orthogonal multiple access (NOMA) in
the power domain to detect their own signals.

It should be noted that the proposed system is a MU-MIMO
setup in which each cluster assumes the role of a virtual
single-antenna terminal, representing all the terminals sharing
a common second order statistics and a similar line-of-sight
(LOS) model. This is in contrast with [9], where a MISO
system is considered for WET in order to highlight the benefits
of using a massive antenna array.

The energy beams can be adapted to focus onto each cluster
and, because interference is not a foe in the context of WET,
the optimal precoder can be designed by maximizing the total
system’s sum-power available to be harvested at the terminals’
antenna in all clusters. However, in doing so, an unfair partial
sum-power allocation among different clusters may happen
and it is shown that by framing the problem as a constrained
numerical optimization, fairness can be achieved among clus-
ters. A different approach to introduce fairness in a WET MU-
MIMO scenario was taken in [18], where the authors proposed
designing a precoder which takes in consideration fairness
by applying a max-min criterion to maximize the network’s
user with the weakest channel conditions, while considering
full-CSIT and Rayleigh fading. In that work, the authors
considered a different pathloss for each device, given that
they are not considered to be clustered around each other. To
the best of our knowledge, a WET system model considering
clusters of terminals has only appeared in the very recent
papers [25], [28], but the fact that they are considering clusters
has no implications for precoding in these works, which assess
open-loop techniques such as all antennas at once (AA) and
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switching antennas (SA).
One focuses on the available power to be harvested rather

than the harvested energy after the energy harvesting (EH)
circuit in order to offer more general results. Nevertheless,
the specifications of a particular piece-wise linear EH circuit
(to be detailed in section II) are considered in this work in
order to tune the system to a particular useful power range.

Besides the limitation due to the high sensitivity of the
EH circuits (e.g., around −10 dBm, compared to around −60
dBm when the goal is information transmission), there is also
the downside of the inefficiency of the voltage multipliers
based in diodes chiefly responsible for converting the radio-
frequency energy (RF) into direct current (DC) voltages for
both immediate use and storage, as highlighted in [29], and
thoroughly described in [30]. A description of different an-
tennas designs for the EH terminals and a compilation of EH
circuits characteristics, such as frequency range and power
conversion efficiency and be found in [31].

The harvested DC power is not only a non-linear function of
the RF power at the antenna for a given transmitted waveform,
but also a function of the waveform itself [32]. For an easier
approach and analysis of energy beamforming, previous works
have assumed a fully-linear conversion, i.e., considering a
linear function for the RD-DC conversion, and not even
considering the sensitivity and saturation effects of the circuits,
e.g., [33]. The same simplification was made to design and
analyze systems with a WET phase followed by an information
transfer phase from sensors [34]–[37], and for MU-MIMO
WET with beamforming [18], as in the scenario considered
in the present paper. In fact, this simple linear model can
be traced back to [38]. Nevertheless, more realistic, yet more
challenging, non-linear RF-DC conversion models have been
considered in the literature, ranging from characterizing the
non-linearity by a sigmoid function [39], to assuming a general
RF-DC transfer function that only needs to be monotone and
increasing in [40]. A model with saturation-only was proposed
in [12], [41], and also used in [42] for beamforming in SWIPT.

A significant step forward was taken in [43], by char-
acterizing the RF-DC conversion while keeping analytical
tractability. In doing that, the authors have found that the
(unmodulated) single sinewave was not the optimal waveform
for WET when the non-linearity is considered and proposed
deterministic multisine waveforms. These waveforms, which
have a higher PAPR (peak-to-average power ratio) when the
number of sines increases, eventually deliver a higher output
DC power that scales linearly with the number of sine waves
even without CSIT, as long as the the channel fading is flat.
Under frequency-selective fading the linear increase is also
attainable as long as CSIT is present [43]. Interestingly, the
benefits of using multisine waveforms for WET had been
previously hinted in [44], where the authors proposed using
multi-sinewaves to better match the Taylor expansion of the
diode’s non-linear function, and also for [45] for RFID tags,
in which the authors proposed using a multi-tone waveform.
Later, in [46], motivated by the advantages of using multisine
waveforms in WET, the author extended the idea to SWIPT
systems, with the transmitted symbols resulting from the
sum of a deterministic multisine waveform with a modulated

multi-carrier waveform, as in orthogonal frequency division
multiplexing (OFDM).

The precoders proposed in the present paper are based on
statistical CSIT (mean and correlation) and attain power gains
very close to the optimal precoder with instantaneous full-
CSIT available at the BS. The results are in all setups much
superior to the ones obtained by the CSIT-free techniques [25].
The type of precoding herein proposed provides a linear gain
for the system’s sum-power as a function of the number of
antenna elements at the BS, naturally making the case for the
use of massive antenna arrays for WET whenever terminals
clustering is possible. The proposed techniques hold for any
waveforms that one may consider, transmitted over flat fading,
and therefore the power conversion gains coming from an
optimized waveform, such as the multisine waveforms ones in
[43], [47] or any of the waveforms listed in [48, Table 1] for
different scenarios, will add up to the gains coming from the
proposed precoding techniques applied at the BS, preserving
the performance gaps found in the current work.

The remainder of the paper starts by setting the system
model in section II, then section III lays out the proposed
precoding schemes, and does so for increasingly more sophis-
ticated cases. That section also tackles the fairness problem
of power allocation among clusters. Section IV presents a
baseline reference case that is analytically tractable, and which
will serve to validate the numerical simulator used to assess
the proposed techniques in section V. Finally, the conclusions
are drawn in section VI.

Notation: a complex circularly symmetric Gaussian ran-
dom vector with mean m and covariance R is denoted by
CN (m,R). AH denotes the Hermitian transpose of matrix
A, In is an identity matrix with n diagonal elements, 1M
is the column vector of M ones, and E is the expectation
operator. u(x) is the Heaviside step function, and Γ(x) is the
complete Gamma function. The probability density function
(PDF) of a random variable X is denoted by p(x) and its
power is considered to be equal to its second moment E{X2},
assuming a unit resistor to convert Volt2 to Watt, as it is usual
in signal processing. To a set of independent and identically
distributed random variables one applies the i.i.d. acronym.

II. SYSTEM MODEL

The considered scenario for WET is the one in Fig. 1,
where, without loss of generality regarding the antenna’s
geometry, a BS equipped with M -antennas serves L clusters,
each of which encompassing K terminals. The proposals
in the paper will be assessed with a uniform linear array
(ULA) at the BS, but this option does not preclude the
possibility of considering a more general array, such as a
uniform planar array (UPA) [49], which would give another
degree of freedom to the system, allowing for vertical beam
steering. Moreover, a scenario considering a different number
Kl of devices per cluster is straightforward to assess and can
easily be generalized from the model that is here assumed for
illustration purpose. In fact, both precoders that will be derived
for multi-cluster systems (in sections III-D and III-E) include
the information about the clusters in K × M matrices that
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could also be Kl×M with no impact on how the optimization
unfolds.

A Rician MIMO channel [50, Sec. 5.7], [51, Sec. 3.6.1],
is considered to exist from the BS to each of the terminals
within a cluster. The baseband model of the signals received
by the K single-antenna terminals within the l-th cluster are
aggregated in the vector

yl=

(√
β(l)κ(l)

1+κ(l)︸ ︷︷ ︸
α1(l)

H(LOS)
l +

√
β(l)

1+κ(l)︸ ︷︷ ︸
α2(l)

Hl

)
Plx0︸ ︷︷ ︸
xl

+nl, (1)

where the elements yl(k) in vector yl ∈ CK×1 are the received
signals at each one of the terminals in the cluster and β(l) is
the mean large-scale pathloss from the BS to the terminals
in cluster l. Matrices Pl ∈ CM×M will be restricted to
be unitary matrices when deriving the unconstrained optimal
beamforming precoder that focus the transmit power onto the
l-th cluster for efficient WET. That restriction will be dropped
when searching for a constrained solution.

The vector onto which the unitary transformation is applied
is set to x0 =

√
Px/Ms, where s ∈ CM×1 is the waveform

signal vector in the baseband model, such that E{||sm||2} = 1,
for m = 1, . . . ,M , where each sm represents a waveform,
possibly optimized for a particular model of the terminal’s
EH circuits, such as a deterministic multisine signal [43], [47],
[52] (a joint optimization of the precoder and of the waveform
falls beyond the scope of this work).

As indicated in (1), the equivalent precoding vector applied
to the M antennas is xl , Plx0, and therefore the transmitted
signal to power all the network devices from the BS is xl ∈
CM×1, with E{xH0 x0} = E{||x0||2} = E{xHl xl} = E{||xl||2} =
Px. nl ∼ CN

(
0, σ2

nIK
)
, is the vector containing the thermal

noises at each single-antenna terminal, each of which with σ2
n

power. As usual in the WET literature, this power is considered
to be negligible for the purpose of energy harvesting and is
neglected in all aspects of the remaining of the paper.

