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Abstract—Emerging cross-reality (XR) applications, including
holography, augmented, virtual, and mixed reality, are charac-
terized by unprecedented requirements for Quality of Experience
(QoE), largely exceeding those currently attainable. To cope with
these requirements, noticeable efforts and a number of initiatives
are ongoing to enhance the current communications technologies,
especially in the direction of supporting ultralow latency and
increased bandwidth. This work proposes an architecture that
puts together the key enablers to support future XR applica-
tions, highlighting the shortcomings of existing technologies and
leveraging the ongoing innovations. It demonstrates the feasibility
of the proposed architecture by describing the processes driving
the platform with relevant use case scenarios, and mapping the
envisioned functionality to existing tools.

Index Terms—5G and beyond, AR, cross reality (XR), edge
computing, holography, immersive services, network function
virtualization (NFV), network slicing, New IP, open RAN
(O-RAN), VR.

I. INTRODUCTION

AS 5G communication systems are being rolled out, we
observe high expectations at 5G, such as the processing

of data silos to provide real-time feedback within nanoseconds,
leveraging multiaccess edge computing (MEC) capabilities.
The deployment and standardization activities of 5G networks
are accordingly intensified. Despite these efforts, 5G is in a
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relatively early stage of adoption, and it is not expected to be
in a position to support high data rates, and highly reliable
communication links for advanced mobile cross-reality (XR)
applications.

Emerging XR applications, including augmented/virtual/
mixed reality and holography, do not rely only on fixed
networks, but also on technologies that allow user mobil-
ity. They demand unprecedented Quality of Experience (QoE)
requirements. Technology enablers, in this case, are directly
dictated by QoE requirements of the end-users’ XR applica-
tions. In fact, studies show (e.g., [1]) that for an acceptable user
experience (no motion sickness) with high fidelity, the end-
to-end latency should be less than 15 ms and the bandwidth
should scale up to 30 Gb/s. To provide an indication, streaming
in VR applications requires 10× more bandwidth than a 4K
video. These figures exceed by far those currently attained. It
is indicative that infrastructure and application providers cur-
rently respond to the increased demand of digital services by
throttling services or reducing their quality.1

6G connectivity promises to tackle such QoE requirements
with offers of low latency communications and ubiquitous
mobile ultrabroadband. Such figures dwarf the rates that are
usually considered in pure 5G ultrareliable low latency com-
munication scenarios [2]. The key features of 6G networks
include mobility support of up to 1000 km/h (compared to
500 km/h in 5G), control-plane latency of less than 1 ms (com-
pared to 10 ms in 5G), traffic capacity of tup to 1–10 Gb/s/m2

(compared to 10 Mb/s/m2 in 5G), 3-D localization premion
of 1 cm (compared to 2-D precision of 10 cm in 5G), uni-
form 3-D user experience of up to 10 Gb/s (compared to 2-D
experience of 50 Mb/s in 5G) [3]. Most importantly, 6G is
expected to be able to implement the necessary technologies
that will materialize a fully fledged tactile internet (TI) [4].

The vision of the TI includes the support of haptic
information (i.e., touch, actuation, motion, vibration, and sur-
face texture) real-time transmission over the Internet [5].
This concept is central to the realization of the future XR
applications which cannot be supported by existing network
infrastructures. For instance, existing centralized architectures
do not sufficiently meet the QoE requirements mentioned
above, as well as the inherent need for mobility of the XR
applications. To this end, more distributed network architec-
tures based on edge computing need to be investigated with
the intention of bringing the XR applications closer to the

1https://www.bbc.com/news/technology-51968302

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1119-1239
https://orcid.org/0000-0002-6761-8409
https://orcid.org/0000-0001-5183-1443
https://orcid.org/0000-0001-8504-1503
https://orcid.org/0000-0002-5670-1151


3568 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 4, 15 FEBRUARY 2023

end users [6]. Moreover, it is essential to redesign future
wireless access networks to enhance various aspects of the
physical and medium access control (MAC) layers. It is also
equally important to explore to the maximum the emerging
network technologies, such as software-defined networking
(SDN), network function virtualization (NFV), and network
coding, in order to meet the strict reliability and latency
requirements of XR applications [7], [8].

A number of ongoing initiatives, especially in the direction
of ultralow latency and increased bandwidth, aim to accelerate
the 6G vision implementation. Such an initiative is Open-RAN
(O-RAN) which is promoting the idea of splitting the radio
access network (RAN) into various parts based on the func-
tionality, and enabling the network behavior to be dependent to
the QoE requirement of the processed application. This dis-
aggregation allows each RAN radio unit to deliver Quality
of Service (QoS) guarantees independently, bringing several
advancements, such as low latency and also network slicing.
The key enabler in O-RAN is the support of cognitive-based
technologies [i.e., artificial intelligence (AI)/ machine learning
(ML)] as the means for deploying, optimizing, and operat-
ing the mobile networks, through the independent automated
operational network functions.

