
INV ITED
P A P E R

The SpiNNaker Project
This paper describes the design of a massively parallel computer that is suitable for

computational neuroscience modeling of large-scale spiking neural networks in

biological real time.

By Steve B. Furber, Fellow IEEE, Francesco Galluppi, Steve Temple, and

Luis A. Plana, Senior Member IEEE

ABSTRACT | The spiking neural network architecture

(SpiNNaker) project aims to deliver a massively parallel million-

core computer whose interconnect architecture is inspired by the

connectivity characteristics of themammalian brain, and which is

suited to the modeling of large-scale spiking neural networks in

biological real time. Specifically, the interconnect allows the

transmission of a very large number of very small data packets,

each conveying explicitly the source, and implicitly the time, of a

single neural action potential or ‘‘spike.’’ In this paper, we review

the current state of the project, which has already delivered

systems with up to 2500 processors, and present the real-time

event-driven programmingmodel that supports flexible access to

the resources of the machine and has enabled its use by a wide

range of collaborators around the world.
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I . INTRODUCTION

THE spiking neural network architecture (SpiNNaker)

project is motivated by the grand challenge of understand-

ing how information is represented and processed in the

brain [1]. Most of the frontiers of science are concerned

with the very small, such as subatomic particles, or the

very large, such as exploring the outer regions of the

universe. Yet there remains a great unsolved scientific
mystery at a very human scale: how does the brain, an

organ that we could readily hold in our hands and observe

with the naked eye, perform its role that is so central to all

of our lives?

‘‘Wet’’ neuroscience has told us a great deal about the

basic componentVthe neuronVfrom which the brain is

constructed. Brain imaging tells us yet more about how

activity moves around the brain as we perform certain
mental functions. The former is concerned with individual

neurons up to groups of tens or perhaps hundreds; the

latter looks at the collective activity of many millions of

neurons. But between these scales there are a few orders of

magnitude of scale for which there exists no scientific

instrument except the computer model, and it is at these

intermediate scales, we suggest, that all the interesting

information processing takes place.
Our conclusion is that, if we wish to fully understand

how the brain represents and processes information, we

need to build computer models to test hypotheses of how

the brain works.

A. Neurons and Spikes
What sort of computer is required for such brain

modeling to work?
The human brain is generally viewed as comprising

somewhat under 100 billion neurons, where each neuron

is a multiple-input–single-output device.

There is some debate about the role of the more

numerous glial cells that form the structure upon which

the neurons build the brain, and, in particular, the role of

astrocyte cells in synaptic plasticity [2], so any general-

purpose system should aim to accommodate these issues in
case they prove to be important.

Neurons communicate principally through action

potentials, or ‘‘spikes.’’ These are simply asynchronous

impulses where, as a result of the electrochemical

regeneration process used to ensure the reliable propaga-

tion of these signals along long biological ‘‘wires,’’

information is conveyed only in the identity of the neuron

that spiked and the time at which it spiked. The height and
the width of the impulse are largely invariant at the

receiving synapse. This has led to the widespread adoption

of the address event representation (AER) encoding of
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neural activity [3], [4], where the information flow in a
network is represented as a time series of neural identifiers.

There are some notable exceptions to the completeness

of the AER view of information flow. Some neurons

transport and emit neuromodulators, such as dopamine,

that have a global effect on neurons within a neighborhood

region; other neurons make direct contact through ‘‘gap’’

junctions that make an electrical connection from one

neuron to its neighbor. However, in much of the brain, the
primary real-time information flow is in the spikes that, in

a model, are represented by AER. A general-purpose

computer-modeling platform should offer mechanisms to

support these other information flows while giving first-

class support to AER ‘‘spikes.’’

B. Computer Models
What computer power and architecture are required to

support a real-time model of the human brain?

The simplest estimate of an answer to this question

suggests that there are around 1015 synapses in the brain,

with inputs firing at an average rate of 101 Hz, and each

synaptic event requires perhaps 102 instructions to update

the state of the postsynaptic neuron and implement any

synaptic plasticity algorithm. These figures lead to an

estimate of 1018 operations per second, the performance of
an exascale machine. Exascale high-performance compu-

ters do not yet exist, though recently the Chinese Tianhe 2

machine has achieved 3� 1016 floating-point operations

per second [5], so exascale computing is not too far away.

However, raw computer performance is not the only

issue here. The communication patterns in the brain are

based on sending very small ‘‘packets’’ of information

through complex paths to many targets. High-performance
computers, on the other hand, are generally optimized for

point-to-point communication of large data packets. This

mismatch leads to significant inefficiency in the mapping

of brain-scale spiking neural networks onto conventional

cluster machines and high-performance computers.

C. SpiNNaker
The SpiNNaker machine is a computer designed

specifically to support the sorts of communication found

in the brain. Recognizing the huge computational require-

ments of the task, SpiNNaker is based on massively parallel

computation, and the architecture will accommodate up to

a million microprocessor cores, the limit being defined by

budget and architectural convenience rather than anything

fundamental.