The matrices H(LOS)
l and Hl, both ∈ CK×M , respectively

represent the LOS and the multi-path components of the Rician
MIMO channel from the BS to the l-th cluster, and κ(l) is
the Rician factor defining the weights of each component.
The clusters’ angular width is considered to be narrow and
therefore all the terminals approximately experience the same
LOS component, sharing the same κ and the same slowly
varying H(LOS)

l , which is assumed to be perfectly known at
the BS via low-rate feedback.

It is interesting to note that while in the cases in which
NOMA is considered to bring some additional capacity to
systems using massive MIMO, the users need to be confined
to a narrow angular spread [53], [54], which is quite unnat-
ural scenario in cellular communications, the assumption of
a narrow angular spread and small range differences seem
reasonable in several applications of WET, when particular
spots have a higher concentration of EH devices. Matrix Hl

is a Rayleigh fading matrix with all its elements taken from
a circularly symmetric complex Gaussian distribution with all
elements hk,m ∼ CN (0, 1), while H(LOS)

i corresponds to the
geometric model [50, Sec. 5.1], which typically leads to a

matrix of rank one [51, Sec. 3.6.1]. Let (h(LOS)
k,l )T be the k-th

row of H(LOS)
l , representing the LOS from the BS to the center

of the l-th cluster.
Because all the terminals in a given cluster approxi-

mately experience the same LOS component, H(LOS)
l =

1 · (h(LOS)
k )T , i.e., all rows replicate the same (h(LOS)

k )T =
ejϕl [1, ejθ1(φl) · · · ejθ(M−1)(φl)]. The power gain from the i-
th antenna to the k-th terminal is characterized by the same
β(l) to all users in the l-th cluster, given that all antennas
of the ULA are co-located, as it has been also considered
in [6], [7] and in the results section of [9]. φl describes the
angular position of the l-th cluster, measured in respect to the
so-called endfire direction of the ULA (in [10] it was used
the angle measured to the ULA’s boresight (also referred to as
broadside) [51, Sec. 3.5]). Therefore, θi(φ) = 2πid cos(φ)/λ,
for αi, i = 1, . . . ,M − 1, where λ is the wavelength, and
d = λ/2 is the separation between the antenna elements of
the ULA. Note that the common phase ϕl plays no role in the
transferred power to the clusters. A more general case with the
K terminals within each cluster randomly distributed within
an angular domain

[
φl−∆φ, φl + ∆φ

]
will also be assessed.

In that case, the k-th terminal in a given cluster is located
at an angle φk, taken from a uniform distribution within the
angular aperture of ∆φ degrees, and one has different rows
(h(LOS)
k )T = ejϕl [1, ejθ1(φk) · · · ejθ(M−1)(φk)], for each of the

K terminals in the l-th cluster.
While in most MTC scenarios the line-of-sight component

is quasi-static, the fast component Hl is difficult to be obtained
by the BS in a mMTC context, not only because of the power
energy limitations of the devices, but also due to the sheer
number of terminals. Nonetheless, a central assumption in
this paper is that the correlation of the Hl component is
assumed to be known at the BS because it can be slowly
updated over time by means of pilots sparsely transmitted by
the devices, or via modern machine learning methods [55].
Given the physical proximity of the users within a cluster,
according to the geometrical one-ring scattering channel model
[56] there is a transmit antenna correlation among the signals
received by those K terminals. Thus, the Rayleigh matrix
component of the MIMO channel of a cluster has a square
transmit correlation matrix Rl = E{HH

l Hl} ∈ CM×M [51],
which, via its singular value decomposition (SVD), can be
expanded in the form:

Rl = E{HH
l Hl} = UlΛlU

H
l . (2)

It will be considered that the rank of Rl, rl, is equal
to the number of users, similarly to [57]. Therefore, Λl is
only going to have rl non-zero diagonal elements. When the
channel correlation is known one can take advantage of the KL
channel representation, which has been applied in the context
of NOMA [27], [58], MIMO spacial division multiplexing
[56], rate-splitting in MU-MIMO systems [59], and also as
an efficient way of generating fading samples with a given
correlation matrix [60], [61, Sec. 2.2]. The KL representation
allows the channel from the BS to the users in the l-th cluster
to be written as

Hl = GlΛ
1
2

l UH
l , (3)
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where Gl ∈ CK×K is a zero mean and uncorrelated Rayleigh
fading matrix, i.e., E{Gl} = 0, and E{GH

l Gl} = IK , the
identity matrix with K diagonal elements. Note that because
of the latter property, when plugging (3) in (2), one always
gets the same correlation regardless the particular realization
of Gl, showing that it only depends on Λl and Ul in the KL
representation. Λl ∈ CK×rl is a diagonal matrix containing the
singular values of Rl and Ul ∈ CM×rl is a matrix containing
in its columns the singular vectors of Rl, where rk is the rank
of the correlation matrix. As the diagonal matrix Λl can be
reduced to a rl× rl matrix, one has Gl an K× rl matrix, and
Ul a M × rl matrix. Hence, the k-th user in the l-th cluster
will experience the channel

hTk,l = gTk,lΛ
1
2

l UH
l , k = 1, . . . ,K. (4)

Note that in the case of uncorrelated fading the K terminals
would see a channel hk,l ∼ CN (0, IM ).

It is assumed that the BS knows both H(LOS)
l and the auto-

correlation in (2), the latter representing the partial knowledge
held about (3). Therefore, while Λ

1
2

l and UH
l can be estimated

via the SVD (2), the fading row vector gTk,l is unknown at
the BS and cannot be taken in consideration by a precoder.
Moreover, because single-antenna terminals are considered,
each terminal cannot mitigate this multi-path effect.

The energy harvesting circuits are typically non-linear and
the effectively harvested energy will be a fraction of the RF
energy available. A rich literature modeling the EH circuits
exists, e.g., [31], [32], [41], [43], and it has been known that
different types of RF-DC conversion circuits lead to different
optimal waveforms. To assess the proposed precoding tech-
niques, this paper adopts one model that still mimics important
features such as the sensitivity and saturation phenomena. The
non-linear EH circuit at the terminals is considered to have a
saturation value, $2, and also a minimum power sensitivity,
defined by an activation threshold $1, and a conversion factor
η in its linear region, leading to the following output power,
as in [8]:

Ω(|yl,k|2) =

 0, |yl,k|2 < $1

η|yl,k|2, $1 ≤ |yl,k|2 < $2

η$2, |yl,k|2 ≥ $2

. (5)

III. OPTIMAL UNITARY PRECODERS FOR WET

A natural goal for WET is the one of maximizing the RF
energy available to be harvested by the terminals in each
cluster while avoiding energy leakage to other locations. An
effective way of achieving that is to apply MIMO precoding
at the BS. Using simple analogue phase modulators one can
consider signals from a continuous-domain alphabet, with
xl(m) =

√
Pxe

jθm , m = 1, . . . ,M , only having to adjust the
phases θm. Given that Pl is unitary, with x0 =

√
Px/M1M ,

the precoding vector xl = Plx0 lives in a M -dimensional
sphere of norm

√
Px.

A. Precoding for a single cluster: maximum harvested energy

The problem of maximizing the mean sum-power, Pl,
available for EH by all devices in the l-th cluster, given

||xl||2 = ||x0||2 = Px, can be formalized as:

arg max
Pl

E{Pl}

s.t. PH
l Pl = I

(6)

where the total available energy El at the cluster is the sum of
the energies available for harvesting at the K terminals, each
of which can collect the power |yl(k)|2. By using (1) and (3),
the total RF energy available for harvesting by the terminals
in cluster l, and that should be maximized in (6), is

Pl = ‖yl‖2

= ‖α1(l)H(LOS)
l Plx0 + α2(l)GlΛ

1
2

l UH
l Plx0‖2 (7)

and, for convenience, let one define:

Υ , α1(l)H(LOS)
l Plx0. (8)

Consequently, the expectation over the realizations of the
Rayleigh fading component Gl becomes

E{Pl} = E{||yl||2}

= E{‖Υ + α2(l)GlΛ
1
2

l UH
l Plx0‖2}

= E{‖Υ‖2}+

+ E{‖α2(l)GlΛ
1
2

l UH
l Plx0‖2+

+ 2α1(l)x0
HPl

H(H(LOS)
l )H×

× α2(l) E{Gl}︸ ︷︷ ︸
=0

Λ
1
2

l UH
l Plx0}

= ‖Υ‖2+

+ α2
2(l)xH0 PH

l UlΛ
1
2

l E{GH
l Gl}︸ ︷︷ ︸
=I

Λ
1
2

l UH
l Plx0

= ‖Υ‖2+‖α2(l)Λ
1
2

l UH
l Plx0‖2. (9)

Unsurprisingly, this last expression does not depend on Gl,
given that the a fast fading unit-power MIMO channel, on aver-
age, is a norm-preserving linear transformation. The equivalent
optimization problem becomes the one of simultaneously
maximizing two squared norms, while considering the power
uniformly distributed across the M antennas:

arg max
Pl

‖Υ‖2+‖α2(l)Λ
1
2

l UH
l Plx0‖2

s.t. PH
l Pl = I

(10)

xl will be used henceforth to indirectly define Pl.