Another equally important initiative is the New
IP [9], [10], [11] which is proposed as a mitigation measure
for the complex interconnection and extreme demands of a
rapidly increasing number of physical and virtual objects
over the Internet, which is hindered by the design of the
existing IP protocol. The New IP integrates a contract to each
New IP packet that is processed by the network and routers,
allowing for high-precision communications, user-network
interface, in-band signaling, telemetry, and user-defined
networking. This idea allows the abandoning of existing
IP-based communication principles: throughput should be
linearly proportional to bandwidth; latency should be linearly
proportional to physical distance; and, packet loss should be
an inverse function of buffer sizes.

This article proposes a platform architecture that puts
together the key enablers to support future XR applications
and to cope with the relevant challenges, considering the short-
comings of existing technologies and the ongoing innovations
in various fields. In particular, this article contributes to the
state-of-art in the following ways.

1) It defines a platform architecture that leverages existing
standards to support XR.

2) It showcases how Open RAN and New IP can be used
to cope with the expected limitations of 5G networks,
along with a wide deployment of XR services.

3) It demonstrates the feasibility of the proposed architec-
ture by mapping its functionalities to existing tools and
open sources.

To deliver these innovations, this article is structured in the
following fashion. Section II presents the work that is cur-
rently proposed in satisfying the requirements for ultralow
latency and ultrahigh bandwidth, as well as the need to support
user mobility. Section III presents the proposed XR platform
architecture. Sections IV and V focus on the ongoing initia-
tives, that are more relevant to the delivery of the expected

QoE requirements for future XR services, namely, OpenRAN
and New IP. To demonstrate the feasibility of the proposed
architecture, and to validate the concept, Section VI introduces
potential tools and open sources. To further showcase the fea-
sibility of the proposed architecture, Section VII introduces
two sets of experimentation: the first implements a proof of
concept to show how the infrastructure would be constructed
to deploy cloud-native XR applications, and the second eval-
uates a closed-loop mechanism that drives the infrastructure
toward a state of high energy and cost efficiency while main-
taining QoS. Finally, concluding remarks and plans for future
work are presented in Section VIII.

II. RELATED WORK

The main challenges that the desired architecture is meant to
address are the need for ultralow latency/ultrahigh bandwidth
and user mobility. As such, we investigate the related work
focusing on these two aspects. This analysis will provide us
with the necessary information to decide on the technologies
that our architecture can be built upon. However, in order to
preserve a complete view of a modern architecture, we extend
our research toward the orchestration of network resources,
especially in multidomain orchestration scenarios.

A. Ultralow Latency

The emergence of IoT-based applications has increased the
pressure on academics and practitioners alike to develop tech-
nologies able to provide the highly desired low-latency com-
puting and communications services. The literature presents
a number of such technologies attacking the problem from
diverse perspectives.

One such perspective is the RAN. In order to facilitate
ultralow latency applications, Fog-RAN (F-RAN) [12] was
introduced. The cornerstone of F-RAN is the utilization of
equipment present at the RAN in order to connect IoT devices
with the cellular network. This equipment involves various
user devices, which are considered structural blocks of the F-
RAN, and are being referred to as F-RAN nodes. Instead of
exclusively utilizing cloud resources, F-RAN employs fron-
thaul wireless communications and collaborative computing
of multiple F-RAN nodes near the users, in order to achieve
ultralow latency.

The Cloud-RAN (C-RAN) [13] is another architectural
approach that aims at leveraging the RAN in order to achieve
low latency. C-RAN heavily relies on remote radio heads
(RRHs) randomly located over the coverage area. By utilizing
this architectural paradigm, it is possible to facilitate function-
alities, such as content caching, in order to achieve ultralow
latency. Instead of retrieving the requested content from the
core network, F-RAN transmits it from a nearby RRHs. This
implementation of content caching alleviates the fronthaul
traffic that would otherwise create a potential bottleneck.

Another novel perspective, specifically designed to cater
to latency-related QoS requirements of XR applications, is
introduced in [14]. This architectural framework is based on
optimally conducting task offloading in order to facilitate delay-
sensitive traffic. It consists of the user, the edge, and the cloud
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layer. In the case of collaborative processing, the tasks to be
offloaded are selected based on a number of parameters, such
as the cloud server transmission delay, and the computational
delay at the user, edge, and cloud layers, respectively.