The key innovation in the SpiNNaker architecture is the
communications infrastructure, which is optimized to carry

very large numbers of very small packets, in contrast to the

conventional cluster and high-performance computer com-

munications system which, as noted above, are optimized for

large data packets. Each packet carries a single neural ‘‘spike’’

event in a 40-b packet, 32 b of which are the AER identifier of

the neuron that spiked and 8 b are management bits

identifying the packet type, and such like. (The choice of a
32-b AER identifier is not a fundamental limitation of the

architecture, and could be increased in a future implemen-

tation to accommodate larger neural models.) The time of

the AER spike is implicit; the communications infrastructure

can deliver a packet in much less than a millisecond, which is

the requirement for real-time neural modeling.

Although SpiNNaker’s design is centered on packet-

switched support for AER ‘‘spikes,’’ it can also support non-
AER information flows through the same communication

mechanism delivering discrete (typically 1 ms) updates to

continuously variable parameters.

In order to achieve efficient massively parallel opera-

tion, SpiNNaker’s design accepts certain compromises,

one of which is the requirement for deterministic

operation. The asynchronous nature of the communica-

tions system leads to nondeterministic ordering of packet
reception, and occasionally packets may be dropped to

avoid communication deadlock. It is possible to reimpose

deterministic operation and lockstep operation to match a

conventional sequential model under certain conditions,

but this is not the natural or most efficient way to operate

the machine.

D. Paper Organization
This paper is a review of the SpiNNaker project and a

tutorial on the use of the machine. The contributions and

structure of the paper are as follows.

• We present an overview of the architecture

(Section II) and of the hardware implementation

(Section III).

• We present the system software (Section IV), des-

cribe the event-driven software model (Section V),
the API that supports this (Section VI), and a

simple example program that runs on top of the

API (Section VII).

• We present the partitioning and configuration

manager (PACMAN, Section VIII) that conceals

the physical structure of the machine.

• Finally, we describe some typical applications that

run on the machine (Section IX), our future plans
for larger scale machines (Section X), discuss

related work (Section XI), and draw our conclu-

sions (Section XII) from our experience with the

machine at this stage in its development.

II . ARCHITECTURE OVERVIEW

A detailed description of the architecture of the machine
has been presented earlier [6], so here we present the key

features of the architecture that are germane to what

follows (see Fig. 1).

A SpiNNaker machine is a homogeneous 2-D multiple

instruction, multiple data array of processing nodes where

each node incorporates 18 ARM968 processor cores each

with 96 kB of local memory, 128 MB of shared memory, a
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packet router, and general system support peripherals. Each

processor core is a general-purpose 200-MHz 32-b integer

processor with no floating-point hardware, so arithmetic is
generally implemented as fixed point.

A. Achievable Performance
Each core can model a few hundred point neuron

models, such as leaky integrate and fire or Izhikevich’s

model, with the order of 1000 input synapses to each

neuron. In practice, a number of different constraints may

limit the number of neurons a processor core can support

in real time, but often the compute budget is dominated by
input connectionsVan incoming spike passing through an

individual synapseVwhich imposes an upper limit on the

(number of neurons) � (number of inputs per neuron) �
(mean input firing rate). In principle, a processor core can

support up to 10 million connections/s, though the current

software implementation saturates at about half this

throughput, and plastic synapse models reduce it consid-

erably further.

B. Spikes and Packets
The key innovation in the SpiNNaker architecture is a

lightweight multicast packet-routing mechanism that

supports the very high connectivity found in biological

brains. The mechanism is an extension of conventional

AER [3], [4]. When the software running on a processor

identifies that a neuron should emit a spike, it simply issues

a packet that identifies the spiking neuron. The issuing

processor has no idea of where that packet will be conveyed
toVthat is entirely the responsibility of the routing fabric.

Each node incorporates a packet router that inspects

each packet to look at its source, and routes it accordingly

to any subset of its 18 local processors and/or any subset of

its six neighbor nodes using multicast transmission (which

has been shown to be optimal for neural applications [7])

in a 2-D triangular mesh. The selected routes are

determined by tables in the router that are initialized
when the application is loaded into the machine.

As the packet source identifier is 32 b, it is infeasible to

implement full routing tables for every possible source, so

a number of optimizations are employed to keep the table

sizes reasonable.

• The tables are implemented using content ad-

dressable memory (CAM), and entries are required

only for those packets that pass through a node.
• The CAM uses four states: match 0, match 1,

match all, and no match. This allows a single CAM

entry to route all of those neurons in a population

with common routing requirements.

• Where no CAM entry matches a source identifier,

a default routing mechanism allows the packet to

pass straight through the node.

These optimizations allow a routing table with 1024

entries to be sufficient at each node. We will return to the

matter of initializing these tables in Section VIII.

C. Processor Disposition
Each SpiNNaker node selects one of its 18 processor

cores to act as ‘‘monitor processor.’’ This selection is

flexible for fault-tolerance reasons. Once selected, the
monitor is assigned an operating system support role.

Sixteen of the remaining processors are assigned applica-

tion support roles, and the 18th processor is held in reserve

as a fault-tolerance spare, though on a proportion of nodes,

the 18th processor may be faulty as nodes with only 17

functional processors are accepted in production to

enhance yield.