B. Precoding for a single cluster: correlated Rayleigh fading

When κ = 0, the optimal unitary precoder for the second
term in (10) can be analytically constructed by splitting the
precoding process in two, such that Pl = P

(1)
l P

(2)
l . By setting

P
(1)
l = Ul, the problem simplifies to finding a unit-power

vector P
(2)
l x0 that maximizes ‖Λ

1
2

l P
(2)
l x0‖2. Because Λ

1
2

l is
a diagonal matrix with decreasing elements, the maximum
singular value, σmax, is always the first element in the di-
agonal and therefore the maximization requires P

(2)
l x0 =

[1, 0 . . . 0]T . In short, xl = P
(1)
l P

(2)
l x0 = Ul[1, 0 . . . 0]T ,
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concluding that when there is no LOS and only the multi-path
(MP) channel component exists, the optimal transmission is
defined by the first column of Ul, obtained in (2):

x∗(MP)
l =

√
PxUl(:, 1), (11)

using MATLAB® notation. Implicitly, P
(2)
l applies a unitary

rotation to x0 to generate [1, 0 . . . 0]T , such that P
(2)
l is a

rotation matrix, and therefore the total precoding matrix Pl =

P
(1)
l P

(2)
l is unitary.

C. Precoding for a single cluster: correlated Rician fading

In practical WET setups, the powering BS is usually located
close to the clusters of users and therefore having a strong
LOS component with κ > 1 is a likely situation. When
both terms in (10) contribute to E{Pl} = E{||yl||2}, the
optimum x∗

l is obtained by maximizing all the coordinates
yl(k), which, according to (10), corresponds to maximizing
K inner products of xl with the k-th row of HLOS

l , denoted
by (h(LOS)

k )T and also other rl inner products in the norm of
the second term of (10). Defining

Ml , Λ
1
2

l UH
l ∈ Crl,×rl , (12)

and mT
k being its k-th row, the total power collected by the

cluster is (for simplicity the l index is dropped in the vectors)

Pl = α2
1(l)
∥∥H(LOS)

l Plx0‖2+α2
2(l)‖MlPlx0

∥∥2
= α2

1(l)

K∑
k=1

∣∣(h(LOS)
k )TPlx0

∣∣2+

+ α2
2(l)

rl∑
k=1

∣∣mT
kPlx0

∣∣2, (13)

which can be written in the form

Pl =
∥∥∥ [α1(l) 0

0 α2(l)

] [
H(LOS)
l

Ml

]
Plx0

∥∥∥2
=
∥∥∥ [α1(l)H(LOS)

l

α2(l)Ml

]
︸ ︷︷ ︸

Al

Plx0

∥∥∥2. (14)

Both the LOS and the multi-path components contribute
to the problem, such that Al ∈ C2K×M is the maximum
dimension of this matrix (depending on the rank of H(LOS)

l

and the rank of Λl, rl). From (14), one can conclude that
the maximum possible harvested energy corresponds to the
largest singular vector of Al, σmax, and is obtained when the
transmitted signal, xl, is the (unit power) singular vector u

(Al)
max

associated to σmax. When taking in consideration both the
LOS channel and the second order statistics of the multi-path
channel, the optimal solution to (10) is therefore

x∗
l =

√
Pxu

(Al)
max , (15)

which is a vector living on the M -sphere of norm
√
Px, and

P
(2)
l is implicitly a rotation matrix acting on x0, as in the

previous subsection.

D. Precoding for multiple clusters

The maximization of the average energy available to be
harvested by the system’s devices in a multi-cluster system,
E{P}, can be attained by constructing the stacked vector y =
[y1 . . .yl . . .yL]T with all the signals at all the terminals in all
the clusters. The problem then becomes the one of maximizing
the (squared) norm of this KL-dimensional vector. With a
similar manipulation to the one in (13), one can obtain the
optimal precoder for the multi-cluster case (L ≥ 1), which is
the same of finding the optimal precoding vector x∗ = P∗x0.
Hence,

P = ‖y‖2=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



α1(1)H(LOS)
1

α2(1)M1

...
α1(l)H(LOS)

l

α2(l)Ml

...
α1(L)H(LOS)

L

α2(L)ML


︸ ︷︷ ︸

A

Px0︸︷︷︸
x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

, (16)

is maximized when transmitting the right-singular vector
associated to the maximum singular value of the SVD of
the concatenated matrix A ∈ C2KL×M (assuming that both
H(LOS)
l and Λl are full-rank), which is also a vector living on

the M -sphere of norm
√
Px:

x∗ =
√
Pxu

(A)
max . (17)

The solution (17) takes into account the whole multi-cluster
system, and for that reason it depends on all the correlation
matrices Rl and on all the LOS channels H(LOS)

l .
The complexity of the proposed precoding scheme is

chiefly determined by the SVD of the autocorrelation and
the SVD of Al ∈ C2KL,×M , which has a time complexity
O
(
4KLM2 +M3 +M + 2KLM

)
and a storage complexity

O
(
3M2 + 3M + 4KLM

)
by using the so-called truncated

SVD algorithm [62].
Remark: (16) is applicable to a MU-MISO setup in which

device clustering is possible, which implies a MU-MIMO
setup with more than one EH terminal. When clustering is
not possible in a MU-MIMO system [18], or in in the case of
a point-to-point single-user (SU) MIMO [6], [7], the solution
to the problem of maximizing the available RF power is also
a SVD problem involving the corresponding Wishart matrix.
In the case of the Rician model in (1), the distribution of the
maximum eigenvector is known [63], as well for the case of a
Rayleigh MIMO channel [64]. Moreover, in the simpler case
of SU-MISO, the matrix problem collapses to the well-known
vector problem of coherent combining [9].

E. Constrained precoding for efficient non-linear EH and
inter-cluster fairness

Although the energy available for a cluster is E{||yl||2},
the sensitivity and saturation thresholds of the non-linear
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transfer function of the harvesting circuit, described in (5),
induce energy waste unless $2

1 ≤ E{|yl(k)|2} ≤ $2
2 , at

each terminal in the l-th cluster. In order to minimize that,
the precoder should also take into account those additional
constraints. An additional affect of adding the lower bound
constraint for each of the KL terminals is the induction of
fairness among the partial sum-power of each cluster. This
is a natural consequence of the fact that the optimization is
blind to which cluster each terminal belongs to. The constraint
optimization problem is set in the following, where P is no
longer required to be unitary because a solution for P spat
out by the numerical solver may observe the set of constraints
without having to reach the maximum allowed transmit power.
One can simply state the problem as:

arg max
x

L∑
l=1

(
‖α1(l)H(LOS)

l x‖2+‖α2(l)Mlx‖2
)

s.t. ||x||2 ≤ Px,
$1 ≤E{|yl(k)|2} ≤$2, k = 1, . . . ,K,

and, l = 1, . . . , L.

(18)

This is a non-linear programming problem with non-linear
inequality constraints on each component which can be nu-
merically solved by converting the problem from the complex
domain to the real domain. To that end, the MIMO real-
equivalent model, well-known context of MIMO detection
[65], is applied to the objective function in (18), so that a real-
valued solution is found by casting the problem in a similar
manner to (16) and then applying the real-equivalent model to

Ax⇔
[
< (A) −= (A)
= (A) < (A)

] [
< (x)
= (x)

]
. (19)

In the end, the solution is converted back to a x ∈ CM .

