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Abstract—Surface-plasmons of metals have been utilized
to enhance the Raman spectra of various adsorbed moieties
for over decades. While amplification of the spectral inten-
sity takes place on most of the metals, due to their superb
properties, Au, Ag and Cu surfaces represent the bench-
mark in surface-enhancedRaman spectroscopy. In this paper,
we show that Cu-Pd bimetal and CuPt alloy nanotubes derived
from Cu nanowires by simple galvanic exchange reactions
are suitable for the efficient enhancement of Raman spectra
when dispersed on Si surfaces. Amplification factors of 120×
on Cu nanowires, 150× on Cu-Pd bimetal nanotubes and
250× on CuPt alloy nanotubes in reference to the substrate
are measured for rhodamine 6G and methyl violet model
compounds. We also show that the nanotubes dispersed on Au surfaces can contribute to a further intensity enhancement
of the substrate and detect analytes adsorbed from 10−6 M analyte concentrations. Our results obtained using bimetallic
and alloy nanomaterials shed light on a new strategy to synthetize and apply new types of metal nanostructures and
compositions for surface-enhanced Raman spectroscopy in the future.

Index Terms— SERS, Cu nanowires, galvanic exchange reaction, CuPt alloy, Cu-Pd bimetal.

I. INTRODUCTION

SURFACE-ENHANCED Raman spectroscopy (SERS) is a
powerful analytical tool to detect and quantify a broad
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range of chemicals even in trace quantities, and thus it has
been widely employed in analytical chemistry [1], environ-
mental monitoring [2], [3], biomedical diagnostics [4]–[7],
food security [8], and even in forensic investigations [9], [10].

Enhancement of the Raman spectra are due to two primary
reasons. On the one hand, the electric field in the proximity of
resonant surface plasmons is amplified, which then enhances
polarization of the adsorbate and increase Raman intensity
(electromagnetic effect). On the other, (partial) charge transfer
between adsorbed molecules on metal surfaces can result in
the change of polarizability thus contributing to an enhanced
polarization in the electric field (chemical or charge-transfer
effect) [11].

Although SERS was discovered in the 1970s [12], there
is still an immense interest in finding newer and affordable
materials as amplification media other than the traditional
gold or silver surfaces. Platinum group metals, although also
very expensive, are particularly interesting because their cat-
alytic and electrocatalytic properties make the follow up of
chemical reactions possible by observing adsorbed reactants
and intermediates [13], [14]. As demonstrated experimentally
[14]–[16] and confirmed theoretically [22], common metals
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Fig. 1. SEM images of (a) Cu nanowires as well as (b) Cu-Pd and (c) CuPt nanotubes. Scale bars are 500 nm. TEM images and corresponding electron
diffraction patterns (insets) of (d) Cu nanowires, (e) Cu-Pd and (f) CuPt nanotubes. The sub-panels (d1-f2) are magnified parts of the respective sam-
ples indicated by the white rectangular areas. (d1) Cu2O crystals covering the surface of the Cu NWs. (d2) Cu crystal and its (100) and (110) planes.
(e1) Polycrystalline Pd nanoparticle on the surface of the Cu-Pd nanotube identified by the (111) planes of Pd. (e2) Wall of the Cu-Pd nanotube.
(f1) and (f2) Pt nanoparticles and their identified (200), (110) and (100) planes. Scale bars are 5 nm. Panels (g) and (h) show bright-field scanning
TEM images of Cu-Pd and CuPt nanotubes, and their corresponding EDX elemental maps in the sub-panels. Scale bars are 200 nm. (i) XRD
patterns of the nanostructures. Inset: resolved reflections of Pd and CuO.

(e.g. Fe, Co, Ni, Al, Sn) show reasonable Raman enhancement
although less efficient than the noble metals. Furthermore, not
only pure metals but their various alloys, bi- and tri-metallic
compositions [18], [19] and multi-layered structures [20], [21]
and hybrids with semiconductors [5], [7], [22] have been
reported to improve SERS efficiency of less active metals
because of multiple effects. One is based on the extended
range of increased electric field on the surface of a metal
or semiconductor near a highly SERS active particle or film
(borrowed SERS activity) [23]. The other effect is associated
with plasmonic hot electron injection from the metal to the
semiconductor [24], which inherently results in different local
fields and can alter the metal-molecule complex thus influenc-
ing both electromagnetic and chemical sensing mechanisms.
In addition to the above processes, also the geometry, mor-
phology, and size of particles influence SERS, as the local
field is a function of surface curvature [25]–[29].

Recently, we have shown that Cu nanowires are suitable
for SERS, in particular, when dispersed on Au thin films [30].
Although rapid oxidation of common metals may influence
the local field and thus spectral amplification, in the case of
Cu, the native surface oxides [31] do not seem to degrade
SERS quality [30], [32]. In this paper, our aim is to extend our
SERS studies on Pt and Pd derivatives of Cu nanowires. Our
strategy follows the idea of combining highly and less SERS

active metals into a synergic system by using very simple
and easy-to-scale synthesis routes, which include hydrothermal
growth of Cu nanowires [30], [31], [33] followed by a partial
exchange of Cu with Pd and Pt in galvanic replacement reac-
tions [34]. We show that the as-made hybrid nanostructures
are having superior Raman enhancement as compared to Cu
nanowires making them promising new candidates for SERS
applications.

