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Abstract—Land use and land cover mapping is essential to
various fields of study, such as forestry, agriculture, and urban
management. Generally, earth observation satellites facilitate and
accelerate the mapping process. Subsequently, deep learning meth-
ods have been proven to be excellent in automating the mapping
via semantic image segmentation. However, because deep neural
networks require large amounts of labeled data, it is not easy to ex-
ploit the full potential of satellite imagery. Additionally, land cover
tends to differ in appearance from one region to another; therefore,
having labeled data from one location does not necessarily help map
others. Furthermore, satellite images come in various multispectral
bands, which range from RGB to over 12 bands. In this study, our
aim is to use domain adaptation (DA) to solve the aforementioned
problems. We applied a well-performing DA approach on the
DeepGlobe land cover dataset as well as datasets that we built
using RGB images from Sentinel-2, WorldView-2, and Pleiades-1B
satellites with CORINE Land Cover as ground truth (GT) labels.
The experiments revealed significant improvements over the results
obtained without using DA. In some cases, an improvement of over
20% mean intersection over union was obtained. Sometimes, our
model manages to correct errors in the GT labels.

Index Terms—Domain adaptation (DA), image segmentation,
land cover segmentation.

I. INTRODUCTION

OVER the last few years, remote sensing (RS) data became
easily obtainable thanks to the surge of open data provided

by earth observation (EO) satellites. Notably, the data from
satellites, such as Sentinel-2 [1] and Landsat [2], are available to
the public free of charge. These satellites provide high-resolution
multispectral imagery (up to 10 m), which facilitates the appli-
cation of multiple methods in data processing.

Land cover represents the (bio)physical cover on the earth’s
surface, whereas land use is the cover resulting from human
action (e.g., a wheat field is an example of land use, whereas an
ocean is strictly land cover). Land use and land cover (LULC)
mapping is among the most crucial RS applications that help
monitor forests, agricultural areas, and oceans, among others.
The mapping can be performed manually by looking through
satellite images [3]. However, this approach is both costly and
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time consuming. Additionally, no fine global land cover map
exists. CORINE Land Cover (CLC) [4] provides land cover
mapping with a pixel resolution of 100 m/px that covers Europe
only, and is updated roughly once every six years. Moderate
Resolution Imaging Spectroradiometer [5] provides a global
land cover map that is updated annually with a pixel resolution
of 500 m/px, which might be too coarse for many applications,
such as urban cover monitoring.

Several methods exist for performing LULC mapping, de-
pending on the available data and desired accuracy. The sim-
plest approach is land cover classification, which labels patches
on the basis of the majority land cover type. Semantic pixel
segmentation, which, as the name suggests, labels each pixel,
is an approach that is considered more challenging than classi-
fication. Recently, in semantic segmentation, including LULC
segmentation, classical machine learning (ML) tools have fallen
out of favor. Penatti et al. [6] showed that convolutional neural
networks vastly outperform the classical ML methods in terms of
land cover classification. In the land cover segmentation section
of the DeepGlobe challenge [7], the leaderboards were com-
pletely dominated by deep neural networks (DNNs) [8]–[10].

Although deep learning (DL) methods have a good perfor-
mance, they require a huge amount of data to show their true po-
tential. As mentioned previously, although EO data are available
free of charge, fine ground truth (GT) labels are rare. Moreover,
although CLC has a resolution of 100 m/px, a finer version exists
with a resolution of 20 m/px covering Finland [11], as well
as a 10 m/px version covering Germany [12]. Although these
versions cover a limited area and exhibit some inaccuracies, they
can still be used to train a DNN for land cover segmentation.

Because land cover types vary depending on the location,
having a DNN model that performs land cover segmentation for
one area does guarantee that it will perform equally as well on
other areas. Additionally, the images captured by various satel-
lites are different because of the mismatch in the capture time,
pixel resolution, radiometric resolution, and other properties.
These variables result in a domain shift between the datasets
acquired from one satellite covering a particular region and
another satellite covering either the same region or a different
one. Therefore, to obtain consistent results, a model needs to be
trained on each data variation, which requires massive labeled
datasets from each satellite.

Removing the domain shift between different datasets is
called domain adaptation (DA). In semantic segmentation, DA
is used to segment images from a target dataset with the help
of a source dataset. Generally, two types of DA approaches
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exist: supervised, in which some or all of the target data are
labeled, and unsupervised, in which the target data are unlabeled.
Usually, when the labeled data are scarce, transfer learning is
used. Transfer learning involves using a pretrained model on
a labeled dataset and then training it with the scarce dataset
using the full model or freezing part of it. DA can improve the
overall results achieved with simple transfer learning as it can
be unsupervised and, thus, requires no labels.