The constraint added to the problem in (18) requires setting
an expression for the average energy at each terminal since
its instantaneous value cannot be estimated by the BS given
that it does not have access to the instantaneous realizations
of G. The constraints on the average energy received by each
terminal, E{|yl(k)|2} can only take into account expectations
in the context of the KL decomposition channel model. Using
(1) and (3), while gTk is the k-th row of G, and dropping the
cluster index in the rows of H(LOS), the per-terminal average
energy, when given some precoding matrix P, is

E{|yl(k)|2 |P}

= E
{
α2
1(l)
∣∣(h(LOS)

k )TPx0

∣∣2}
+ E

{
α2
2(l)
∣∣gTk Λ

1
2

l UH
l Px0

∣∣2}
= α2

1(l)
∣∣(h(LOS)

k )Tx
∣∣2 + α2

2(l)E
{∣∣gTk Mlx

∣∣2}
= α2

1(l)
∣∣(h(LOS)

k )Tx
∣∣2 + α2

2(l)E
{∣∣gTk vl

∣∣2}
= α2

1(l)
∣∣(h(LOS)

K )Tx
∣∣2 + α2

2(l)var
{
gTk vl

}
= α2

1(l)
∣∣(h(LOS)

k )Tx
∣∣2 + α2

2(l)vTl cov{gk}︸ ︷︷ ︸
=I

vl

= α2
1(l)
∣∣(h(LOS)

k )Tx
∣∣2 + α2

2(l)
∥∥Mlx

∥∥2, (20)

where vl , MH
l Px0 = MH

l x, which is a factor only
depending on the cluster’s correlation Rl, while the fast fading
gi plays no role in determining the average power. In (20), it
was also used the fact that the variance of an inner product
between a random vector a and a deterministic vector b
observes var(aTb) = bTvar(a)b.

In the case when full CSIT exists (which will be considered
for benchmarking in the next section), because the instan-
taneous value of G is known, the exact yl is also known,
as defined in (1), the expectation E{|yl(k)|2‖ in (18) can
be replaced by the exact received power at each terminal so
that the second constraint becomes $1 ≤ |yl(k)|2 ≤ $2, for
k = 1, . . . ,K, and l = 1, . . . , L.

IV. THE BASELINE REFERENCE CASE

The previous section presented derived the beamforming
vectors xl, including the two numerical precoders that solve
the energy-constrained problem (with partial- and full-CSIT).
In the follow up section V the performance of these precoders
will be compared with the one attained by the AA and
SA CSIT-free schemes. While the latter schemes can have
an analytical interpretation [8], the former are analytically
intractable. However, there is a particular situation that has an
analytical interpretation: the one with a pure Rayleigh channel,
i.e., without LOS (κ = 0), and where the fading is uncorre-
lated. This situation is considered as the baseline reference
case: the i.i.d. Rayleigh fading channel is represented by a
MIMO matrix with circularly symmetric complex Gaussian
entries with zero mean and unit variance. In this situation
ht,l ∼ CN (0, IM ), with both real and imaginary components
of each element ht,l(m) having each a Gaussian distribution
N
(
0, 12
)
, such that ht,l(m) ∼ CN (0, 1), for m = 1, . . . ,M .

This setup has an analytical interpretation chiefly based on the
properties of the Gamma distribution [66], [67].

Definition 1: A Gamma random variable with finite shape
parameter k > 0 and finite scale parameter θ > 0, denoted as
Γ(k, θ), has PDF

p(x, k, θ) = xk−1 e
−x/θ

θkΓ(k)
u(x), (21)

with mean kθ and variance kθ2.
Hence, if the received power is described by a Gamma

distribution, for a linear increase of the mean value there will
exist a larger spread of the power domain (which can be also
linear or become quadratic, depending whether it is the shape
or the scale parameter that is changing).

The link budget is given by the equation Pr = Px +Ga +
GP − β (where the gain of the ULA’s antenna elements is
considered to be Ga dB, as in V), and therefore one can define
an equivalent power gain

βeq =
β

PxGa
, (22)

and herein consider a system with unit total transmit power
(Px = 1) and an ULA with antenna elements with no gain.

Proposition 1. If Hm are i.i.d random variables with
a Gaussian PDF, with Hm ∼ CN (0, 1), then the sum
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Y =
∑M
m=1Hm is also Gaussian distributed with Ym ∼

CN (0,M).

Thus, given that under Rayleigh fading each element of H
(where the cluster index is dropped in a non-LOS situation) is
ht(m) ∼ CN (0, 1), and reminding that x0 =

√
1
M 1M , one

has hTt 1M ∼ CN (0,M), and the signal at each terminal
is yt = 1

M hTt 1M , with variance 1
MM = 1, and therefore its

distribution is yt ∼ CN (0, 1), for t = 0, . . . ,K.

Proposition 2. If Y is a random variable with Y ∼
CN (0, 1), then |Y | is Rayleigh distributed, i.e., p(y, σR) =
y
σ2
R
e−y

2/(2σ2
R), with parameter σ2

R = 1/2, and its second
moment (or power) is E{Y 2} = 2σ2

RΓ(2) = 1 [68, Sec. 2.B.2],
also using the fact that Γ(2) = 1. Moreover, X = |Y |2 has
an exponential distribution p(x, λ) = λe−λxu(x) with rate
parameter λ = 1, holding an average E{X} = E{|Y |2} =
λ−1 = 1, as seen before. By virtue of Definition 1, this PDF
can also be written as |Y |2 ∼ Γ(k = 1, θ = 1).

Consequently, the RF power available at each terminal is
E{|yt|2} = E{ 1

M |h
T
t 1M |2}, which is exponentially distributed

with λ = 1, at all terminals t = 0, . . . ,K, or equivalently,
E{|yt|2} ∼ Γ(1, 1).

Proposition 3. If Yt are i.i.d. with PDF p(y, λ) = λe−λy ,
then Z =

∑K
m=1 Yt is Gamma-distributed with Z ∼ Γ(k =

K, θ = λ).

Hence, when experiencing an i.i.d. Rayleigh channel, the
partial sum-power available for the K terminals within the
l-th cluster, is ‖yl‖2∼ Γ (k = K, θ = 1).

Proposition 4. If a random variable X holds a Gamma
distribution Γ(k, θ), then, for a scalar a > 0, aX has a
distribution Γ(k, aθ).

For this reason, a link to a cluster having an equivalent
power gain βeq , the partial sum-power available to the K
terminals is distributed according to Γ (K,βeq)

In order to consider the general situation where different
clusters have different βl, one will need one more tool given by
the so-called second order Gamma approximation of the sum
of gamma functions [66] to be given in proposition 6. Note
that if all betal are the same, then by reapplying proposition 3,
one could immediately state ‖yl‖2∼ Γ (KL, βeq), given that
all users could be considered in the same cluster.

Proposition 5. [66] Suppose that {Yt} are independent
Γ (kt, θt) random variables. The sum Y =

∑
t Yt has mean,

variance, and second moment, respectively given by

E{Y} =
∑
l

klθl,

var{Y} =
∑
l

var (Yl) =
∑
t

klθ
2
l ,

E{Y2} =
∑
l

klθ
2
l +

(∑
l

klθl

)2
.

(23)

Proposition 6. [66], [67] If Yl are independent random
variables, each one having a Gamma distribution Γ(kl, θl),

their sum Y =
∑L
l=1 Yl can be approximated by a Gamma

distribution having its shape and scale parameters given by

ky =

(∑L
l=1 klθl

)2
∑L
l=1 klθ

2
l

and θy =

∑L
l=1 klθ

2
l∑L

l=1 ktθl
, (24)

which is known as the second order Gamma approximation of
the sum that builds up Y [66].

In the case where all the channels to the terminals in the l-th
cluster are identically distributed, with hTt,l ∼ CN (0, βlIM ),
then the partial sum-powers at each cluster are Gamma-
distributed Γ (kl = K, θl = βeq), for t = l, . . . , L, and (24)
particularizes to

ky =

(∑L
l=1Kβeq

)2
∑L
l=1Kβ

2
eq

= KL, and θy =

∑L
l=1Kβ

2
eq∑L

l=1Kβeq
= βeq,

(25)
leading to the following PDF for the system’s sum-power:

p(P ) = Γ (KL, βeq) . (26)

Proposition 7. [67] For a K-dimensional vector with ‖y‖2∼
Γ (ky, θy), its projection onto c coordinates holds a power
distribution Γ( cK ky, θy), meaning that its mean is c

K kθ and
its variance is c

K kyθ
2
y , and therefore has a power given by its

second moment: P = c
K kyθ

2
y +

(
c
K kyθy

)2
, which amounts to

the power available to a subset of c terminals, when ky and
θy are the ones in (26).

The last proposition establishes the partial sum-power avail-
able for EH by a subset of devices in a given cluster.

A. SA scheme

The second order Gamma approximation method can also
be used to find the expression for the PDF of the system’s
sum-power when using the SA technique, providing a simpler
proof than the one given in [25].

Under the SA scheme, the received signal at the t-th termi-
nal results from a time-slot based accumulation of power, such
that E{|yt|2} =

βeq

M

∑M
m E{|ht,l(m)|)2}, for t = 1, . . . ,K.