III . CHIPS, PACKAGES, BOARDS,
AND SYSTEMS

The physical implementation of the SpiNNaker architecture

has also been described in detail elsewhere [8], so again we

will restrict ourselves here to the relevant highlights.

A. Chips and Packages
Each SpiNNaker node is implemented in a single

19-mm square 300 ball grid array package. The package

houses a custom-designed multiprocessor system-on-chip

integrated circuit that includes the 18 ARM968 proces-

sors, each with its local 32-kB instruction memory and

64-kB data memory, interconnected through a self-timed

Fig. 1. Principal architectural components of a SpiNNaker node.
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network on chip to various on-chip shared resources and a
second chip, a 128-MB low-power mobile dual-data-rate

(DDR) SDRAM. The two chips are stacked onto the

package substrate and interconnected using gold wire

bonding (Fig. 3). The aggregate SDRAM bandwidth has

been measured to be 900 MB/s [8].

B. Boards
The packages are then assembled onto printed circuit

boards (PCBs; see Fig. 2). The chip-to-chip connections on

the PCB are direct wired connections using a self-timed

2-of-7 non-return-to-zero protocol to transmit 4-b symbols

with two wire transitions, plus one wire transition for the

acknowledge response.

In principle, these direct connections could be used to
build a SpiNNaker machine of arbitrary size, but for

practical reasons the machine is constructed from 48-node

PCBs, and the PCB-to-PCB connections use high-speed

serial links where eight chip-to-chip links are multiplexed

through each serial link using Xilinx Spartan6 field-

programmable gate arrays (FPGAs).

C. Systems
SpiNNaker systems of varying sizes can then be

assembled from one or more of the 48-node PCBs. There

is also a smaller four-node board that is very convenient for

training, development, and mobile robotics. The largest

machine, incorporating over a million ARM processor

cores, will comprise 1200 48-node boards in ten machine

room cabinets and will require up to 75 kW of electrical

power (peak).

IV. SPINNAKER SYSTEM SOFTWARE

SpiNNaker software can be categorized into that which

runs on the SpiNNaker system itself and that which runs
on other systems, some of which may interact with

SpiNNaker. The majority of software that runs on the

SpiNNaker chips is written in C. This software can be

subdivided into control software (a primitive operating

system) and application software which performs the

user’s computations.

The primary interface between SpiNNaker systems and

the outside world is Ethernet and IP-based protocols. Every
SpiNNaker chip has an Ethernet interface and typically one

chip per PCB uses this interface. This is used to download

code and data to SpiNNaker and to gather results from

applications. For some applications, this (100 Mb/s) inter-

face is a bottleneck on getting data to and from SpiNNaker,

and we are investigating the use of gigabit links provided by

FPGAs on SpiNNaker PCBs to improve this.

A. SpiNNaker Software
The control software that runs on SpiNNaker systems

is known as the SpiNNaker Control and Monitor Program

(SC&MP). The SpiNNaker chips contain primary boot-

strap code which allows the loading of code via the

Ethernet interface or the interchip links, and this is used to
load SC&MP, initially via an Ethernet interface to a single

chip. SC&MP is then propagated to the entire system over

the interchip links; it runs continuously on the core that

has been selected as the monitor processor and provides a

range of services to the outside world to allow applications

to be loaded on the remaining 16 or 17 application cores on

each chip.

Fig. 3. Inside a SpiNNaker package. The SpiNNaker chip is mounted on

the substrate, then a 128-MB mobile DDR SDRAM is stacked on top of it,

and the connections are made inside the package with gold wire

bonding. The packaging was carried out by Unisem Europe Ltd.

Fig. 2. A 48-node SpiNNaker PCB. This circuit board incorporates

48 SpiNNaker packages (center) with a total of 864 ARM968 processor

cores, three FPGAs (top) for high-speed inter-PCB communications

through serial advanced technology attachment connectors (top left

and right), with onboard power regulation (bottom).
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A simple packet protocol known as SpiNNaker
Datagram Protocol (SDP) is used within the SpiNNaker

system. SC&MP acts as a router for SDP packets allowing

them to be sent to or from any core in the system and also

via Ethernet to external endpoints. This protocol forms the

basis for application loading and high-level communication

between SpiNNaker chips and/or external machines.

Within individual chips, SDP packets are exchanged

between cores using a shared-memory interface. Between
chips, SDP is transported as sequences of point-to-point

packets conveyed by the interchip links. To carry SDP out

of the system, the packets are embedded in UDP/IP

packets and sent via the Ethernet interface to external

endpoints.

A SpiNNaker ‘‘application’’ is a program that runs on

one or many of the application cores on a SpiNNaker

system. It will typically be written in C and utilize either
SDP or multicast packets for its communication needs.