In this study, we focused on applying deep DA to segment
RGB satellite data from different satellites and locations seman-
tically. Our contributions are as follows.

1) To the best of our knowledge, this is the first study in which
DA is applied to achieve LULC mapping from widely
different areas around the globe using RGB bands only.

2) We built RGB datasets from the Sentinel-2, WorldView-2,
and Pleiades-1B satellites using CLC as labels.

3) We customize and improved upon an existing DA method
to fit satellite imagery.

The rest of this article is organized as follows. Section II
presents some of the related background research. Section III
introduces the materials used, including the satellite images
and labels. Section IV describes the methods used. Section V
outlines the performed experiments and the obtained results.
Finally, Section VI is the conclusion, which also contains our
reflection regarding the results.

II. RELATED WORK

A. LULC Segmentation

Image segmentation in LULC is performed differently when
compared to other fields, such as street-view images. This is
because satellite imagery comes in multispectral forms, includ-
ing active sensing images, such as synthetic-aperture radar or
LIDAR.1

Soon after the first launch of the first publicly available RS
satellite in 1972, computer vision started to be used to map
LULC. Methods, such as histogram thresholding [13], provided
acceptable results but exhibited problems associated with the
variations in satellite images. Research on other methods, mainly
statistical ones based on maximum a posteriori, had varying
degrees of success. In 2000, the commercial software eCog-
nition [14] combined classification methods, edge detection,
and segmentation into one solution. Neural network methods at
this point were unfavorable because of their high computational
complexity.

In the early 2000s, the primary methods applied for LULC
mapping were based on classical ML methods, such as support
vector machines and decision trees [15], [16]. However, by the
2010s, DNNs began to emerge but were still not used much
in RS imagery because of the lack of labeled data required to
train the DNNs. In particular, using DL to tackle land cover
segmentation has not been adequately addressed in the literature
so far. For example, although state-of-the-art semantic segmen-
tation methods have been translated to satellite imagery, the
results were not as good [8]–[10]. This is because land cover

1LIDAR uses light in the form of a pulsed laser to measure ranges.

types have random shapes, such as forest stands and bodies of
water, whereas objects in ordinary photos have consistent shapes
that are easier to learn. Kuo et al. [10] proposed a method that
provides one of the leading results in the DeepGlobe challenge,
in which improving the performance depended on a variation
of DeepLabV3+ [17] wherein atrous spatial pyramid pooling
replaces the fully connected layers of the ResNet backbone.
Additionally, DeepLabV3+ uses an encoder–decoder architec-
ture to reduce the effect of resolution loss due to pooling and
strided convolution. The encoder–decoder method is a com-
mon approach in land cover segmentation because it preserves
high-resolution features, such as texture and color, which play
a significant role in distinguishing land covers. Arief et al. [18]
used a state-of-the-art semantic segmentation method and added
LIDAR data, which slightly improved the results in comparison
to other methods.

In LULC, especially when working with vegetation, the near
infrared (NIR) band is usually applied directly, or as the normal-
ized difference vegetation index (NDVI).2 Generally, vegetation
is highly reflective on the NIR band, which makes it useful
for detecting forestry and plant types on the surface. NDVI is
considered as an easy and quick way to segment vegetation from
nonvegetation [19].

B. Domain Adaptation

Generally, DA reduces the domain shift between two different
sets (source and target) with different distributions, which is
achieved by aligning the distribution of one set to match that of
another set or mapping both sets to a common space.

Mainly there are three forms of DA approaches [20], [21].
The first method is to minimize the distance between the source
and the target data. Maximum mean discrepancy is an example
of minimization aimed at achieving a domain-invariant feature
representation that performs well in both source and target
domains. The second method is adversarial DA that uses gener-
ative adversarial networks (GANs) [22] to make one set appear
similar to another. Tzeng et al. [23] outlined an example of this
adversarial method, in which the target data are translated to
the source data by a discriminator to differentiate between the
two. The third method involves creating a shared representation
for both domains by translating them into a common space.
CycleGAN [24] is an example of this third method, in which
two discriminators are used to map images from the source data
to the target data, and vice versa.

C. DA for Semantic Segmentation

Mostly, DA is a perfect fit for semantic segmentation since
the latter requires pixel annotations, which, as mentioned previ-
ously, might not be available.