II. MATERIALS AND METHODS

Cu nanowires were synthesized by a hydrothermal route,
[30], [31], [33] whereas their Pd and Pt modified derivatives
were obtained by galvanic replacement reactions [34] similar
to those as we reported earlier.

A. Synthesis of Cu Nanowires

1.4 g of CuCl2×H2O and 3.2 g of D-glucose were dissolved
in 640 mL distilled water, then while stirring, 11.5 g hexade-
cylamine was slowly added to the solution. After 4 hours of
stirring, the light blue solution was inserted into a Teflon lined
autoclave (Parr Instrument) to facilitate hydrothermal synthesis
in 120 ◦C at autogenic pressure (∼1.2 bar) for 24 hours
(stirring at 35 rpm). After the reaction, the products were
collected, and washed with distilled water, hexane and ethanol
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Fig. 2. Raman spectra of R6G and MV on Cu NWs, Cu-Pd and CuPt
NTs dispersed on (a) and (c) Si and (b) and (d) Au surfaces. The dyes
were cast from 10-4 M aqueous solutions. Each spectrum correspond to
the best performing surface areas covered by networks of nanowires or
nanotubes. The reference spectra correspond to Si and Au substrates
coated only with either of the dyes. (Instrument: ThermoFisher DXR2xi
Raman Imaging Microscope, 100× objective, λ = 532 nm, P = 2 mW,
τ = 0.02 s, 1000× scans, slit aperture: 50 μm and laser spot: 0.6 μm.)

(each repeated three times). The purified product was kept in
ethanol until further use.

B. Synthesis of Bimetallic Cu-Pd and Alloy CuPt
Nanotubes

1 mL of Cu nanowire suspension was first diluted in ethanol
(1 mg/mL) and then sonicated for at least half an hour then
centrifuged at 3200 rpm and washed with dimethyl sulfoxide
(DMSO). The copper nanowires were then dispersed in DMSO
(5 mL) under N2 atmosphere in a 50 mL flask. Aliquots of
noble metal salt solutions (1 mM of potassium tetrachloropal-
ladate or potassium tetrachloroplatinate in DMSO) were then
added slowly to the copper nanowire dispersions (at 189 ◦C)
and kept under reflux until its color became stable (typically
10 min). Thereafter the product was centrifuged and washed
with ethanol and kept in ethanol.

C. Materials Characterization

The morphology, microstructure and composition of the
products were characterized by field-emission scanning elec-
tron microscopy (FESEM, Zeiss Ultra Plus, 15 kV, sam-
ples were drop cast on chips of a Si wafer), transmission
electron microscopy and electron diffraction (EFTEM, Jeol
FS 2200, 200 kV, samples were drop cast on Ni grids)
and energy dispersive X-ray spectroscopy (EDX installed in
both SEM and TEM). For crystal structure analysis we used
powder X-ray diffraction (XRD, Bruker D8 Discovery, Cu Kα,
with 2� scans between 5◦ and 90◦ at a rate of 0.01 ◦/s) of
each sample drop cast on the surface of glass slides.

D. Surface-Plasmon Enhanced Raman Spectroscopy
Analysis

Surface-plasmon enhanced Raman spectroscopy (SERS)
measurements of rhodamine 6G (R6G) and methyl violet

Fig. 3. Raman spectra of methyl violet adsorbed on CuPt NTs (dispersed
on Au surface) from solutions of different concentrations (from 10-4 M to
10-6 M).

(MV) model compounds were carried out on random networks
of the nanomaterials. The NWs of Cu and NTs of Cu-Pd
or CuPt were drop cast from their corresponding dispersions
in ethanol on pristine Si and Au coated chips (laser cut
to 10×10 mm2 size from the corresponding wafers). After
drying, aqueous R6G or MV (both 10−4 M) were drop cast
on the NW and NT coated chips and dried in air before
analysis using Raman microscopy (ThermoFisher DXR2xi
Raman Imaging Microscope) with the following parameters:
100× objective, λ = 532 nm, laser power 2 mW, exposure time
0.02 s, number of scans 1000×, full range resolution grid, slit
aperture 50 μm and laser spot size 0.6 μm. (Representative
SEM images of Cu NWs and Cu-Pd NTs on Si and Au surfaces
are shown in Supplementary information, Fig. S1.)

III. RESULTS AND DISCUSSION

According to scanning electron microscopy (SEM) analysis,
the hydrothermally grown Cu nanowires have a length between
10 and 50 μm, and an average diameter of ∼50 nm. The
nanowires are straight, and only some kinks may be seen
in their structure due to crystal twinning (Fig. 1a). After
the partial galvanic replacement with Pd or Pt, the overall
nanowire structure changed for tubular due to the consumption
of Cu and simultaneous deposition of Pd or Pt, respectively
(Fig. 1b,c). In addition, the originally smooth surface of the
nanowires turned rough and highly nanostructured. About half
of the Cu atoms are replaced with either Pt or Pd as measured
by energy dispersive X-ray spectroscopy (EDX).