Because of the limited code and data size provided by the

on-chip memories in SpiNNaker, there is little room for

operating system support and so only minimal ancillary

code can be loaded along with the application. Each

application is linked with a support library known as

SpiNNaker Application Runtime Kernel (SARK). SARK

provides startup code for the application core to set up the
runtime environment for the application. It also provides a

library of functions for the application such as memory

allocation and interrupt control. SARK also maintains a

communications interface with SC&MP running on the

monitor processor that allows the application to commu-

nicate with and be controlled by other SpiNNaker chips or

external systems. Protocols running on top of SDP are used

to achieve this functionality.
An application is built using an ARM cross compiler

and linked with SARK and any other runtime libraries that

it requires. The output file from the linking stage is

converted to a format known as application load and

execute (APLX) which is understood by a simple loader

which is part of SC&MP. The APLX file can then be

downloaded to the SpiNNaker system where it is loaded

into the appropriate parts of memory of the relevant
application cores by the SC&MP loader.

Most SpiNNaker applications make use of an event

management library known as the Spin1 API. This provides

facilities for associating common interrupts with event

handling code and for managing queues of events. While

the processor is not processing events it is in a low-power

sleep mode. This API can be viewed as a software layer

between the user’s application and the underlying
hardware. To facilitate SpiNNaker program development

using the API, an emulator has been developed which

provides the same set of library calls as the Spin1 API but

which runs on a Linux workstation. This allows users

without SpiNNaker hardware to develop and debug

SpiNNaker applications and to familiarize themselves

with the programming model.

B. Host Software
We refer to the workstation that controls a SpiNNaker

system as the ‘‘host.’’ A variety of SpiNNaker-related host

software has been developed within the project. A number

of tools have been developed to download applications to

SpiNNaker systems. The ‘‘ybug’’ program provides a
command line interface for this function and also allows

scripted control of the system. A number of application

programmer interfaces (APIs) that implement interfaces

based on SDP have been developed in C, Perl, and Python.

These allow programmed control of a SpiNNaker system to

allow applications to be downloaded and controlled and

results uploaded.

In addition, a number of ‘‘visualizer’’ applications have
been produced which allow the results of SpiNNaker

applications to be viewed on the host system. The simplest

of these just allows plain text output to be displayed on the

host while more sophisticated visualizers [9] display data in

graphical form such as the raster plot of firing spikes in a

neural network simulation or the potentials inside a single

neuron (Fig. 4).

The provision of input data to SpiNNaker applications
can also require host software to provide these data. One

such application is the ‘‘spike server’’ which is used to

provide spikes (neural events) in real time to a neural

simulation running on SpiNNaker.

A significant part of the SpiNNaker software effort has

been the development of programs that map complex

problems onto the SpiNNaker hardware. A typical example

is a neural network simulation where individual neurons
or groups of neurons have to be allocated to cores in the

system and the routing tables set up to allow them to

communicate appropriately for the connectivity of the

network. The ‘‘PACMAN’’ program, which is described in

Section VIII, is typical of this class of program [10].

Fig. 5 shows the arrangement of the various software

components which make up a SpiNNaker system.

Fig. 4. Example output from a SpiNNaker visualizer.
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V. EVENT-DRIVEN SOFTWARE MODEL

The programming model employed on SpiNNaker is that of a

real-time event-driven system. The application processors

have a base state, which is halted and waiting for an interrupt,

contributing to the overall energy efficiency of the system. In
the standard neural modeling application, there are three

principal events that cause the processor to wake up.

1) An incoming spike packet. This will usually cause
the processor to initiate a direct memory access

(DMA) transfer from SDRAM of the synaptic data

structures associated with the source of this spike.

2) DMA complete. Once the synaptic data have been

transferred, the processor must process the data.

3) One-millisecond timer tick. Each processor has a

local timer that marks the passage of time, and

each millisecond (typically, the interval is pro-
grammable) the processor will compute a further

integration step in the neuron dynamics.

Of course, these events are asynchronous and unpredict-

able, so the software running on the processor must be

capable of prioritizing the events and handling multiple

overlapping requests. This is achieved through the use of a

real-time kernel that underpins the event-driven operation

of each application processor, and presents a straightfor-

ward API to the user, who can build applications on top of
the API entirely in C.

VI. SPINNAKER APPLICATION
PROGRAMMING INTERFACE

The SpiNNaker application programming interface (spin1

API) [11] provides an execution environment that supports a

lightweight, event-driven programming model. A central goal

of the model is to save energy by keeping the cores in a low-

power state, only responding to events of interest. To this

effect, application programs do not control execution flow;

they can only indicate the functions, referred to as callbacks,

to be executed when specific events, such as the arrival of a

packet, the completion of a DMA transfer, or the lapse of a

periodic time interval, occur. The callback mechanism is also

used to hide the details of the interrupt subsystem, which is

handled directly and efficiently by the API.

Fig. 6 shows the basic architecture of the event-driven
framework. Application developers write callback routines

that are associated with events of interest and register

them with the API at a priority level, which defines them

as queueable or non-queueable. When the corresponding

event occurs, the scheduler either executes the callback

immediately and atomically (in the case of a non-

queueable callback) or places it into a scheduling queue

at a position according to its priority (in the case of a
queueable callback). When control is returned to the

dispatcher (following the completion of a callback) the

highest priority queueable callback is executed. Queueable

callbacks do not necessarily execute atomically: they may

be preempted by non-queueable callbacks if a

corresponding event occurs during their execution.