Generally, DA methods used for classification do not translate
well to semantic segmentation [25]. Therefore, adversarial and
reconstruction methods are preferred. Architectures, such as
FCNs in the Wild [26] and No More Discrimination [27], are

2NDVI is obtained by dividing the difference between the NIR band and red
band over the sum of the two.
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examples of adversarial DA whose aim is to use a GAN to
generate sourcelike images and then segment theme images
using a network trained on the source data. Notably, the re-
construction approach has been tested in many methods with
different variations [28]–[31]. The datasets used were almost ex-
clusively street-view image datasets, including Cityscape [32],
GTA5 [33], and SYNTHIA [34]. Chang et al. [29] proposed a
domain-invariant structure extraction framework to disentangle
images into domain-invariant structure and domain-specific tex-
ture representations. Li et al. [35] proposed adding an extra step
called bidirectional learning (BDL). The principle behind this
step is to alternate between segmentation learning and image
translation, which is supervised using the segmentation model.
Generally, BDL prevents the translation model from converg-
ing to a point at which the discriminator views the images as
being from the same distribution while not aligning the classes
correctly, causing the segmentation to fail.

D. Domain Adaptation in RS

Various studies on RS use the term “domain adaptation.”
However, because RS is a vast field, it is tricky to classify such
studies. As described by Tuia et al. [36], some methods are
based on selecting invariant features on the training data [37],
[38], whereas others are based on the adaptation of the data
distribution [39]–[41], and lastly building the adaptation in the
classifier. The first type of method may be time consuming
because of the difficulty of selecting invariant data, which might
require building a new dataset for each target data point. The
second type is what usually comes to mind when DA is men-
tioned. In this type, two distributions are translated to remove the
domain shift between them, and the methods applied range from
basic ones, such as principal component analysis, to adversarial
ones. Finally, the third type is based on building a model that
can process both data distributions in the same way. Usually,
this requires semisupervised learning or is accompanied by an
adaptation of the data distribution, which is what this study
tackles.

Although the work of Benjdira et al. [40] is similar to ours,
in their article, they only tackled the adaptation of data distri-
butions. However, in our study, our goal was to adapt both the
data and the model, and we also did not limit our work to urban
environments.

III. MATERIALS

A. Satellite Data

The satellite data used in this study were obtained from
four EO satellites: Sentinel-2, WorldView-2, Pleiades-1B, and
WorldView-3.3

The Sentinel-2 constellation is composed of two polar-
orbiting satellites (Sentinel-2 A and Sentinel-2B) placed in the
same Sun-synchronous orbit, phased at 180◦ to each other.
Each of them has a multispectral sensor with 12 bands with
a resolution ranging from 60 up to 10 m/px, of which we used
the RGB bands with a resolution of 10 m/px, as shown in Table I.

3The DeepGlobe land cover dataset was built from WorldView-3’s vivid data.

TABLE I
SENTINEL2-B PROPERTIES

TABLE II
WORLDVIEW-2B PROPERTIES

TABLE III
PLEIADES-1B PROPERTIES

From the European space agency’s third party mission, data
from the WorldView-2 satellite are available as WorldView-2
European Cities [42]. WorldView-2 is a very-high-resolution
satellite that has an eight-band multispectral sensor with a reso-
lution of 1.8 m/px (see Table II) and a 0.46-m/px panchromatic
sensor. Similar to what we have done with the data of Sentinel-2,
we only used the RGB bands.

Pleiades-1B is part of the Pleiades-1 constellation of satellites
whose data are not available for the public free of charge.
Nevertheless, we had access to a few rasters from which we
extracted the RGB bands. The properties of this satellite are
similar to those of WorldView-2 (see Table III), which makes it
interesting to investigate how a model trained on WorldView-2
would perform on the data of Pleiades-1B.

The data obtained from satellite imagery generally have a
raster image form in a floating-point format. Both Sentinel-2
and WorldView-2 have a 12-b radiometric resolution encoded
in a 32-b floating-point representation. These are encoded in
an 8-b unsigned integer format using QGIS, an open-source
geographic information system software program. The main
steps consist of merging the rasters, translating the format into
8-b images, and extracting the RGB channels before normalizing
them to have uniform illumination. To form the datasets, we
divided the obtained RGB rasters to patches of PNG images
with a resolution of 224 × 224 for Sentinel-2, 512 × 512 for
WorldView-2, and 448 × 448 for Pleiades-1B. As a result, the
number of images obtained from Sentinel-2 was 37 706, the
number of WorldView-2 images was 3570, and the number of
images from the Pleiades-1B dataset was 500, which is the
least number of images obtained. The ratios for the training,
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TABLE IV
WORLDVIEW-3 PROPERTIES

TABLE V
CLASSES IN THE LABEL DATA

validation, and test sets for all the datasets were 80%, 15%, and
5%, respectively.