Some other architectural approaches focus on reducing
queuing delay in order to facilitate latency-sensitive applica-
tions. For instance, the well-established DiffServ [15] provides
expedited forwarding for some packets at the expense of oth-
ers. In order to solve this issue, ultralow queueing Latency,
ultralow Loss, and Scalable throughput (L4S) [16] was intro-
duced. L4S aspires to relieve Internet services of the necessity
to facilitate functionalities, such as traffic policing, and con-
tracts that prioritize specific packets over others. While active
queue management (AQM) can be utilized to improve the
performance of all traffic flows, there is a limit to the extent
that queueing delay can be reduced by exclusively altering
the network. In the context of queueing delay, the degrada-
tion of the performance usually occurs when a rather large
capacity-seeking flow is present at the bottleneck link along
with other types of traffic. Furthermore, the use of conges-
tion control mechanisms, that are implemented by standard
TCP, introduces certain constraints [17]. The replacement of
standard TCP protocols, that are currently being utilized, with
scalable alternatives, able to exploit AQM to its full extent,
should be able to provide better overall performance.

B. User Mobility

User mobility modeling is essential for service migration at
runtime. This is even more relevant now, with the advent of
IoT devices being connected to the infrastructure and users
being dependent on specialized end devices such as head-
mounted displays (HMDs). The challenge is twofold: on one
hand, the need for protocols that will make the networking
feasible as the service is “following” the client, and on the
other hand, the need for more computational approaches that
will enable the actual migration of the service.

In the category of the networking protocols, a noteworthy
approach is MobilityFirst [18], an ICN network architec-
ture that defines a flat and globally unique identifier to each
network object independently of its network address. It then
uses a service to map the unique identifier to the group of
network addresses, allowing prompt handoff, as the service is
moving following the client. The drawback of this approach
is that, in the case of IoT devices, it still uses fixed-length
addresses resulting in high power consumptions.

To this end, we also considered the work in [19] which
studies and compares three LPWAN standards that take the
mobility of the things, or devices, into consideration, namely,
LoRaWAN, DASH7, and NB-IoT. These technologies are
designed to offer a set of features, including wide-area and
massive scale connectivity [20] for low power, low cost, and
low data rate devices. This latter characteristic makes those
standards inappropriate for XR applications.

In the front of physical migration approaches, we can
identify three types of service relocation.

1) Handoff process, including “break-before-make” and
“make-before-break,” refers to the transfer of ongoing

connection sessions following the user mobility. In this
type of applications, the services are instantiated at the
central clouds while the intermediate connections are
transferred at the anchor nodes. Unfortunately, running
applications at the central clouds have a negative impact
on end-to-end delay and bandwidth, which is not suitable
for high-interactive applications.

2) Service application migration across different edges.
This type of service relocation requires data serializa-
tion to enable the user context mobility across different
replicates deployed at the edge-nodes following user
mobility. However, this technique has three main draw-
backs.

a) Application dependability that requires a dedicated
service relocation for each service and application,
which breaks the concept of network modularity.

b) Data serialization that may require a higher com-
putation time that has a negative impact on the time
of service relocation.

c) The deployment of replicates at different edges
leads to resource under-utilization and over-
provisioning.

3) Finally, system-level migration requires the migration
of the whole microservice (i.e., container) across edges
following user mobility. The main drawbacks of this
technique are the migration of unnecessary data, such
as operating system, and technological dependability.
In fact, microservice migration across different multi-
technological domains (e.g., running different operating
system distributions) still needs extra works.

Checkpoint/Restore in Userspace (CRIU2) has been widely
used for enabling system-level migration across different
edges. Many studies have been proposed to optimize the ser-
vice relocation which could be cost-related optimization or
time related. In cost-related optimization solutions, where a
migration decision has to be taken based on the incurred cost to
avoid costly migrations while ensuring the system performance
(e.g., QoE), a tradeoff between the performance and incurred
costs was studied in order to reduce the cost while ensuring
QoE. Taleb et al. [21] proposed an MDP-based optimization
to capture the tradeoff between the migration cost and the user
experience.

A tradeoff between E2E delay and the migration cost was
a strategy followed by a few proposals, including mixed-
integer linear programming (MILP) [22] and Lyapunov-based
optimization model [23]. However, many solutions were
proposed in order to avoid frequent migration costs, based
on the user mobility, a prediction of future nodes where a ser-
vice will be migrated can reduce even better the cost, either
to reduce migration and transmission costs [24], the number
of migrations [25] or network utilization [26]. In time-related
optimization solutions, these solutions focus on reducing the
downtime or the migration time. However, they all build on
the premise of a fixed, largely available network, often bearing
unrealistic properties in terms of latency and bandwidth.

2https://criu.org/Main



3570 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 4, 15 FEBRUARY 2023

An alternative would be to predict the user movement or
the general load at the edge nodes and proactively migrate
the services and data. In edge computing, this is indeed a
rather popular research area, e.g., [27], [28], [29], and [30].
These solutions also suffer from a lack of realistic conditions
under which they perform, especially in the aspect of the avail-
ability of adequate network resources. Prediction mechanisms
are trained over data sets that incorporate the assumption that
network bandwidth is unrealistically high.