From proposition 3,
∑M
m E{|ht,l(m)|)2} ∼ Γ (M, 1), and

from proposition 4 comes that E{|yt|2} = Γ
(
M,

βeq

M

)
. Within

a cluster, by applying proposition 6 with ky = M and
θy =

βeq

M , the cluster’s partial sum-power has distribution
Γ
(
MK,

βeq

M

)
. Finally, for the whole system, by reapplying

proposition 6 with ky = MK and θy =
βeq

M , the system’s
sum-power with SA has the following PDF:

p(P ) = Γ

(
MKL,

βeq
M

)
. (27)

It should be noted that by using SA, differently from (26), the
shape parameter in (27) grows with M , linearly increasing
the mean power, while the scale parameter is reduced by
M , reducing the variance quadratically (as per definition 1
and proposition 5), which explains why the SA scheme is
preferable to AA when κ = 0.
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Figure 2. Sum-power distribution for different precoding schemes, and partial
power distribution per cluster (M = 8 antennas, K = 8 users per cluster, and
κ = 5) with L = 3 clusters located at φ = {0, 30, 70} degrees. Includes the
(analytical) reference case without clustering and with uncorrelated Rayleigh
fading without LOS.

V. NUMERICAL RESULTS

In this section, one numerically assesses the proposed pre-
coding (or beamforming) techniques based on the KL channel
decomposition with limited CSIT, namely the correlation of
the channels from the BS to each of the L clusters. Both the
unconstrained optimal analytical precoding for multiple clus-
ters, given by (17), and the numerically obtained constrained
precoder given by (18), will be assessed and compared with
the case when full-CSIT is available. The precoder when full-
CSIT is available is the one that maximizes

P = ‖y‖2=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



α1(1)H(LOS)
1

α2(1)H1

...
α1(l)H(LOS)

l

α2(l)Hl

...
α1(L)H(LOS)

L

α2(L)HL


︸ ︷︷ ︸

B

Px0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

, (28)

which is given by the singular value associated to the largest
singular value of B,

x∗ =
√
Pxu

(B)
max . (29)

The primal method to to assess the proposed techniques is
to focus on the PDF of the sum-power available for harvesting
at the terminals, p(P ). Subsequently the analysis focuses on
how the Rician factor, the dimension of the antenna array at
the BS, the angular position of a cluster, and the number of
clusters impact on the energy available for harvesting by the
terminals when using the proposed optimal precoder defined
in (15), for the single-cluster case, and in (17) for the multi-
cluster case.

A. Sum-power distributions: setup

The first configuration to be assessed involved one single
cluster only, initially with correlated Rayleigh fading only,

Table I
SYSTEM’S PARAMETERS FOR THE OPERATION POINT IN FIG. 2

Num. clusters, L 3
Users/cluster, K 8
Antennas BS, M 8
Rician factor. κ 5
Tx. power, P 10 W

Tx. antenna gain 10 dB
Pathloss (channel gain), β −63.5 dB

Optimal precoder gain, GP 19.6 dB
EH efficiency, η 0.25

assessing the precoder devised in section III-B, and then
adding a LOS component, assessing the precoder devised in
section III-C. These initial results are not shown due lack of
space. The first results here presented consider a multi-cluster
system. The observations with one cluster were in line with
the ones presented for a multi-cluster system in terms of the
impact of the system’s parameters in the overall PDF of the
sum-power. The set of distributions presented in Fig. 2 were
obtained for a system with L = 3 clusters with K = 8 users
per cluster and a BS with M = 8 antennas (hence, a WET
system with a total of 24 terminals), which is still far from a
massive MIMO setup but is a typical MIMO array. Without
loss of generally, the mean pathloss to each cluster, β, was
considered equal to all clusters, and a LOS characterized by
κ = 5 was also considered equal in all clusters. Such Rician
factor is adequate to a mMTC system as the one in Fig. 1. In
[10] a κ = 10 was considered, accounting for systems with a
quite large LOS component, while in [8] a κ = 3 was rather
used. Fig. 2 shows the PDFs of the sum-powers obtained by
all the techniques and the analytical curve for the baseline
reference case is also added, as defined by (26) , with shape
parameter KL = 24 and scale parameter β = 10−

63.5
10 .

Considering the experimental findings in [69], the present
paper considers $1 = −22 dBm (6.30 µW) and $2 = −4.8
dBm (311 µW) to model the non-linear EH circuit, likewise
the conversor in [8]. The mid-point of the linear region of this
terminal’s circuit amounts to 168.7 µW (−7.73 dBm).

The results shown in Fig. 2 are for a situation in which
the pathloss, β, is such that the mean available power at each
terminal is precisely 168.7 µW, which for a set of 24 terminals
corresponds to a system’s sum-power P = 4.05 mW (6.07
dBm). With the system’s parameters summarized in Table I,
the precoding gain achieved by the proposed optimal precoder
can be calculated by using the link budget equation, such that:
GP = 6.07 dBm− 40 dBm− 10 dB− β[dB] = 19.57 dB. The
chosen pathloss set to β[dB] = −63.5dB corresponds to a ∼ 23
meters distance between the BC and the center of the clusters
when using the LOS Urban Microcell 3GPPP propagation
model at 1900 MHz [70], [71]), which is conceived for
outdoor microcells, better matching the scenario expected for
the proposed techniques, as sketched in Fig. 1. For an indoor
scenario one could consider the High Throughput Task Group
(TGn) model D, that covers open spaces indoors environments
with LOS [72, p. 7]. In that case, a β[dB] = −63.5dB would
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correspond to a 19.3 meters range.
One should note that the distributions in Fig. 2 are for

the power available at the terminals. The effective harvested
energy will have to consider the non-linear effects of (5) and
the conversion factor η. Given the symmetric shapes of the
sum-power distributions when precoders are used, the mean
collected power at the l-th cluster is ≈ ηPl. With η = 0.25
(−6 dB) [8], [69], this leads to a mean harvested sum-power
of ≈ 1 mW by the 24 terminals.

Let us now analyze the limits of the available power
obtained when using the unconstrained KL-based in the
same analyzed in Fig. 2. Considering the approximation of
a sum-power distributed between 3.5 mW and 4.75 mW,
the incoming power at each one of the 24 terminals is
distributed between 148.8 µW and 197.9 µW , which is well
within the [−22, −4.8] dBm interval, which corresponds to a
[6.3 331.1]µW interval.

Remark: this set of parameters used in this subsection will
later be referred to as the operation point (OP) in Fig. 2, and
is summarized in Table I.

B. Sum-power distributions: analysis

The first thing worth mentioning is that when there are
no restrictions to the minimum and maximum values of
E||yl(k)||2 (i.e., in the case of ideal harvesting circuits), the
results attained by the analytically designed precoders (given
by (15) or (17) and the precoders that result from the numerical
solution of the linear programming problem with non-linear
inequality constraints in (18) are exactly the same; they not
only lead to the same average available sum-power, P , in
a multi-cluster or single-cluster system, but also exhibit the
same PDF for the sum-power. Interestingly, the particular
solutions for the broadcast vectors x∗ coming from the two
approaches are often different, and therefore the two precoders
P are different. However, these two different vectors x∗ are
equivalent in the sense that they lead to the same distributions
for the same set of correlations Rl (and therefore for the same
A, defined in (16). This is a consequence of the non-convexity
of the optimization problem, exhibiting several equivalent local
minima.

A paramount observation is that the sum-power distribution
over the whole system obtained by the proposed technique,
based on statistical CSIT, leads to a quasi-optimal energy
harvesting situation, exhibiting a negligible loss with respect
to the harvested sum-power when full-CSIT is available and
the optimal precoder is used. While the precoder based on the
KL decomposition is quasi-optimal in respect to the full-CSIT
case, by only setting the standalone goal of maximizing the
sum-power available at the terminals may lead (for the KL-
based or full-CSIT precoders) to a rather unbalanced distribu-
tion of the available power at the different clusters. In order
to observe that effect, Fig. 2 also includes the distributions of
the partial sum-powers at each of the three clusters, striking
out that the average partial sum-power available at one of the
clusters is one order of magnitude lower than the one available
at the other two clusters. As seen in Fig. 2, two of the clusters
hold very similar distributions, with mean values of 1.87 mW

and 1.95 mW for their partial sum-powers, while the remaining
cluster only gets a mean sum-power of 0.23 mW available at
its terminals.

A fairness criterion for power allocation should take into
account the effective power that the terminals harvest with the
quasi-linear EH circuit characterized in (5). This was framed
in (18), such that the numerically obtained precoder attains
a fair distribution of energy among the clusters in terms of
mean partial sum-power. Fig. 2 also shows that the proposed
constrained precoder attains the sought fairness, however at
the expense of a reduction of the system’s total sum-power,
exhibiting the typical trade-off that exists in optimization
problems when some fairness criteria is applied [18], [73],
[74]. Notably, the system’s sum-power obtained with numeri-
cal constrained precoding incurs an affordable degradation of
4.13 − 3.77 = 0.36 mW (8.7%) in respect to the average
attained in the full-CSIT situation (the best possible one).