Additionally, to address the possibility of having clouds in the
data, we acquired a set of Sentinel-2 and WorldView-2 rasters
with cloud coverage. The data of Sentinel-2 include level 1-C
preprocessing, which includes cloud masks. However, the data
of WorldView-2 have no GT cloud masks.

We introduced data augmentation during training as a mixture
of random rotation and cropping for all the datasets, and we
avoided using any band other than the RGB ones because our
goal was to obtain as much compatibility with any satellite image
dataset as possible. However, to test the NIR band’s effect on
DA, we extracted it from both Pleiades-1B and WorldView-2.
Then, we applied to the NIR data the same processing as with
the RGB data.

B. Labeled DeepGlobe Data

The DeepGlobe land cover segmentation dataset [7] is used
for comparison with available methods. This dataset contains
1146 images with a resolution of 2000 × 2000, of which only
803 are labeled. The dataset is built from WorldView-3’s vivid+
images [43], and is readily available without the need for prepa-
ration. As seen in Table IV. The dataset used in this study
contains 12 847 images with a size of 612 × 612 pixels, which
we cropped from the full size, since using the full resolution
images would require an excessive amount of GPU memory.
The image format is an 8-b JPG with labels in PNG format. We
divided the set into train, validation, and test subsets with a ratio
of 70%, 20%, and 10%, respectively.

DeepGlobe dataset comes with its labels made by human
annotators. The labels are the same ones shown in Table V and
have been defined in [7] as follows.

1) Urban land: man-made, built up areas with human arti-
facts.

2) Agriculture land: farms, any planned (i.e., regular) plan-
tation, cropland, orchards, vineyards, nurseries, and orna-
mental horticultural areas, confined feeding operations.

3) Rangeland: any nonforest, nonfarm, green land, grass.

4) Forest land: any land with at least 20% tree crown density
plus clear cuts.

5) Water: rivers, oceans, lakes, wetland, ponds.
6) Barren land: mountain, rock, desert, beach, land with no

vegetation.
7) Unknown: clouds and others.

C. Label Data

The label data that we used for the satellite imagery were
obtained from CLC by Copernicus [4]. Generally, CLC is a
manually annotated pixel-based map of Europe with five major
classes divided into 44 subclasses ranging from natural covers,
such as forests and water surfaces, to man-made covers, such as
buildings and crops. CORINE’s technical document [4] provides
a full description of each subclass. Roughly, since 2000, a new
version of CLC has been released every six years. Although the
pixel resolution of CLC is 100 m/px, there exists a version with a
resolution of 20 m/px covering the whole area of Finland [11] as
well as a 10 m/px version covering Germany. For the rasters cap-
tured between 2010 and 2012, we used CLC2012, whereas for
the rasters captured between 2015 and 2017, we used CLC2018.

We applied preprocessing on the labels by merging some
classes to narrow them down to seven classes instead of the
original 44 to match the label data in the DeepGlobe dataset
(see Table V). The details of the classes are as follows.

1) Urban land: urban, industrial, mine.
2) Agriculture land: arable land, perma crops, pastures, het-

eroagriculture.
3) Rangeland: shrubs, inland wetland, artificial nonagricul-

ture green land.
4) Forest land: forests.
5) Water: inland water and marine water.
6) Barren land: open spaces.
7) Unknown: clouds and others.
It should be pointed out that the CORINE versions that we

used exhibited some inaccuracies, mainly in the German ver-
sion. These inaccuracies include missing houses or small forest
stands.

We aligned the label data to the same coordinate reference
system as the corresponding satellite rasters. Then, we upsam-
pled the CLC rasters to match the pixel resolution of the satellite
rasters that they cover. Finally, we divided them into patches and
converted them into single-channel 8-b PNG images, with each
pixel’s value ranging from 0 to 6, representing the corresponding
class at that pixel.