C. Orchestration

What makes the technologies examined up to this point such
exceptional tools in regards to cloud-based orchestration is
the fact that they have evolved in a way which allows their
distinct operations to be aligned with each other. The aggrega-
tion of these technologies results in the emergence of highly
adaptive cloud-based frameworks which are able to operate
optimally despite the challenges they are presented with. These
challenges derive from the need to facilitate various rather
demanding services such as XR applications. Applications,
such as these are often associated with strict latency-related
and bandwidth-related QoS requirements. These requirements
have to be implemented in an environment which is com-
prised of numerous, heterogeneous network assets. Nowadays,
cloud-based frameworks have to facilitate a large number
of computational and network resources. Furthermore, these
resources are often part of different domains and/or located at
entirely different regions. This has led to a drastic increase
in the complexity which is associated with the orchestra-
tion of cloud-based resources. The orchestration of complex
systems such as these requires the use of automation technolo-
gies, since the notion that these systems can be managed via
human-centered intervention alone can no longer be sustained.
These technologies have gradually formed an ecosystem which
allows them to operate collaboratively and matured into the
backbone of many cloud-based frameworks. The following
analysis is focusing on highlighting the relevant orchestra-
tion technologies that will enable the support of nextgen XR
services.

It is of paramount importance for network services (NSs)
to be able to dynamically scale up or down in order to meet
the QoS Requirements. In 2012 the NFV [31] paradigm was
introduced by the ETSI standardization body. The corner-
stone of the NFV paradigm is its inherent ability to decouple
the software implementation of network functions from the
resources they utilize. This decoupling enables the forma-
tion of Virtualized Network Functions which virtualize entire
classes of network functions into building blocks which can
form connections in order to create specific NSs. These NSs
are able to dynamically scale up or down in accordance to
the utilization of the various network resources. In order to
provide highly reliable and scalable services, it is essential
for the network to be able to instantiate, monitor, and repair
the various NFV instances. This process is known as virtual
network function (VNF) orchestration. In most cases, NFV
management and orchestration (MANO) [32] is the compo-
nent that acts as the orchestrator of the entire NFV system.

NFV MANO is the core element in the management of NFV
architecture. Its responsibilities include the orchestration of
the NFV infrastructure and the life cycle management of the
NSs. The orchestration process can be centralized, distributed,
or hybrid. The initial perception of NFV was that it should
be exclusively implemented in data centers. Yet it has soon
become apparent that in order to fully exploit the advantages
provided by NFV, it is of paramount importance for a service
provider to be able to freely facilitate NFV in all possible
locations.

Each Virtualized Network Function consists of one or more
virtual machines (VMs) or containers. During the initial con-
ceptual stages of the NFV network architecture, only VMs
were considered to be viable options with regards to imple-
menting this particular paradigm. While it is possible to
support containers in operating systems, such as Linux and
Windows, currently a large number of VNFs do not support
these specific operating systems. Nowadays, the concurrent
utilization of both VMs and containers is widely considered
to be the optimal solution. With regards to managing VMs,
Tacker is an Openstack3 project, which is in charge of pro-
viding VNF Manager and VNF Orchestrator functionalities,
in a manner which is aligned with OpenSource MANO. On
the other hand, managing containers requires the use of tools
such as Kubernetes.4 Regarding the new virtualization tech-
nologies such as the ability to facilitate containerized VNFs
and container infrastructure management, in November 2020,
ETSI has published its first document containing specifica-
tions that enable containerized VNFs to be managed in an
NFV framework [33]. The utilization of containerized VNFs
provides numerous advantages, such as better service agility
and performance. Furthermore, containerized VNFs present
auto-scaling capabilities and can achieve service elasticity
in runtime, due to their light-weight resource usage [34].
These specifications describe the new functions required for
the MANO of containers. Both these virtual infrastructure
managers (VIMs) are implemented in the MANO layer.

Cloud-native network functions (CNFs) are a successor
to the Virtualized Network Functions. CNFs are container-
ized microservices that communicate with each-other via
the use of standardized RESTful application programming
interfaces (APIs). As telecom networks gradually integrated
VNFs, it soon became vital for them to resort to cloud-native
approaches which significantly shorten the time required in
order to conduct various essential operations. Cloud-native
approaches which utilize container-based network functions
provide agility in the launch and upgrade of services. To
enable a cloud-native approach, network functions are decom-
posed into microservices hosted within different containers.
The CNFs are then able to scale automatically and commu-
nicate with each other via well-defined APIs. Furthermore,
since it is needed to update only specific microservices at a
time, the overall upgrade time is reduced. The Continuous
Integration/Continuous Delivery deployment model is sup-
ported since network functions are decomposed into smaller

3https://www.openstack.org/
4https://kubernetes.io/
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chunks. On top of that, through service discovery and orches-
tration, systems that utilize CNFs tend to be less prone to
being affected by node failure.