The dispatcher goes to sleep (in the low-power

consumption ‘‘wait for interrupt’’ state, where the processor
core clock is turned off) when the callback queues are empty

and will be awakened by any event. Application developers

can designate one non-queueable callback as the preeminent

callback, which has the highest priority and can preempt

other non-queueable callbacks as well as all queueable ones.

The API provides support for callbacks to control entry and

exit from critical sections to prevent higher priority callbacks

interrupting them at a bad time, e.g., during access to a
shared resource.

This real-time kernel is scalable to very large numbers

of processors, but is best suited to relatively simple models

running on each processor. Clearly, the system will come

to a halt if no events are generated, and real-time

performance will be lost if a processor is overwhelmed

by incoming events. In practice, careful mapping of a

model onto the system can avoid both eventualities.

Fig. 5. The various software components running on the host machine, the root node, and other SpiNNaker nodes.
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VII. EXAMPLE LOW-LEVEL
APPLICATION

As a simple example of a parallel program that runs on top of

the SpiNNaker API, here are the key features of a simple

example that implements Conway’s Life cellular automaton.
First, the program should include the API calls:

#include hspin1api:hi

Then, we need routines to set up the initial state of the

automaton and the routing tables. In this case, setting up

the routing tables is by far the most complex aspect of the

programming task as the Life neighbor connections must

be established between processors across chip boundaries.

void set up route tables

ðuintchip; uintcoreÞf. . .g
void init Life state ðuintchip; uintcoreÞf. . .g

Now we must define the event-driven callback routines.

In this example, the relevant events are timer tick and an

incoming packet:

void tick callback ðuintticks; uintdummyÞf. . .g
void pkt in ðuintkey; uintdataÞf. . .g

The simulation is started on each processor from

c_main. The chip and core addresses are found, then the

initialization routines are called:

void c main ðvoidÞ
f

uint chip ¼ spin1 get chip id ðÞ;
uint core ¼ spin1 get core id ðÞ;
set up route tables ðchip; coreÞ;
init Life state ðchip; coreÞ;

The timer period is set to 1 ms, and the event callbacks

are set up with appropriate priorities (packet received is
usually at the highest priority):

spin1 set timer tickð1000Þ;
spin1 callback on ðTIMER TICK;
tick callback; 1Þ;
spin1 callbackonðMC PACKET RECEIVED,
pkt in;�1Þ;

Finally, the simulation is started:

spin1 startðÞ;
g

Fig. 6. Event-driven software framework.
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VIII . PARTIONING AND
CONFIGURATION MANAGER

The example described in Section VII shows how API-
based applications can set up the simulation parameters,
SDRAM content, and routing tables with an algorithmic
process. While for simple or highly structured problems
this is possible, modeling networks with arbitrary inter-
connectivity and arbitrary neural types is a problem where
a further level of abstraction can be introduced. Config-
uring a million-core machine, with each core modeling up
to a thousand neurons and a million synapses, rapidly
becomes an intractable problem: one billion neurons need
to be mapped and one trillion synapses need to be routed
to implement a user-specified model.

To solve this problem, we introduce PACMAN [10], a
software layer that enables users to write their model using

a standardized interface, translate it, and run it on

SpiNNaker. The software is designed to keep different

concerns separated: users interface with the platform

through domain-specific, neural languages already present

in the scientific milieu, such as PyNN [12] or Nengo [13].

PACMAN is the set of algorithms that translate a model

into machine-executable code. Such algorithms operate on
data representing the network model, information about

the system (topology, fault status, etc.), and methods for

data structure translation.

PACMAN maps, routes, and translates network models

using populations of neurons and projections between them,

rather than single neurons and synapses. This approach

reduces the complexity of the algorithms involved in the

translation process, by exploiting the hierarchies present in a
neural network. This choice is justified by studies on the

structure of the central nervous systems, where functionally

segregated areas are interconnected by axonal pathways [14],

and where cortical areas show a remarkably regular laminar

structure, with different layers of neurons stereotypically

connected in a canonical circuit [15]. Finally, many neural

languages [12], [13], [16], [17] use this abstraction natively,

making it a natural choice.
Using a neural language as a user interface makes the

platform more accessible to nonexperts, giving the users a
familiar environment to develop models and analyze
results, while hiding the complexity of configuring a
parallel system and encouraging model sharing across
different platforms. The translation process is performed
by PACMAN as illustrated in Fig. 7, which shows the flow
of the algorithms used to translate and execute the models
(left) and the data representations they work on (right).

The model is represented in terms of populations and
projections in the model view. It is then partitioned,
splitting populations, while preserving their interconnec-
tivity structure, accordingly to machine-specific con-
straints, depending on the neural and synaptic capacity
of each core. The model is represented in a digraph-like
structure (PACMAN view), and then mapped and routed
on a physical machine instance (system view), using the

information present in the system library. Finally, the
whole model is translated into machine-executable code
for each component (ARM cores, SDRAM, routers), using
the translation mechanism stored in the model library,
loaded onto the system, and executed.

A simple example network is illustrated in Fig. 8 (left):

excitatory and inhibitory populations are recurrently
interconnected. The ratio of excitatory to inhibitory

neurons is set to 4 : 1 to keep a balance between excitation

and inhibition.