D. Study Area

The study area varies depending on the satellite. Sentinel-2
and WorldView-2 cover parts of Finland and Germany, with no
overlap between the areas covered by the satellites. WorldView-2
covers 1520.17 km2 in Finland and 1310.18 km2 in Germany
(see Fig. 1). We carefully chose the rasters to avoid any cloud
coverage that may compromise the training efficiency. Com-
pared to WorldView-2, Sentinel-2 covers a far larger area in
Finland of around 128 320.21 km2. The area covered in Germany
is also larger, at around 74 361.98 km2 (see Fig. 2). More data
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Fig. 1. Area covered by Worldview-2. Left: Area covered in Germany. Right:
Area covered in Finland.

Fig. 2. Area covered by Sentinel-2. Left: Area covered in Germany. Right:
Area covered in Finland.

were used from Sentinel-2 because all of its data are available
free of charge, whereas only a limited amount of the WorldView-
2 data is freely available. The data of Pleiades-1B cover a small
area of Finland of around 519.67 km2, with no overlap with
the data of WorldView-2. Finally, the DeepGlobe dataset covers
1716.9 km2 from India, Indonesia, and Thailand.

Finland and Germany do not share much of the land cover
distribution. For instance, the tree species are quite different.
Finland has more lakes and forests, whereas Germany has more
urban and agricultural areas.

IV. METHOD

In this study, we used DA to semantically segment unlabeled
satellite images by land cover using a different labeled dataset.

A. Network Architecture

The model used in this work is based on BDL [35], as
illustrated in Fig. 3. This model is divided into two parts: a
translation part F, which transforms source images into target
images, and the segmentation part F, which assigns labels to
the input images. The segmentation part is accompanied by
a domain discriminator (DM) that distinguishes between the

Fig. 3. BDL architecture, S represents the source data, T represents the target
data,F denotes the translation network withGA andGB as the generators, and
DA and DB as the discriminators, M represents the segmentation network,
and DM is the domain discriminator.

labels generated from the target dataset and translated source
dataset.

1) Translation Network: The translation network F is a Cy-
cleGAN [24] that consists of two nine-blocks ResNet generators
and two discriminators containing three fully connected layers.
The model essentially contains two GANs working together:
one of them translates images from the source dataset to the
target dataset, whereas the other does the opposite. The link
between the two networks is the cycle loss. If an image from
any dataset was to go through both generators in series, it should
theoretically be the same at the output.

2) Segmentation Network: The segmentation network M is
based on DeepLabV2 with ResNet101 as its backbone. The
model is pretrained on the ImageNet dataset.

As mentioned earlier, the segmentation network is accompa-
nied by a domain discriminator (DM). This network is com-
posed of four fully connected layers, whose task is to recognize
whether the labels are from the source or the target dataset. The
ultimate goal here is to encourage the segmentation network to
generate similar labels for both datasets and, thus, reduce the
domain shift on the label space.

B. Cloud Masking Network

The cloud masking network we used for the cloud covered
data is Cloud-Net [44]. This network has a U-net-like architec-
ture that contains six convolution blocks and five deconvolution
blocks (see Fig. 4). Cloud-Net is originally trained on four
spectral layers from Landsat rasters (red, green, blue, and NIR).

V. EXPERIMENTS

A. Cloud Masking

We first attempted to use the pretrained Cloud-Net [44] model
on the WorldView-2 data, but the results were not satisfactory.
Thus, we trained the network using the data of Sentinel-2, which
has GT cloud masks, and obtained a good performance (see
Fig. 5). To avoid adding a new class in the label data, we merged
the cloud masks with the unknown class (see Figs. 6 and 7).
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Fig. 4. Architecture of the cloud masking network used [44] (©[2019] IEEE).

Fig. 5. Cloud masking of WorldView-2 images.

Fig. 6. Masked clouds from the GT Sentinel dataset. Left: Satellite image
before cloud masking. Middle: Satellite image after cloud masking. Right: Label
image after cloud masking.

B. Training

We performed the training on Nvidia GPUs (Tesla V100,
Tesla P100, and Tesla T4) [45] with 16 GB of video memory
for about 250 000 iterations with a batch size of 4. The batches
were randomized for every iteration in the epoch. We resized

Fig. 7. Masked clouds from the WorldView-2 dataset. Left: Satellite image
before cloud masking. Right: Satellite image after cloud masking.

the images to the lowest resolution between the source and the
target dataset during the image translation phase.