Over the last years, various novel architectural paradigms
that enable the orchestration of cloud-based services and appli-
cations have been introduced. There have been many variations
of these architectural paradigms in order to cover the rather
wide range of requirements that need to be met. Depending on
the number of network domains that are involved in the orches-
tration process, it is possible to make a distinction between
single-domain and multidomain orchestration. Each network
slice consists of heterogeneous network resources which are
combined in order to create virtual networks over a common
infrastructure. In order to facilitate NSs that span over multiple
domains, it is essential for network slices to be properly
managed [35].

SDN [36] is capable of centrally managing network slices.
SDN is a network management technology that enables
the creation of dynamic network configurations [37]. These
dynamic network configurations are deployed in order to keep
up with the QoS requirements. This architecture is based on
the disassociation of the control from the data plane. By treat-
ing these two planes as distinct entities, centralized control
over the network’s assets is established. In the context of
delay-sensitive traffic, the QoS requirements are formulated in
accordance with the latency requirements. The dynamic allo-
cation of resources is based on the latency requirements and
the priority imposed by the specified class of each traffic flow.

The gradual introduction of 5G and network slicing tech-
nologies have given birth to the necessity to be able to
facilitate fully automated and E2E service management which
might span over multiple distinct domains. The ETSI Zero
touch network and Service Management (ZSM) [38] frame-
work was introduced in order to solve this issue. The ZSM
framework includes an E2E Service Management Domain
which is in charge of E2E orchestration across different
domains, E2E closed-loop management, and E2E analytics.
Beyond the implementation of E2E deployments, the ZSM
framework heavily focuses on establishing automation via
closed-loop processes which assist network optimization. The
two most notable paradigms of closed control loops are
the observe, orient, decide, act (OODA) and the MAPE-K
(Monitor, Analyze, Plan, and Execute). Experiential network
intelligence (ENI) [39] framework utilizes closed control loops
such as these in order to keep up with the QoS requirements.
More specifically ENI is able to assist or direct network man-
agement systems based on network status and service level
agreements. The ENI entity is responsible for providing rec-
ommendations or commands to an assisted system (AS), in
order to establish intelligent network management. The ENI
entity communicates with the ASs via an API broker that
is able to perform the required translations. Three classes of
ASs have been identified based on the degree that the AI is
incorporated in the MANO processes of the network. The AS
that belong to the first class do not utilize any form of AI.
The second class consists of ASs that utilize AI but not as
part of their operational control loop. The third class consists
of ASs that incorporate AI technologies in their operational

control loop in order to receive recommendations or
commands.

D. Related Projects

Up to this point, there have been several notable projects,
which utilize various aspects of the technologies mentioned
so far. The ANASTACIA5 project aims to develop a holistic
security framework for IoT infrastructures. Leveraging new
monitoring methodologies and tools, it is able to formulate
autonomous decisions in order to provide dynamic security.
The ANASTACIA platform is implemented by utilizing SDN
controllers, NFV orchestration platforms, and IoT controllers.
The use of these technologies enables ANASTACIA to provide
an IoT infrastructure whereby the data streams of IoT devices
can be monitored, processed, and routed in a dynamic manner,
thus ensuring security throughout the platform. MiCADOscale
is a multifunctional, cloud-agnostic orchestration, and auto-
scaling framework which supports Kubernetes deployments
and is a byproduct of the COLA6 project. MiCADOscale sup-
ports autoscaling functionalities at both VM and container
level.

NSPIRE-5Gplus7 aims to design a zero-touch, end-to-end
smart network and service security management framework.
INSPIRE-5Gplus is able to provide protection when man-
aging 5G network infrastructure across multiple domains.
INSPIRE-5Gplus is aligned with the key principles of
ETSI ZSM reference architecture. MonB5G’s8 purpose is
to implement a framework which facilitates the provision-
ing, deployment, and lifecycle management of numerous
network slices. Furthermore, it utilizes the monitor–analyze–
plan–execute (MAPE) paradigm and distributed closed feed-
back loops, supported by AI-driven operations, in order to
ensure a certain degree of autonomic network operation. The
ACCORDION project [40] aims to orchestrate the compute
and network continuum formed between edge and public
clouds in an intelligent manner. The derived deployment deci-
sions shall be taken based on privacy, security, cost and time
criteria.

III. ARCHITECTURE DESCRIPTION

In this section, the general architecture of an XR platform
is given. We first present an overview of the architecture
components. We then detail each one, separately.