For comparison purposes, two CSIT-free WET techniques
that make use of linear arrays, namely the AA and SA schemes
[8], were also simulated and the results are also plotted in Fig.
2. While the AA scheme provides a simple solution for spacial
diversity, highly dependent on the angular deviation from the
antenna’s boresight, the SA is able to offer the same power for
any angular position of a single cluster. When using the AA
technique, the power harvested by the k-th terminal within the
L-th cluster is

PkAA = Ω

β(l)

M

∣∣∣∣∣
M∑
i=1

hi,k

∣∣∣∣∣
2
 , (30)

while for the SA scheme that power is

PkSA =
1

M

M∑
i=1

Ω
(
β(l) |hi,k|2

)
. (31)

As previously stated, this paper focuses on the power available
for EH, focusing on the RF power available at the antennas
before considering the effect of Ω.

C. Validation with the baseline reference case

The simulation of the analytical and numerical precoders
was validated with the reference case where no clusters are
considered and the link from the BS to all EH devices is an
uncorrelated Rayleigh channel, as defined in section IV. This
can be considered as the baseline situation with which the
mean sum-powers attained by the different techniques can be
compared to. Such results are plotted in Fig. 3(a). It should
be noted that the results with the AA scheme and with two of
the precoded systems overlap the analytical curve defined by
expression (26) for the baseline reference case (with KL = 8
terminals); these are i) the precoder derived for a channel with
correlated Rayleigh and no LOS, as defined in (11), and ii)
the precoder derived for the Rician channel with a correlated
Rayleigh component (but where now κ = 0), as defined in
(15). In this situation there is neither a notion of cluster nor
of angle and the AA scheme performs as well as any of the
precoded schemes. In this case, as also concluded in [8], [25],
the SA scheme is preferable because it provides a slightly
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Figure 3. Sum-power distribution for different precoding schemes (M = 8
antennas, K = 8 users per cluster) with L = 1 cluster located at φ =
85 degrees, including the analytical curve for the baseline reference case.

larger mean sum-power and a significantly smaller variance
of the PDF.

A case where there still no LOS component but the Rayleigh
fading is correlated is shown in Fig. 3(b): the optimal precoder
for correlated fading, given by (11), already exhibits the
considerable gain that one can extract from the KL-based
approach. In this case the PDF obtained using the precoder in
(15), which also takes in consideration the LOS component,
overlaps the previous curve, as expected, given that κ = 0.
However, when some LOS component emerges, as in the case
in Fig. 3(b), then the precoder for Rayleigh correlated fading
has a subpar performance with respect the one incorporating
information about the LOS component; as seen in Fig. 3(c), the
performance of the latter precoder detaches itself and an extra
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Figure 4. Evolution of the mean and the variance of the sum-power for differ-
ent precoding schemes for a varying Rician factor κ (with M = 8 antennas
K = 8 users) with L = 3 clusters located at φ = {0, 30, 70} degrees. The
black dashed lines show the effect of having the K terminals within each
cluster uniformly distributed over an angular aperture ∆φ.

gain kicks in due to the extra information about the channel
associated to the LOS CSIT (this gain can also be later seen
in Fig. 4 when looking at the κ = 0 abscissa).

In this baseline case with uncorrelated fading in Fig. 3(a),
while there is no gain to be attained by the KL-based analytical
precoders, the constrained numerical version of the proposed
precoder (in sec. III-E) narrows the sum-power distribution
at the expense of a lower mean, as typical of fairness versus
mean trade-offs. The same effect is narrowing the variance and
reducing the mean also appears in the results of the constrained
precoder in the situation of full-CSIT availability (the two
curves with larger means in Fig. 3(a)).

Remark: the results presented in Fig. 2 and Fig. 3, as well as
the ones presented in the subsequent subsections, are obtained
with 105 simulated channels and are ergodic in the sense
that for each channel instance a new fading correlation was
generated.

D. Rician factor

The rich information provided by how the different PDFs
vary when the system’s parameters change motivates a more
detailed study of how each of the system’s parameters impact
on the sum-power distributions, specifically how their mean
and variance is modified. The impact of the LOS component
will be the first to be analyzed in Fig. 4, while maintaining
all the parameters on Table I unchanged.

When the LOS component grows larger in comparison to
the Rayleigh fading component, the channel becomes more
deterministic and for that reason the performance tends to the
one achieved with full channel knowledge. One should notice
in Fig. 4 that the OP scrutinized in Fig. 2 already corresponds
to a regime in which CSIT leads to a very diminished increase
in E(P ), unlike what happens in the range where κ < 1 (even
though in that region the power spreads over a wider domain,
as depicted in the curve for V ar[P ]).
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Figure 5. Evolution of the mean and the variance of the sum-power for
different precoding schemes for a varying number of antennas, M , at the BS
with L = 3 clusters located at φ = {0, 30, 70} degrees (with K = 8 users
per cluster, and κ = 5).

The advantage of the proposed precoding scheme stands
out in comparison with the energy harvesting ability of both
the SA and AA schemes. Noticeably, at the abscissa κ = 0
it is possible to see an over 3 dB gain. In this situation,
without a LOS component, all the gain appears by virtue of
the KL-based approach, by having access to the second orders
statistics of the fading only. Then, an increasing weight of
the LOS increased the mean sum-power while simultaneously
diminishing its variance, given that the channel tends to be-
come deterministic. Fig. 4 also shows the effect of considering
the terminals uniformly scattered over an increasing angular
aperture ∆φ around the central angle of each cluster.

E. Array size

When the BS is fitted with a larger number of antennas,
M , one can observe in Fig. 5(a) a quasi-linear growth of
the system’s available power for harvesting when the ULA’s
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Figure 6. Evolution of the mean and the variance of the sum-power in the
case of a single cluster (L = 1) positioned at different angles (with M = 8,
K = 8 users, and κ = 5).

number of antennas is a power of two (as it is typical in
commercial ULAs). The increase in E[P ] comes in tandem
with a quasi-linear spread of the variance, meaning that higher
gains are intertwined with a less constant sum-power level.
This increasing focusing effect onto the clusters, translates to
larger precoding gains for WET that are unattainable by AA
(apart when aligned with the antenna’s boresight) or even SA.
For the particular set of three clusters tested in Fig. 5, an
ULA with M = 128 antennas attains a 40 fold gain (16 dB)
in respect to the AA scheme, and this is before considering
any optimization of the ULA’s rotation, as will be seen in the
next subsection.

It should be noted that, while in the case with a single cluster
both the mean and the variance always exhibit a linear growth
(not shown in the paper) for any step size of the incremental
M , when L > 1 the variance drops bellow linear growth in
a periodic manner when analyzing the results for an ULA
growing one antenna at a time, as can be observed in Fig.
5(b). It has been found that this is due to the radiation pattern
and the particular positions of the L clusters in respect to the
radiation pattern.

F. Cluster’s angular position

In order to analyze the effect of the angular cluster’s posi-
tions, Fig. 6 depicts a situation of a single cluster positioned at
varying angles. It is known (e.g., [8]) that the AA scheme can
provide a significant gain due to constructive interference but
limited to the ULA’s boresight. The SA scheme can provide a
constant mean sum-power for any angle, however at a much
lower level than AA’s peak. Fig. 6 shows that the KL-based
precoder can sustain the AA’s peak at all angles, and again, in
the considered scenario one finds a negligible loss with respect
to the mean sum-power attained with full-CSIT.

The angular positions of the clusters are relative to the
geometry of the array, i.e., relative to the broadside and to
the end-fire of the ULA. The l-th cluster is considered to be
positioned at angle φl in respect to the ULA’s end-fire, such
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Figure 7. Evolution of the mean and the variance of the sum-power for
a varying ULA’s rotation angle ψ, with L = 3 clusters located at φ =
{0, 30, 70} degrees (when ψ = 0) (with M = 8, K = 8 users per cluster,
and κ = 5).

that an array facing the boresight has and angular position
φl = 90 degs. If the linear array can be mechanically rotated
by a certain angle ψ, then the effective new positions of a set
of L = 3 clusters change to

Φ = φ+ ψ = {φ1, φ2, φ3}+ ψ, ψ ∈ [0, π] (32)

In Fig. 7 one assesses the effect of such rotation starting with
φ = {0, 30, 70} degrees, the set previously used in Fig. 2.
Given the single-lobe directivity of the AA technique (as seen
in Fig. 6), one finds peaks for the sum-power when the new
effective positions of each cluster is 90 degrees, which for
φ = {0, 30, 70} degrees, happens for ψ = 20, 60, and 90
degrees. Notably, one finds that there is an optimal rotation
that maximizes the system’s sum-power for ψ = 144 degrees,
attaining E{P} = 5.458 mW. For this particular positions of
the clusters, the proposed unconstrained scheme attains the
same sum-power mean and variance of the full-CSIT case, for
a wide domain of rotations ψ. The need for optimizing the
ULA’s rotation in WET has also been noted in [10], [28].