The training of the BDL network uses the following loss
functions (lM ) to train the segmentation network:

lM = λadvladv(M(S ′),M(T )) + lseg(M(S ′), Ys) (1)

where S is the source data and T is the target data. S ′ or F (S)
is the translated source to target data. M(S ′) and M(T ) are the
prediction labels for the translated source to target data and target
data, respectively. Ys is the GT label for the source data. The
adversarial loss (ladv) of the domain discriminator is calculated
as follows:

ladv(M(S ′),M(T ))

= ET [DM(M(T ))] + ES [1−DM(M(S))] (2)

where λadv is the coefficient for the adversarial loss. The cross-
entropy loss (lseg) between the GT labels and the predictions is
represented as follows:

lseg(M(S ′), Ys) = − 1

HW

∑

H,W

C∑

c=1

1[c=yS
hw]logPS

hwc (3)

where C is the number of classes in the labels. H and W are
the height and width of the label images, respectively. PS is
the segmentation probability of the translated image and is the
output of M(S ′) before the softmax layer.

The corresponding loss for the translation network lF is

lF = λGAN(E[λDD(T ) + E[1− λDD(S ′)]

+E[λDD(T ′) + E[1− λDD(S)])

+ λrecon[E[||F−1(S ′)− S||1] + E[||F−1(T ′)− T ||1]]
+ λperAE[||M(S)−M(S ′)||1]
+ λper_reconE[||M(F−1(S ′))−M(S)||1]
+ λperBE[||M(T )−M(T ′)||1]
+ λper_reconE[||M(F−1(T ′))−M(T )||1] (4)

where T ′ or F(T ) is the translated target to source data. M(S)
and M(T ′) are the prediction labels for the source data and the
translated target to source data, respectively. F−1 is the inverse
function of F.
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Fig. 8. Results of translation from WorldView-2 to DeepGlobe. Right: Result
with λperA = 1. Center: Result with λperA = 0.1. Left: WorldView-2 image.

Fig. 9. Examples of multiple combinations of coefficients for the Sentinel
to DeepGlobe translation test. In each example, the left image is the Sentinel
source and the right image is the translation to DeepGlobe. (a) λD = 1, λperA =
0.1, and λperB = 0.1. (b) λD = 1, λperA = 10, and λperB = 10. (c) λD = 10,
λperA = 2, and λperB = 0.5. (d) λD = 50, λperA = 2, and λperB = 0.5. (e)
λD = 100, λperA = 2, and λperB = 0.5.

λGAN is the coefficient for the GAN loss. λD is the coefficient
for the discriminator loss, whereas λrecon is the coefficient for the
reconstruction loss or cyclic loss. λperA signifies the coefficient
scaling of the perceptual loss of the source data, whereas λperB

is the coefficient for the target data’s perceptual loss. λperrecon

denotes the coefficient for the perceptual reconstruction loss.
Those coefficients help guide the translation network using the
segmentation network.

Notably, the coefficients presented above differentiate the
original BDL network from what we have used. Fig. 8 shows
an example in which we compared λperA = 0.1 with λperA = 1,
where the first case resulted in trees from WorldView-2 being
replaced by the barren class in the DeepGlobe domain, whereas
in the second case, we obtained a more accurate translation.
Each experiment required its own set of coefficients, which we
obtained through trial and error. Another example is illustrated
in Fig. 9.

C. Metrics

In the literature on semantic segmentation, various metrics
are used to measure the accuracy compared to the GT data.

These metrics include the mean intersection over union (MIoU),
average precision, pixel accuracy, and boundary F1 score. In
our experiments, we used MIoU, which computes the mean of
the rate of overlap between the GT segments and the resulting
segmentation

MIoU =
1

n

n∑

i=1

GTi ∩ Outputi
GTi ∪ Outputi

(5)

where n is the number of classes. This formula can also be
written as follows:

MIoU =
1

n

n∑

i=1

TP
TP + FP + FN

(6)

where TP stands for true positive, FP for false positive, and FN
for false negative.

In our experiments, since the unknown class (seventh class)
was unbalanced between the datasets, which caused the results
to be skewed, we masked it while calculating the MIoU. The
only exception made was to the tests that included clouds.

D. Baseline Results

Since all datasets are labeled, it is possible to know the upper-
bound results to compare them with the DA ones. To obtain
these results, we trained and tested the segmentation network on
the target dataset. In this part, we used the datasets DeepGlobe,
WorldView-2, Pleiades-1B, and WorldView-2 FI, which refers
to the version of WorldView-2 that covers Finland. The results
are shown in Table VI.