The surfaces of the nanotubes are polycrystalline and have
a grain size of 5 to 10 nm of the corresponding noble
metal. Under these metal nanoparticles, the crystal structure
of the nanotubes is different as suggested by high-resolution
transmission electron microscopy (TEM) (Fig. 1d-f), EDX
(Fig. 1g,h) and X-ray diffraction (XRD) (Fig. 1i). The Pt
replaced Cu seems to be a bimetallic alloy rather than a
mixture of individual Cu and Pt crystals hence the notation
CuPt. On the other hand, for Cu replaced by Pd, we find
X-ray reflections from separate crystals of the two metals in
the corresponding pattern thus the material is noted as Cu-Pd.

Motivated by the promising SERS results we obtained lately
using Cu nanowires to detect rhodamine 6G dye, it appeared
to be a natural step to extend our research to its galvanic
replaced Pt and Pd derivatives. The synthesized CuPt and
Cu-Pd nanotubes as well as Cu nanowires were dispersed on
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Fig. 4. Raman peak intensity statistics for (a-f) R6G and (g-l) MV on Cu NWs, Cu-Pd NTs and CuPt NTs dispersed on Si and Au surfaces. Each
plot displays the intensities measured on networks of NWs or NTs as well as on individual particles. Empty area data correspond to peak intensities
measured on locations in the proximity of NWs or NTs. The dyes were drop cast from ��

−� M aqueous solutions.

Si and Au surfaces, and then coated with solutions of rho-
damine 6G (R6G) and methyl violet (MV) dyes. After drying,
we collected Raman spectra of the dyes from several locations
of each sample populated with large number of nanowires or
nanotubes. For reference, we use Si and Au surfaces coated
only with either of the dyes (Fig. 2). As expected, on Si surface
(without any NWs or NTs), we can hardly observe the spectra
of the dyes. On Au surface, we see the spectra of both dyes but
the intensity of peaks is low and not resolved entirely. In the
presence of Cu NWs, we find the spectra are well resolved but
with moderate peak intensities. On the other hand, the intensity
of peaks improves significantly on surfaces covered with CuPt
or Cu-Pd NTs (Fig. 2). The overall amplification factors for
both types of dyes as compared to the corresponding substrates
are approximately 15× (Cu), 30× (Cu-Pd) and 60× (CuPt) on
Au and 120× (Cu), 150× (Cu-Pd) and 250× (CuPt) on Si.
The smaller substrate to NW (or NT) amplification on Au
surface is due to the already ∼10-fold Raman intensities as
compared to the Si surface.

The Raman intensities show proportionality to the
concentration of the analytes (Fig. 3). The spectrum of MV
can be resolved well for 10−5 M, and we observe reasonable
peak intensities even at 10−6 M comparable to that obtained
using Ag NWs with a detection limit of 10−7 M for MV [35].

It is important to point out here, that significant
improvement (5 to 40-fold) of the Ag NWs enhanced spectrum
of 4-mercaptobenzoic acid was shown on Ag-Au nanowires
[36], and as reported very lately. Also, Ni templated Ag-Au
nanocages [18] helped detection of R6G at 10−10 M limit of
analyte concentration. Furthermore, as Ag nanoparticles grown
on semiconducting NWs of Si [37] and GaN [38] showed even
better detection limits (10−14 M and 10−12 M, respectively) for
R6G, These results suggest that implementing Ag or Au on Cu
NWs instead of Pd or Pt; or combination with semiconducting
nanoparticles/surfaces could probably provide better spectral
amplifications and thus shall be assessed in detail in the future.

To demonstrate the robustness of the measurements, we
collect spectra at several locations of NW or NT coated sur-
faces and calculate the intensity statistics for the characteristic
Raman peaks (Fig. 4). The results show some minor scattering
of the peak intensity data measured in different locations;
however, the typical amplification factors show a consistent
trend. It is worth pointing out, that even individual NWs
or NTs induce reasonable Raman amplification. Furthermore,
it is also interesting to note, that the Raman peak intensities
measured on Au surfaces in the proximity of NWs or NTs
(blank areas) show rather high values for both types of dyes.
We do not observe such high intensities on Au wafers without
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NWs or NTs, and we do not see either a similar effect on
blank areas of Si wafers otherwise coated with NWs or NTs.
Such a phenomenon fits well the “borrowed SERS activity”
model.

IV. CONCLUSION

In closing, we studied surface-plasmon enhanced Raman
spectroscopy using Cu-Pd bimetal and CuPt alloy nanotubes
synthesized by a partial galvanic exchange of Cu nanowires.
Significant amplification of the Raman spectra of rhodamine
6G and methyl violet was demonstrated on Si or Au surfaces
with a detection limit of 10−6 M. The improved Raman
intensity enhancement of nanostructured CuPt and Cu-Pd
nanotubes in reference to smooth Cu nanowires suggests that
their corrugated surfaces facilitate local field enhancement
(shape effect) and the presence of Pd and Pt nanoparticles on
the surface extend the range of increased electric field adjacent
to the particles (borrowed SERS activity).
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