G. Number of clusters

With a constant number of K devices per cluster, an in-
creasing number of clusters L leads to a proportional increase
of the number of terminals in the system and E{P} increases
as a direct consequence of having more harvesting terminals in
the system. The simulation results consider clusters positioned
at the angles

φl =
l

L+ 1
π, for l = 1, 2, . . . , L, (33)

as depicted in Fig. 8 up to eight clusters, and the corresponding
results are plotted in Fig. 9. This choice of angular symmetries
leads to an apparent non-monotonicity of the harvested energy
in the case of AA system. This is illusory given that, for an odd
number of clusters, (33) places a central cluster at the boresight
of the ULA, which, as seen in the previous subsection in Fig.
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Figure 8. Angular positions of the clusters from L = 1 to L = 8.
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Figure 9. Evolution of the mean and the variance of the sum-power for a
varying number of clusters, L, (with M = 8, K = 8 users per cluster, and
κ = 5). The angles of the L clusters are given by (33). The case with L = 3
clusters located at φ = {0, 30, 70} is also plotted with marks (in the case of
the variance the two blue marks fully overlap).

6, is the direction of a narrow beam that chiefly powers that
central cluster. In fact, both the maxima (at odd L) and the
minima (at even L) also increase with L, as more clusters are
packed together and the ones neighboring the central cluster
increasingly get more illuminated by the AA’s beam.

The values obtained with the previous setup, with three clus-
ters located at φ = {0, 30, 70} degrees, are also superimposed
on Fig. 8 (at abscissa L = 3 ), and one can observe that that set
of angles leads to a larger mean available power, with larger
variance, then the set stipulated by (33).

VI. DISCUSSION AND CONCLUSIONS

In the context of mMTC, WET is a solution for BS
wirelessly power a very large number of EH devices. However,
in many practical situations the terminals may appear clustered
(due to physical proximity), and their channels to the BS
may have several parameters in common. Considering Rician
channels from the BS to the terminals, the terminals within
defined clusters were assumed to share a common correlation
of their Rayleigh fading components, as well as having a
slowly varying LOS channel component (possibly different
but fully-known at the BS) and sharing the same large-
scale pathloss. Rather than considering the partial channel
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knowledge of the non-LOS fading component as the sum of
a known and an unknown term, this paper considers a statis-
tical representation of that random component. The proposal
takes advantage of the Karhunen–Loève representation of a
MIMO channel, such that the correlated Rayleigh component
can be written as the concatenation of i) an unknown fast-
changing Rayleigh uncorrelated component and ii) CSIT only
depending on the first and second order statistics of the
channel (mean pathloss and correlation, respectively) for the
coherence duration of the fading’s autocorrelation. In doing
so, the paper proposed beamforming precoders for multi-
antenna BS in WET systems operating with low-rate statistical
CSIT. These precoding schemes require low computational
complexity, chiefly depending on SVD calculations for each
one of the clusters.

The results exhibit quasi-optimal performance under Rician
fading when compared with the ones obtained when beam-
forming with full-CSIT knowledge, even for Rician factors in
the interval κ ∈ [1 5] (i.e., below the one considered in [10]),
and, in particular, a positive gain exists even for κ = 0, by
just leveraging the existence of correlated fading.

Because the number of clusters is bound by the maximum
number of beams, one has L ≤ M and therefore the use
of a massive array is highly desirable. The precoding gain
grows linearly with the number of antennas at the BS (at the
expense of wider power spread) and therefore the desideratum
of wirelessly power a large number of terminals without
instantaneous CSIT can be fulfilled. The same linear increase
of the mean sum-power also exists when using a precoder
with access to instantaneous full-CSIT. The available CSIT-
free multi-antenna schemes for WET have a much poorer
performance in similar conditions and are not able to take full
advantage of a larger array, nor to provide multiple energy
beams to different sites.

By setting as the only goal the maximization of the sum-
power in a multi-cluster, an unfair power allocation between
the different clusters may emerge. To withstand that effect, a
constrained optimization of the precoders is proposed which,
besides naturally enforcing inter-cluster fairness, can also
conform the power domain at the terminals’ antennas to the
linear domain of their non-linear EH circuit. For the chosen
setup with three clusters with 24 terminals in total, with a
pathloss of 63.5 dB from the BS to each of the clusters,
corresponding to ∼ 23 meters at 1900 MHz (by lowering the
frequency the range will be larger), neither the saturation point
of the EH non-linear circuit considered was ever reached, nor
the power available per terminal fell below the EH sensitivity.
In fact, the available power at each terminal’s antenna is
always within the limits of the linear domain of the EH circuit.

In environments with a reduced number of propagation
paths or with highly correlated paths, one could reduce the
dimensionality of the problem by neglecting some of the
singular values of the autocorrelation matrix, similarly to the
idea in [75], which made use of the related Karhunen–Loève
transformation [76, App. E].

Similarly to the conclusions in [10], where a mechanical
rotation of the ULA is found to be a parameter to be optimized,
the present research has shown that, in the case of multi-

cluster systems, a similar mechanical rotation should also
be optimized such that the clusters are placed in a set of
more favorable angles. Interestingly, it was recently found in a
context of LOS channels that an ULA can attain a performance
very close to capacity with proper angular rotation, even
without the need of a mechanical rotation, but rather by
selecting a particular array out of a very low number of fixed
ULAs with different relative rotations [77].

As an immediate future work, it would be interesting to
combine the herein proposed beamforming optimization with
the optimization of the waveform [13], [20], [78] and analyze
the reachable energy savings at the BS for the same EH
constraints at the devices. This research can also be extended
to the realm of SWIPT, with modulated waveforms [79].
While statistical information can be more accurately obtained,
the impact of working with imperfect statistical CSIT should
also be evaluated. Additionally, even though the proposed
signal processing techniques for precoding are blind to the
geometry of the antenna arrays at the BS, the linear arrays
considered in this work only permit a 2D tuning of the
radiation pattern. Hence, for certain deployment where the
terminals are also spread in height (e.g., in some types of
infrastructures monitored by sensors) it will be important to
extend the techniques to MIMO beamforming with 3D steering
capability [80]. The constrained optimization problem can be
generalized to the situation where the terminals have different
sensitivity and saturation points. A likely scenario could be
the one of having different types of equipment associated to
different clusters, for example, monitoring different types of
infrastructure.
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[35] O. L. Alcaraz López, E. M. G. Fernández, R. D. Souza, and H. Alves,
“Wireless powered communications with finite battery and finite block-
length,” IEEE Transactions on Communications, vol. 66, no. 4, pp.
1803–1816, 2018.

[36] ——, “Ultra-reliable cooperative short-packet communications with
wireless energy transfer,” IEEE Sensors Journal, vol. 18, no. 5, pp.
2161–2177, 2018.

[37] B. Makki, T. Svensson, and M. Zorzi, “Wireless energy and information
transmission using feedback: Infinite and finite block-length analysis,”
IEEE Transactions on Communications, vol. 64, no. 12, pp. 5304–5318,
2016.

[38] S. Wetenkamp, “Comparison of single diode vs. dual diode detectors for
microwave power detection,” in Proc. of IEEE MTT-S Int. Microwave
Symp. Digest, 1983, pp. 361–363.

[39] L. Cantos and Y. H. Kim, “Max-min fair energy beamforming for
wireless powered communication with non-linear energy harvesting,”
IEEE Access, vol. 7, pp. 69 516–69 523, 2019.

[40] R. Du, H. Shokri-Ghadikolaei, and C. Fischione, “Wirelessly-powered
sensor networks: Power allocation for channel estimation and energy
beamforming,” IEEE Transactions on Wireless Communications, vol. 19,
no. 5, pp. 2987–3002, 2020.

[41] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical
non-linear energy harvesting model and resource allocation for SWIPT
systems,” IEEE Communications Letters, vol. 19, no. 12, pp. 2082–2085,
2015.

[42] Y. Lu, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief, “Coordinated
beamforming with artificial noise for secure SWIPT under non-linear EH
model: Centralized and distributed designs,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 7, pp. 1544–1563, 2018.

[43] B. Clerckx and E. Bayguzina, “Waveform design for wireless power
transfer,” IEEE Transactions on Signal Processing, vol. 64, no. 23, pp.
6313–6328, 2016.

[44] A. S. Boaventura and N. B. Carvalho, “Maximizing DC power in energy
harvesting circuits using multisine excitation,” in Proc. of IEEE MTT-S
Int. Microwave Symp., 2011, pp. 1–4.