E. Results

The DA test from WorldView-2 (Finland and Germany) to
DeepGlobe is referred to as “WV2 to DG,” whereas that from
Sentinel-2 to DeepGlobe is referred to as “Sen to DG.” To
test how well DA performs between satellites when the loca-
tion is similar, we implemented a test between Sentinel-2 and
WorldView-2, referred to as “Sen to WV2.” The next experiment
performed was “WV2FI to PLFI,” which applies DA between
two similar satellites (WorldView-2 and Pleiades-1B) covering
the same location (Finland). The aim of the final experiment
is to investigate how well DA works for different locations
when the sensor used is the same. Therefore, we implemented
WorldView-2 Germany to WorldView-2 Finland, also referred
to as “WV2GR to WV2FI.”

To test the improvements obtained compared to when no DA
was used, we performed a separate experiment with only the
segmentation network enabled and ran the model on the target
dataset’s validation subset. We also tested the effect of the back-
bone segmentation network on DA by replacing DeepLabV2
with DeepLabV3+.

Additionally, to test whether including the NIR band results
in better DA across satellites, we ran a couple of tests with RGB
and NIR bands.

1) WV2 to DG: The results of WV2 to DG without DA are
presented in Table VII. Because the images of WorldView-2 are
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TABLE VI
UPPER-BOUND MIOU RESULTS

TABLE VII
EXPERIMENTAL MIOU RESULTS

Fig. 10. Sample images from WorldView-2 dataset and DeepGlobe dataset.
Right: DeepGlobe dataset image. Left: WorldView-2 dataset image.

different from those of DeepGlobe in terms of both sensor prop-
erties and location (see Fig. 10), the results were unsatisfactory.
Fig. 12 shows an example of a few test images and the model
output without DA. However, the network considers everything
to be agriculture, which makes it very unreliable.

Table VII shows results of using DA for WV2 to DG. Although
the results are not very impressive numerically, there is a large
difference between these results and the MIoU results without
DA, ranging from less than 10% to almost 35%. Fig. 11 shows

an example of model output after DA on a few test images, man-
ifesting very similar labeling to the GT. Additionally, in some
cases, the results were better than the GT, which implies that the
GT annotation is imperfect. As an example, it is unclear what is
considered a forest and what is considered a rangeland. More-
over, some small villages have been completely ignored in the
GT while parts of them have not. This can be observed in Fig. 12.

2) Sen to DG: Unlike WV2 to DG, in which WorldView-2 has
similar properties to those of WorldView-3, Sen to DG attempts
to perform DA between two very different satellites.

It should be noted that the results obtained without DA are not
reliable, although they are better than those obtained with WV2
to DG, since Sentinel-2 has considerably more data. However,
even a massive dataset is not enough to obtain acceptable results,
as illustrated in Fig. 11.

Using DA improved the results from an MIoU of 19% up to
29%, as shown in Table VII. When compared to the upper-bound
result on DeepGlobe, which is 52.24%, the DA results were
found to be modest. However, they were visually still good,
as illustrated in Fig. 11 with a few examples. However, in
contrast to WV2 to DG, the results were not as good. This can
be explained by the large pixel resolution difference between
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Fig. 11. Experimental results. Left: GT image. Middle: Satellite image from the target dataset. Right: Model output. (a)-1) WV2 to DG without DA. (a)-2) WV2
to DG with DA. (b)-1) Sen to DG without DA. (b)-2) Sen to DG with DA. (c)-1) Sen to WV2 without DA. (c)-2) Sen to WV2 with DA. (d)-1) WV2FI to PLFI
without DA. (d)-2) WV2FI to PLFI with DA. (e)-1) WV2GR to WV2FI without DA. (e)-2) WV2GR to WV2FI with DA.
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Fig. 12. Experimental results in which the output improves upon the GT. Left: GT image, middle: satellite image from target dataset, and right: model output.
(a) WV2 to DG with DA. (b) Sen to WV2 with DA.

Fig. 13. Results of training with DA from Sentinel-2 with clouds masked to
WorldView-2 with clouds masked. Right: Model output. Left: Test images from
the WorldView-2 dataset.

Sentinel-2 and WorldView-3. However, this is still considered
a good step forward as the Sentinel-2 data are free of charge,
whereas the WorldView-3 data are not.

3) Sen to WV2: Table VII shows the results of Sen to WV2.
Samples from the results can be seen in Fig. 11. Inaccuracies
are present in the results without DA, particularly mixing up
similarly looking classes, such as forestry and agriculture. As
mentioned in Section III-C, the GT labels for Germany lack
precision, which limits the accuracy of the mapping even when
training on that specific dataset. However, having more accurate
labels covering Finland helps correct the errors in the German
ones, yielding better results than those obtained with the GT in
a few cases, as depicted in Fig. 12.