A. Overview

Fig. 1 depicts the general overview of the architecture of
the proposed XR platform. The XR platform follows both the
NFV and ZSM frameworks in order to create self-managed
E2E network slices. It is composed of three planes: 1) the
deployment plane; 2) the domain-specific monitoring and reac-
tion plane; and 3) the E2E conducting plane. The deployment
plane consists of the infrastructure where the XR services are

5http://www.anastacia-h2020.eu/
6https://project-cola.eu/
7https://www.inspire-5gplus.eu/
8https://www.monb5g.eu/
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Fig. 1. High-level architecture of the proposed XR service provisioning platform.

actually running. It thus hosts the different VNFs that are
composing the different XR services. The main responsibil-
ity of this plane is to manage the computational, network, and
storage resources of the infrastructure. The domain-specific
monitoring and reaction plane is responsible for monitoring the
service inside a technological or administrative domain. This
domain-level monitoring helps in detecting issues and miti-
gating them without having to resort to the E2E conducting
plane. These local detection and mitigation mechanisms would
accordingly lessen the burden exerted on the E2E conducting
plane. The E2E conducting plane is responsible for creating
the different subslices inside each domain and for monitor-
ing the E2E KPIs of the XR services. It is also responsible
for shifting the services between the different domains when
necessary.

B. Deployment Plane

The deployment plane hosts the XR services. It is composed
of different technological and administrative domains. Indeed,
such domains can belong to different entities which may result,
for instance, in different charging schemes and also different
management APIs. These domains can be also different in
the nature of the underlying technology, such as the RAN,
edge and cloud domains. Furthermore, it shall be noted that
an XR service can have different components (VNFs) running
on different domains.

In order to manage the different domains, multiple NFV
MANO instances, one for each domain, exist inside the
deployment plane. Each NFV MANO can be decomposed
into an NFV Orchestrator, a VNF manager, and a VIM; as
per the ETSI NFV architecture. The NFV Orchestrator is
responsible for the onboarding of NSs and VNFs and for

performing the lifecycle management of NSs. It is also respon-
sible for the validation and authorization of changes to the
resources allocated to the VNFs. The VNF manager is respon-
sible for the lifecycle management of one or a group of VNFs.
Finally, the VIM is responsible for managing the infrastructure
resources. Specifically, it manages the computational, network
and storage resources.

The existence of different domains necessitates networks
that connect/stitch all these domains. The component that
is responsible for managing these networks is called the
WIM, WAN—Wide Area Network—Infrastructure Manager.
The WIM is a special case of a VIM. While the latter manages
all of computational, storage, and networking resources, the
former is specialized in managing networks. Its main objective
is to connect/stitch the different VNFs within a single domain
or across several technological and/or administrative domains.
The deployment plane can accommodate several WIMs, used
to “stitch” the different NSs that are deployed in different
domains.

The virtualization layer offers a unified view of the com-
putational, storage, and network resources. This unified view
helps to aggregate and seamlessly run VNFs on top of the
infrastructure. An NS can be composed of multiple VNFs,
able to run either on VMs or on containers. Up until recently,
both VMs and containers could not be run on the same
infrastructure. Recently, ETSI defined the container infras-
tructure service management (CISM) that enables MANO
infrastructure to support containerized workloads, and thus,
VMs and containers can coexist on the same infrastructure.
The main responsibility of CISM is to manage the infrastruc-
ture’s resources and to perform the lifecycle management of
the containers running on top of the container cluster. ETSI has
proposed different architectures on how the container cluster
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can be implemented [41]. For instance, the containers can be
run on bare metal, in VMs, or they can be distributed between
the two.

Monitoring the running VNFs is of utmost importance.
It is the foundation upon which the functionalities of the
domain-specific monitoring and reaction plane as well as the
functionalities of the E2E conducting plane highly depend.
Indeed, in order to be able to predict service-level agreements
(SLAs) violation, and to promptly react to and mitigate such
events, a thorough monitoring of the infrastructure and the
running software is mandatory. The monitored data can differ
in location and in nature. The monitored data can be service
level information that can be gathered from VNFs. It can be
infrastructure level, such as computational, storage, and sand
network data. It can be also data from the end users, such
as the QoE. Thus, besides the VNFs, a myriad of monitoring
agents are deployed across the infrastructure and at different
levels.

C. Domain-Specific Monitoring and Reaction Plane

The domain-specific monitoring and reaction plane is
responsible for managing only one domain. Its main responsi-
bilities are: 1) keep track of the resources consumption and of
the XR services running in the domain; 2) process the moni-
tored data; and 3) perform local analytics, make decisions and
carry out the actuation which are specific to each running XR
service.

This plane keeps track of the domain resource usage and
lists the domain capabilities and the domain running services.
The advantages of recording this kind of information are man-
ifold. For instance, a “service registry and discovery” entity
would allow different tenants to reuse and share the same ser-
vice. Similarly, prediction mechanisms can use the evolution of
resource utilization to predict eventual SLA violations and/or
service degradations.