The network can be represented in PyNN [12], first by

creating the two populations of neurons, for a total of n
neurons, with a set of parameters:

cell params ¼ f‘tau refrac’: 5.0, ‘v thresh’:�50.0,

‘v reset’:�60.0, ‘tau m’: 20.0, ‘tau syn E’: 5.0,

‘tau syn I’: 10.0, ‘v rest’:�49.0, ‘cm’: 0.2}

ex ¼ Populationðn� n=5; IF curr exp;
cell paramsÞ
in ¼ Populationðn=5; IF curr exp, cell paramsÞ

The resting potential is located above the threshold

potential to induce spontaneous firing in all cells. Populations

are interconnected by means of a FixedProbability-Connector,
which connects all the neurons in the presynaptic population

Fig. 7. The flow of algorithms (left) and the data representations they

work on (right) within PACMAN.

Fig. 8. Example network (left) with one excitatory and one inhibitory

population with a size ratio of 4 : 1 is mapped by PACMAN onto 60

processors on four SpiNNaker chips (right).
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to all the neurons in the postsynaptic population with a pro-
bability p, weight w, and delay d.

con ¼ FixedProbabilityConnector ðp connect ¼
p; w; d)

e e ¼ Projection ðex; ex; con; target ¼
‘excitatory’)

e i ¼ Projection ðex; in; con; target ¼
‘excitatory’)

i i ¼ Projection ðin; in; con; target ¼
‘inhibitory’)

i e ¼ Projection ðin; ex; con; target ¼
‘inhibitory’)

All the projections coming from the excitatory population

target excitatory synapses; conversely, all the projections
coming from the inhibitory population target inhibitory

synapses.
PACMAN automatically partitions and maps the

network as illustrated in Fig. 8 (right), which shows an
example where the total number of neurons n is 6000, and
each core maps 100 neurons. As a result, the model needs
to be partitioned into 48 excitatory and 12 inhibitory
subgroups, each to be allocated to a single core of a
physical machine, with the system library providing the
geometry (in this case, a four-chip board) and the
functional status of the platform. The model library
provides the translation methods for the IF_curr_exp
neuron type (a leaky integrate and fire with exponential
decaying synapses), its parameters, and its synapses. Fig. 9
shows results of 1 s of simulation in the form of a raster
plot, where each dot represents a spike from a neuron
(ordinate) in time (abscissa). Red (blue) dots represent
spikes from excitatory (inhibitory) neurons; the inter-
connectivity parameters are set to give rise to the
oscillatory activity shown in the figure.

IX. TYPICAL APPLICATIONS

In this section, we review some scenarios highlighting the

flexibility of the SpiNNaker platform, and present an
experiment running on a robot equipped with AER sensors

and a 48-node SpiNNaker board.

With the hardware and software infrastructure pre-

sented in the previous sections we have simulated networks

with up to 250 000 neurons and 80 million synapses in real

time on a 48-node SpiNNaker board (as shown in Fig. 2)

within a power budget of 1 W per SpiNNaker package

(containing a SpiNNaker chip and a 128-MB SDRAM; see
Fig. 3). In terms of spike delivery (the dominant cost in

neural simulations [18]) and power consumption, these

experiments show 1.8 billion connections per second, using

a few nanojoules per event and per neuron [19], and

represent the maximum sustainable throughput of the

system with the current software infrastructure.

Good power efficiency has also been demonstrated in a

biologically plausible model of cortical microcircuitry
inspired by previous work [15], [20], comprising 10 000

Izhikevich neurons, replicating spiking dynamics found in

the cortex, and 40 million synapses in real time [21], while

the flexibility of the platform can be used to explore novel

algorithms for learning [22].

A. Interface With Nengo
While with PyNN it is possible to define arbitrary

network structures, using the neural engineering frame-

work (NEF) [23], it is possible to encode functions and

dynamical systems in networks of spiking neurons. Using

the NEF, it is possible to build complex cognitive

architectures such as SPAUN [24], a spike-based functional

model of the brain that makes comparisons with human

neural and behavioral data possible. SpiNNaker has,

therefore, been interfaced with Nengo [25], the software
that implements the NEF, enabling users to create neural

networks by specifying the functions to be computed [13].

Nengo translates the functions into neural circuitry by

calculating neuronal and connectivity parameters, while

PACMAN distributes and configures the model on the

board. Through the use of the NEF, SpiNNaker becomes a

‘‘neural computational box’’: input values and vectors are

encoded in spiking activity using the NEF principles
directly on the SpiNNaker board. The desired computation

is performed in real time by spiking neurons, and output

values and vectors are decoded from spiking activity.

Interfacing with Nengo shows how different front–ends

can be interfaced with PACMAN and how flexibly the

platform can be programmed with specialized neural

kernels, such as the ones performing the NEF encoding

and decoding processes.

B. Interface With AER sensors
Biological inspiration is not confined to the exploration

of computational architectures and methods, but is also

Fig. 9. Raster plot of the results of running the simulation of the

network shown in Fig. 8. Each dot represents one neural spike; red dots

are excitatory neurons, and blue dots are inhibitory neurons.