There are no GT that could masks for the WorldView-2 images
in the cloud masking test, meaning it is not possible to have a
correct MIoU value. However, by overlaying the cloud masks
generated by the network in Section IV-B on the GT CLC labels,
we obtained an MIoU of 43.7%. An example of the results is
shown in Fig. 13.

4) WV2FI to PLFI: In the WV2FI to PLFI experiment, even
though the sensors in the satellites were similar, the results
obtained without using DA were not as good as expected. Fig. 11
shows an example of the results of WV2FI to PLFI without DA.

Training a DNN on a limited amount of data, such as in the
case with the Pleiades-1B dataset, would lead to overfitting.
Therefore, applying DA is an excellent way to perform land
cover mapping on a small dataset. WV2FI to PLFI shows better
results with an increase of over 8% in MIoU, as illustrated in
Fig. 11, which is considered encouraging given that it would be

costly to perform training on the Pleiades-1B data. The detailed
results are presented in Table VII.

5) WV2GR to WV2FI: The results of WV2GR to WV2FI
without DA were surprisingly weaker than expected considering
the images are captured from the same satellite. Table VII shows
an MIoU of only 18% MIoU. A sample of those results is shown
in Fig. 11.

The results obtained from WV2GR to WV2FI using DA were
significantly better compared to the previous case. As seen in
Table VII, the MIoU score increased to 32%. Fig. 11 shows a
sample from this experiment.

6) NIR Results: As expected in both experiments, in which
we included the NIR band, the results that we obtained were
better than those obtained without including an NIR band.
However, the improvement was minor. The MIoU without DA
improved upon the experiment in which we considered RGB
bands only between 3% to 4% MIoU, as seen in Table VII. The
same effect applies to the results obtained after DA, in which the
improvement was also minuscule. These results were somewhat
unexpected but also understandable. While the NIR band is
essential for detecting vegetation, the fact that we merged many
vegetation species into the same class made the best feature of
NIR potentially useless. Moreover, because the model was very
deep, it could extract enough features from the RGB bands only.

7) DeepLabV3+ Results: In addition to the previous exper-
iments, we tested DeepLabV3+ as a segmentation network.
However, as shown in Table VII, replacing the backbone with
DeepLabV3+ did not bring about significant improvements as
compared to DeepLabV2. This is because of the lack of accurate
labels, which may be a bottleneck for the performance. In fact,
the results diverged after a few epochs because the network
learned to mimic the errors in the GT images. Thus, to make
use of the full potential of DL methods, it is important to have
very good and precise labels in land cover mapping.

8) Comparison With Other Methods: Since our work mostly
uses datasets that we have built, it is tricky to compare it with
other works. However, using Potsdam [51] and Vaihingen [52]
datasets, we can have an idea on how well it performs. Table VIII
presents results of DA from other works as well as ours. The
other works’ results were taken from the original papers. With
the right coefficients, our results are very good in comparison
with the other works.
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TABLE VIII
MIOU RESULTS FOR DA FROM POTSDAM TO VAIHINGEN

Note: NA refers to not available.
The best results of each section are shown in bold characters.

F. Discussion

The general consensus regarding our experiments is that DA
can either slightly or significantly improve the accuracy of land
cover mapping. We found that the more data we have, the closer
our results are to the baseline, as shown in the Sen to WV2
experiment. In other cases in which the area covered during
inference is significantly different from the area used during
training, such as in the Sen to DG experiment, the results were
relatively far from the baseline. However, a clear improvement
was observed, which is impressive since the land cover types
were quite different. Interestingly, the NIR band did not improve
the results significantly when compared to DA. As mentioned
previously, this may be because the vegetation classes are not
diverse, which limits the benefits of using the NIR band.

VI. CONCLUSION

In this study, we addressed three problems related to LULC
mapping: lack of labeled datasets, inaccessibility to some satel-
lite imagery, and differences in the available spectral bands.
The approach that we adopted employs DA on datasets that
we have built from the RGB imagery of different satellites
covering different areas. The experimental results showed that
DA improved the mapping considerably even when only RGB
images were used. Such results are generalizable to images from
areas with considerably different land cover types. From our
experimental results, we believe that the overall results can be
improved by designing a more specialized model for satellite
imagery.
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