One of the responsibilities of this plane is the collection,
filtering, and preprocessing of the monitored data. Data col-
lection is done by agents located within the infrastructure,
beside the VNFs. There are mainly two types of data collec-
tion agents, namely, the ones using the push method and the
ones using the pull method. The former type resides beside the
monitored entity and send the collected data to a server (i.e., a
corresponding service or micro-service at the domain-specific
monitoring and reaction plane), whilst the latter type sends the
collected data only when instructed/inquired by the relevant
service. Generally, both of these methods coexist in the same
infrastructure. Filtering monitored data helps reducing the data
size to be processed, by filtering out duplicates and unneces-
sary data. The level of filtering can be dynamically adjusted
according to the needs of the monitored XR application. The
preprocessing can have multiple forms. Its main purpose is
to help other entities to seamlessly ingest the monitored data.
For instance, it can be in the form of feature extraction algo-
rithms that help reduce the feature number and the dimension
of the data which, in turn, reduces the needed bandwidth for
transfering the monitored data. It can be also in the form of
converting the data into a specific format. Preprocessing can

also consist of a distributed ML algorithm whereby the first
few layers of the neural come network are calculated close to
the data source [42].

Following the ZSM framework, this plane implements a
local automation loop [43]. This loop consists of the mon-
itoring entity described above, that is shared among all XR
services, an analytics engine, a decision engine, and an actu-
ation engine, that are dedicated to each XR service. The
analytics engine consists of algorithms that ingest the mon-
itored data and then produce insights or alerts. For instance,
such algorithms can predict the state of the service, detect
misbehaving services and attacks, and identify optimizations
that can greatly enhance the QoS. These algorithms are mostly
designed using ML algorithms. The decision engine uses the
insights gained from the analytics engine in order to derive
its decisions. It can receive alerts from the analytics engine,
as it can directly ingest low-level monitored data. Its main
purpose is to make sure that the running XR services keep
meeting their SLAs. It can carry out decisions such as service
recomposition, service migration, or even slight VNF reconfig-
urations. Finally, the actuation engine’s role is to decide how
to implement the decisions that were made by the decision
engine. Mainly, it is responsible for translating decisions into
actions, and executing the produced actions within the relevant
entities.

D. E2E Conducting Plane

The E2E conducting plane is responsible for managing
the overall XR framework. It is the entry point for XR
providers/developers from which they launch their services.
It is also responsible for the lifecycle management of XR
services.

This plane keeps track of all the running XR services. It
records, near real time, information about the resource con-
sumption of all domains. It also holds information about
domain capabilities and generic XR service blueprints. Thus,
it is the main place where XR service planning is con-
ducted. Indeed, upon receiving a request from an XR
provider/developer, it translates the request into a blueprint,
selects the set of domains where the service will be split
upon, and finally carries out the negotiation with the respective
domains.

Similar to the automation loop in the domain-specific mon-
itoring and reaction plane, this plane also contains a loop.
There is a loop for each XR service and it is responsible for
E2E level service recomposition. The E2E analytics engine
takes inputs from analytics engines of all domains where the
XR service is running. Correlations between monitored data,
produced from different domains, are used to produce alerts
and state predictions of the XR service. The robustness of the
E2E analytics engine algorithms is an important issue since
this engine is responsible for monitoring E2E KPIs.

Even in cases whereby E2E KPIs are monitored by user
equipment (UE) for reliable detection of service degradation,
the E2E analytics engine is responsible for finding the rea-
son behind such service degradations. The role of the E2E
decision engine is to decide on the course of action that needs
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to be taken in order to keep the XR service up and running.
This means that the E2E decision engine can perform ser-
vice recomposition per domain as it can perform an E2E-level
service recomposition. Such decisions may consist in VNFs
reconfiguration, scale-up and scale-down operations, VNFs
migration, or even domains reselection. There are multiple rea-
sons why service recompositions may become required [44].
For instance, they may be due to security concerns, to avoid
a future service degradation or mitigate an existing one, or to
optimize the resources utilization by the XR service. Finally,
the E2E actuation engine is responsible for implementing the
decisions made by the E2E decision engine.

During the last few years, the DevOps concept is becoming
highly popular, as there is a growing number of companies that
are embracing that concept. DevOps brings down the separa-
tion between the development team and the production team,
which results in a smaller time to market for new features and
products. One of the main pillars of DevOps is automation,
which consists in automating the build, the deployment, and
the monitoring of an application. Therefore, a CI/CD pipeline
is needed in order to automate the build and deployment of
XR services. This pipeline is used to integrate the service pro-
vided by an XR developer with the services provided by other
developers or by the XR platform itself. Once the new ver-
sion of the service is thoroughly tested, it can be deployed.
For instance, the pipeline can perform a rolling update, where
the newest version of the service is gradually deployed, as it
can expand testing by performing a canary deployment, where
only a fraction of the XR traffic is routed to the newest version
of the application.