Oscillatory activity is visible across the network.
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extended to neuromorphic [26] sensors. Millisecond-precise
pulse encoding has been used to explain the ability of the
visual system to process information and to recognize
complex, dynamical scenes quickly [27]. With the first
observable differences in the temporal lobe starting after
150 ms of the stimulus onset, and with several synaptic stages
required to arrive at the infero-temporal cortex (IT, the visual
area where object recognition takes place), neurons can emit
at most one spike to encode the information, and are believed
to encode it in the spike timing [28].

AER sensors can be used to exploit the temporal
characteristics of sensory information with event-based
approaches. Silicon retinae [29]–[31], for example, take
inspiration from their biological counterparts to implement
an alternative approach to frame-based image processing on a
neuromorphic substrate. Each pixel operates asynchronous-
ly, sending an AER message within a few microseconds of a
local light intensity change without having to wait for a
complete frame to be scanned, resulting in a reduction of
latency and redundancy in visual information transmission.
For an example showing the benefits of event-based over
frame-based systems, see the European Union ‘‘Convolution
Address Event Representation (AER) Vision Architecture for
Real-Time’’ project [32].

These sensors use native event-based processing and AER
representation to encode sensory information, and can,
therefore, be interconnected directly to SpiNNaker, which
acts as an event-based computing platform. In collaboration
with the Instituto de Microelectronica de Seville (Sevilla,
Spain) we have connected a silicon retina to SpiNNaker
using an FPGA [33], which translates incoming retinal AER
events to the self-timed 2-of-7 protocol used by SpiNNaker
interchip links, directly injecting spikes (MC packets) into
the packet-switched network fabric. Using this mechanism,
the sensor is represented on SpiNNaker as a ‘‘virtual chip.’’
At the model level, the silicon retina can be instantiated in
PyNN as:

pol 0; pol 1 ¼ p:instantiate retinað Þ

creating two populations (‘‘pol_0’’ and ‘‘pol_1’’, one for

each ‘‘polarity,’’ encoding increasing and decreasing

luminance, respectively) where neurons are topographi-

cally organized in a 2-D visual field. These populations

produce spikes whenever the silicon retina emits an event,
and can arbitrarily be interconnected to other populations

in the model. PACMAN automatically maps each popula-

tion to a specific model instantiation, preserving the

connectivity information.
Analogous interfaces with AER sensors have been

developed in collaboration with the Institute of Neuroin-
formatics (Zurich, Switzerland; using the DVS sensor [30]
and the ‘‘silicon cochlea’’ [34]), with the Biology Group at
the University of Osaka (Osaka, Japan; using a sensor
inspired by the sustained and transient responses of the
retina [35]), and with the Institute of Vision (Paris, France;
using the ATIS silicon retina [36]).

C. Integration With Robotic Platforms
While integration with AER sensors exploits the event-

driven nature of the system, interfacing it with robotic

platforms in real environments shows SpiNNaker’s real-

time characteristics.

As with AER sensors, the robotic platform becomes

available at the model level using PyNN or Nengo, while the

system is configured automatically using PACMAN, enabling

message transmission to and from the robot and the sensors
through a small customized interface board [37]. The robot is

a custom omnidirectional mobile platform, with embedded

low-level motor control and elementary sensory systems,

developed by the Neuroscientific System Theory group of the

Technische Universität München (Munich, Germany). The

overall system is a standalone, autonomous, reconfigurable

robotic platform with no personal computer in the loop.

We demonstrate a closed perception–action loop in an
example where the robot agent has to discriminate between

two different stimuli and move toward the preferred one

(a ‘‘þ’’), while backing off from the detractor (an ‘‘�’’).

This is a small model that uses less than 10% of the

resources on the 48-node board, but it serves to illustrate a

number of the capabilities of the system.

The network structure used is represented in Fig. 10. The

two populations representing the different polarities of a
128� 128 silicon retina are instantiated, as illustrated in

Section IX-B. These populations are connected to four

different feature maps, representing the result of the

convolution between the retinal input and a kernel

represented as the white insert in the four feature maps in

Fig. 10, where the black lines represent excitatory connec-

tions while the white surround represents inhibitory flanks.

This operation, computed in parallel by all feature maps by
means of spiking events, is similar to the one performed by

the mammalian primary visual cortex, where cells are

selectively active accordingly to the stimulus orientation

[38], as previously done in a model of visual attention

running on a four-node SpiNNaker board [33]. Different

feature maps inhibit each other in order to enhance response

contrast. The following layer behaves as a local combination

of oriented edge detectors, similar to the first layers of the
HMAX model, a model of object recognition inspired by the

visual cortex [39]. If the ‘‘þ’’ is recognized (as a combination

of vertical and horizontal edges), the agent is driven forward

toward the preferred stimulus; conversely, if an ‘‘�’’ is

detected as a combination of þ=�45� oriented lines, the

robot moves backward.

Robot movements are controlled by the output popula-

tion, comprising two ‘‘motor’’ neurons (one for moving for-
ward and one for moving backward), represented by the two

vertical bars in Fig. 10.