[45] M. S. Trotter, J. D. Griffin, and G. D. Durgin, “Power-optimized
waveforms for improving the range and reliability of RFID systems,” in
Proc. of IEEE Int. Conf. on RFID, 2009, pp. 80–87.

[46] B. Clerckx, “Wireless information and power transfer: Nonlinearity,
waveform design, and rate-energy tradeoff,” IEEE Transactions on
Signal Processing, vol. 66, no. 4, pp. 847–862, 2018.

[47] Y. Huang and B. Clerckx, “Large-scale multiantenna multisine wireless
power transfer,” IEEE Transactions on Signal Processing, vol. 65, no. 21,
pp. 5812–5827, 2017.

[48] J. Kim, B. Clerckx, and P. D. Mitcheson, “Signal and system design for
wireless power transfer: Prototype, experiment and validation,” IEEE
Transactions on Wireless Communications, vol. 19, no. 11, pp. 7453–
7469, 2020.

[49] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo,
“Millimeter-wave communications: Physical channel models, design
considerations, antenna constructions, and link-budget,” IEEE Commu-
nications Surveys Tutorials, vol. 20, no. 2, pp. 870–913, 2018.



16

[50] J. H. Hampton, Introduction to MIMO Communications. Cambridge,
UK: Cambridge University Press, 2014.

[51] R. Heath and A. Lozano, Foundations of MIMO Communications.
Cambridge, UK: Cambridge University Press, 2019.

[52] B. Clerckx and E. Bayguzina, “Low-complexity adaptive multisine
waveform design for wireless power transfer,” IEEE Antennas and
Wireless Propagation Letters, vol. 16, pp. 2207–2210, 2017.

[53] M. T. P. Le, L. Sanguinetti, E. Björnson, and M.-G. D. Benedetto,
“Code-domain NOMA in massive MIMO: When is it needed?” IEEE
Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4709–4723,
2021.

[54] B. Clerckx, Y. Mao, R. Schober, E. A. Jorswieck, D. J. Love, J. Yuan,
L. Hanzo, G. Y. Li, E. G. Larsson, and G. Caire, “Is NOMA efficient
in multi-antenna networks? a critical look at next generation multiple
access techniques,” IEEE Open Journal of the Communications Society,
vol. 2, pp. 1310–1343, 2021.

[55] P. Dong, H. Zhang, and G. Y. Li, “Machine learning prediction based
CSI acquisition for FDD massive MIMO downlink,” in 2018 IEEE
Global Communications Conf. (GLOBECOM), 2018, pp. 1–6.

[56] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division
and multiplexing–the large-scale array regime,” IEEE Transactions on
Information Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.

[57] A. Bana, G. Xu, E. D. Carvalho, and P. Popovski, “Ultra reliable low
latency communications in massive multi-antenna systems,” in Proc. of
52nd Asilomar Conf. on Signals, Systems, and Computers, 2018, pp.
188–192.

[58] R. Alberto and F. A. Monteiro, “Downlink MIMO-NOMA with and
without CSI: A short survey and comparison,” in Proc. of 12th Int. Symp.
on Communication Systems, Networks and Digital Signal Processing
(CSNDSP), 2020, pp. 1–6.

[59] M. Dai, B. Clerckx, D. Gesbert, and G. Caire, “A hierarchical rate
splitting strategy for FDD massive MIMO under imperfect CSIT,” in
Proc. of IEEE 20th Int. Workshop on Computer Aided Modelling and
Design of Communication Links and Networks (CAMAD), Sep. 2015,
pp. 80–84.

[60] L. Sanguinetti, E. Björnson, and J. Hoydis, “Toward massive MIMO 2.0:
Understanding spatial correlation, interference suppression, and pilot
contamination,” IEEE Transactions on Communications, vol. 68, no. 1,
pp. 232–257, 2020.

[61] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks:
Spectral, energy, and hardware efficiency,” Foundations and Trends in
Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.

[62] X. Li, S. Wang, and Y. Cai, “Tutorial: Complexity analysis of Singular
Value Decomposition and its variants,” arXiv:1906.12085 [math.NA],
Jun. 2019.

[63] L. G. Ordonez, D. P. Palomar, and J. R. Fonollosa, “Ordered eigenvalues
of a general class of Hermitian random matrices with application to the
performance analysis of MIMO systems,” IEEE Transactions on Signal
Processing, vol. 57, no. 2, pp. 672–689, 2009.

[64] P. Dighe, R. Mallik, and S. Jamuar, “Analysis of transmit-receive
diversity in Rayleigh fading,” IEEE Transactions on Communications,
vol. 51, no. 4, pp. 694–703, 2003.

[65] F. Monteiro, “Lattices in MIMO spatial multiplexing: Detection and ge-
ometry,” Ph.D. dissertation, University of Cambridge, United Kingdom,
2012.

[66] R. W. Heath Jr, T. Wu, Y. H. Kwon, and A. C. K. Soong, “Multiuser
MIMO in distributed antenna systems with out-of-cell interference,”
IEEE Transactions on Signal Processing, vol. 59, no. 10, pp. 4885–
4899, 2011.

[67] J. Li, D. Wang, P. Zhu, J. Wang, and X. You, “Downlink spectral effi-
ciency of distributed massive MIMO systems with linear beamforming
under pilot contamination,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 2, pp. 1130–1145, 2018.

[68] M. K. Simon, Probability Distributions Involving Gaussian Random
Variables. New York, NY, USA: Springer, 2006.

[69] T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency
energy harvesting for passively powered sensor networks,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, 2008.

[70] G. E. Athanasiadou, “Spatio-temporal propagation modeling,” in MIMO
Systems Technology For Wireless Communications, G. Tsoulos, Ed.
Boca Raton, FL: CRC Taylor and Francis, 2006, ch. 1, pp. 1–27.

[71] 3rd Generation Partnership Project, “Spatial channel model for mul-
tiple input multiple output (MIMO) simulations,” Technical Specifica-
tion Group Radio AccessNetwork, Technical Report 3GPP TR 25.996
V6.1.0, Sep. 2003.

[72] V. Erceg et al., “IEEE p802.11 wireless LANs TGn channel models,”
IEEE, techreport 802.11-03/940r4, May 2004.

[73] K. Nguyen, Q. Vu, L. Tran, and M. Juntti, “Energy efficiency fairness
for multi-pair wireless-powered relaying systems,” IEEE Journal on
Selected Areas in Comms., vol. 37, no. 2, pp. 357–373, Feb. 2019.

[74] K. Nguyen, Q. Vu, M. Juntti, and L. Tran, “Distributed solutions
for energy efficiency fairness in multicell MISO downlink,” IEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 6232–
6247, Sep. 2017.

[75] J. Jelitto and G. Fettweis, “Reduced dimension space-time processing
for multi-antenna wireless systems,” IEEE Wireless Communications,
vol. 9, no. 6, pp. 18–25, Dec. 2002.

[76] S. Haykin, Adaptive Filter Theory, 5th ed. Harlow, UK: Pearson, 2014.
[77] H. Do, N. Lee, and A. Lozano, “Reconfigurable ULAs for line-of-sight

MIMO transmission,” IEEE Transactions on Wireless Communications,
vol. 20, no. 5, pp. 2933–2947, 2021.

[78] J. Eidaks, A. Litvinenko, A. Aboltins, and D. Pikulins, “Signal waveform
impact on efficiency of low power harvesting devices in WSN,” in Proc.
of IEEE Microwave Theory and Techniques in Wireless Communications
(MTTW), vol. 1, 2019, pp. 57–61.

[79] E. Bayguzina and B. Clerckx, “Asymmetric modulation design for wire-
less information and power transfer with nonlinear energy harvesting,”
IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp.
5529–5541, 2019.

[80] J. Wang, W. Deng, X. Li, H. Zhu, M. Nair, T. Chen, N. Yi, and N. J.
Gomes, “3D beamforming technologies and field trials in 5G massive
MIMO systems,” IEEE Open Journal of Vehicular Technology, vol. 1,
pp. 362–371, 2020.

Francisco A. Monteiro (S’07–M’13) is Assistant
Professor in the Dep. of Information Science and
Technology at Iscte - University Institute of Lisbon,
and a researcher at Instituto de Telecomunicações,
Portugal. He holds a PhD from the University of
Cambridge, UK, and the Licenciatura and MSc
degrees in ECE from IST, University of Lisbon. He
held visiting research positions at the Universities of
Toronto (Canada), Lancaster (UK), Oulu (Finland),
and Pompeu Fabra (Barcelona, Spain). He got a
number of best conference paper and exemplary

reviewer awards from IEEE. He co-edited a book on MIMO, published by
CRC in 2014, was the Lead Guest Editor of a special issue on Network Coding
on EURASIP JASP in 2016, and was a general chair of ISWCS in 2018.
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