The retina and the robot are accessible through PyNN,

which is also used to describe the rest of the network

model, performing different steps of visual processing and

orienting its response to the location where a preferred

stimulus is detected.
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X. FUTURE PLANS

Current SpiNNaker hardware has seen use across the

computational neuroscience and neurorobotic communi-

ties. All of the major hardware functions required to build

larger machines have now been developed and tested, and

the remaining tasks to build larger machines are now

primarily related to the manufacture of further packages

and PCBs.
A major commitment over the next two years is to deliver a

machine with at least half a million processors as a contribution

to the European Union Flagship Human Brain Project (HBP),

where SpiNNaker will be one of the neuromorphic ‘‘platforms’’

offered to the wider HBP community.

An earlier, less formal, commitment is to demonstrate

the capability of SpiNNaker to support a real-time imple-

mentation of the University of Waterloo (Waterloo, ON,

Canada) SPAUN model [24]. This is expected to require a

system of around 36 48-node SpiNNaker boards, or 30 000

processors, though this estimate should come down with
Nengo support for sparse connectivity and reduced firing

rates, and will be a solid demonstration of the capability of

the SpiNNaker machine as a platform to support large-scale

real-time spiking neural models.

XI. RELATED WORK

While SpiNNaker represents a particular combination of

digital many-core computing with a lightweight commu-

nications infrastructure tuned to modeling large-scale

spiking neural networks in biological real time, there are a

Fig. 10. Example robotic closed perception–action loop. A ‘‘þ’’ is shown to the robot, which extracts and combines the vertical and horizontal

lines, moving forward. Gray kernels and dashed lines represent the fact that the pathways for the ‘‘�’’ detection are not activated,

as a ‘‘þ’’ is presented.
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number of other designs that take a different approach to
achieve similar end goals [40]. These various approaches

can be classified according to whether they use digital or

analog technology to model the neurons and synapses, the

communications topology employed, and the support for

synaptic plasticity.

Digital models may be implemented on conventional

general-purpose computers, including cluster machines

and high-performance computers, or on special-purpose
hardware such as FPGAs [41], [42], graphics professor

units [43], or custom silicon [44]. Analog models [45] may

be subthreshold [46], whereupon biological real-time

performance is achievable, or above threshold [47], where

the circuits are likely to be much faster than biological real

time. Notable large-scale projects include the following.

• The Stanford Neurogrid [46] employs subthresh-
old analog circuits with digital spanning tree AER

communications [48] for real-time neural model-

ing. Neurogrid can model a million neurons in real

time while consuming only 3 W. It combines

unicast and multicast digital routing with analog

signaling across a local ‘‘diffusion network.’’

• The IBM neurosynaptic core [49] employs custom

digital circuits to achieve a one-to-one correspon-
dence between the hardware and software simulation

models. It is intended to form a generic cognitive

subsystem [44]. It uses AER communication.

• The Heidelberg HICANN system [47] employs

wafer-scale above threshold analog circuits that

operate at 104x biological real time using a two-

layer AER protocol, one layer for intrawafer

communication and a second layer for interwafer
communication.

• The Cambridge BlueHive system [41] employs digital

circuits on FPGAs to deliver real-time performance.

The communication is not pure AER; multicast is

implemented using a set of ‘‘fan-out’’ messages that

carry the destination, weight, and delay.

These examples illustrate the diversity of approaches
taken to address the problem of modeling large-scale

systems of spiking neurons in real time or faster. There

are arguments on both sides of the analog/digital divide

(for example, energy-efficiency favors analog, whereas

flexibility and repeatability favors digital), and on most

other design decisions, so the area is still wide open to new

ideas, and rather lacking in robust benchmarks that can

be used to make quantitative comparisons between alter-
native approaches.

XII. CONCLUSION

The SpiNNaker project has been 15 years since conception

and eight years in (funded) execution. Much time and

effort has gone into understanding the brain-modeling

problem domain and developing the architecture, silicon,
and software infrastructure. While the software develop-

ment will be ongoing, the architecture and silicon are now

working reliably and delivering very much as originally

anticipated [1].

The process of delivering the potential of the SpiNNaker

platform is now underway, and early indications are largely

positive. The platform is proving flexible, relatively easy to

use (though there is always room for improvement in this
dimension), and capable of delivering useful results across a

wide range of application areas.

As the platform is scaled up toward the ultimate

million-core machine, new challenges will emerge, partic-

ularly in the area of management, application mapping and

loading performance, the observability of activity within

the machine, and most notably with debugging large-scale

models running on the machine. All of these are ongoing
areas of research and development, but with help and

feedback from a growing (and so far very forgiving)

community of users, and secure funding within the HBP

alongside a number of other funded projects that will

support extensive use of the platform at the University of

Manchester [including a European Research Council

Advanced Grant and several Engineering and Physical

Sciences Research Council (EPSRC)-funded collaborations],
we are committed to continued improvement of the

capabilities of the platform.

The time is right to scale up our ambition to under-

stand the information processing principles at work in the

brain, and the SpiNNaker platform has been designed to

deliver a broad capability to support this ambition. The

next five years will be crucial in determining the extent to

which we can succeed in delivering a platform with the
capabilities required to support the global brain research

program. h
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