E. Integration Fabric

The integration fabric enables the interoperation and com-
munication between the different functions. Through the inte-
gration fabric, the different functions play both roles of service
consumer and service producer. It allows registration and dis-
covery of services, which means that services should be able
to register and be added into a catalog. Services can discover
each other by searching the catalog for specific capabilities. It
also allows the invocation of services, either by a direct request
to a specific service or by a request to a class of services
(Service Mesh concept). The integration fabric also offers ded-
icated communication channels between the different services.
All of these features are protected by an authentication and
authorization service.

The integration fabric inside the domain-specific monitor-
ing and reaction plane and the E2E conducting plane helps
the components interplane communication. It allows having
default secure communication channels between the differ-
ent components. The cross-domain integration fabric helps the
communications between the domains and the communication
with the E2E conducting plane.

F. Use Cases

In what follows, we shall show how XR services can lever-
age the XR platform to ensure the best performances. XR

services are and will be used in many industries; entertain-
ment and communication will be deeply impacted. One of
the XR use cases will be the organization of remote live
concerts where the musicians are depicted as holograms. In
such a configuration, a band can perform live for a crowd
that is split into several venues across different cities or even
countries. Each venue can have a different type of hologra-
phy devices. Also, the holography devices can be set up in
concert halls, amphitheatres, stadiums, and even parks. The
band members can perform from separate locations, while all
different streams are sent to the different venues where they
are synchronized. This use case has very stringent latency and
bandwidth requirements, as the former should be extremely
low, to ensure a good sound quality, and the latter can be in
the realm of many Gbps (and even Tbps) for each hologram.

In order to implement the above scenario within the XR
platform, the cooperation of multiple actors should take place.
The musicians are considered content providers, while the
crowds are content consumers. Both of these can be considered
as end users. An XR provider is responsible for installing the
infrastructure in the end-users places, providing the software
that gathers the input, synchronizes the streams, and converts
the output to the right format, in the case of different hologra-
phy rendering technologies. The XR provider needs multiple
network and service providers in order to run the needed soft-
ware and to connect all the actors together. Thus, the XR
provider would need an XR platform in order to deploy and
maintain the smooth running of the service.

G. Procedures for XR Services Deployment and Management

This section presents the procedures of the XR platform that
help in the deployment and maintenance of XR services.

In what follows, we consider the use case of a live XR con-
cert using holography, where two musicians, present in two
different cities, perform a live show that is projected in three
venues, a music hall, a stadium, and a park. Given the ultralow
latency requirements for music and the extremely high band-
width requirement for holography, two network links would
connect each musician to the cloud. Due to the fact that the
synchronization of music happens in the cloud, links with
deterministic latency should be used to carry the sound from
the musicians to the cloud. For the holography links, some pre-
processing can take place in the edge, close to the musicians,
and the rest of the processing takes place in the cloud where it
is also synchronized along with the audio before streamed to
the crowds. Fortunately, due to human perception, the synchro-
nization between audio and video is not very restrictive [45].
Finally, the resulting stream is sent to the three venues, where
it is decoded, adapted to the holography devices and projected.
Given the nature of the venues, the required resources for each
venue may differ. Indeed, the stadium and the concert hall can
have a wired connection with processing power that belongs
to the XR provider acting as an edge, while the park venue
would use wireless technology coupled with edge providers.

1) Launch of XR Service: The instantiation of an XR
service follows the procedure illustrated in Fig. 2. An XR
provider can be contacted by an end user in order to launch



TALEB et al.: TOWARD SUPPORTING XR SERVICES: ARCHITECTURE AND ENABLERS 3575

Fig. 2. Launch of a new XR service.

an XR service. The XR provider sends a request to the XR
platform detailing the service to be launched. The XR plat-
form or the E2E conducting plane checks if the service can
be launched in the current state of the platform. This feasibil-
ity check makes sure that the platform has enough resources
to accommodate the new service. Using a Blueprint Template
Repository and an Enabler Repository, the request of the XR
provider is translated into one or multiple detailed blueprints
characterizing the XR service to be deployed. The XR plat-
form checks the feasibility of the blueprints and selects one of
them to be deployed. Once a detailed blueprint is selected, the
domains that will host the XR service are selected. To launch
services inside the domains, the E2E conducting plane uses an
entity dubbed cross-domain resource MANO that offers a uni-
fied interface to all administrative and technological domains
composing the XR platform. This interface first instantiates the
required services for the E2E automation loop, and then initi-
ates the automation loops of the new XR service within each
domain and connects them to the E2E automation loop. For the
MS, this can consist in setting up a monitoring system (e.g.,
Prometheus) that is specific for the XR service. For the AE
and DE, it can consist in connecting them to all the relevant
monitoring systems and also publishing their capabilities so
they can be used by other services. The automation loops can

be considered as a platform that can hold the algorithms for
AE and DE. These algorithms can be dynamically added and
removed at runtime. For instance, in the AE platform, it is pos-
sible to have many ML models for different purposes whereby
they can be replaced by newer versions when needed. While
in DEs, it is possible to have different ML models running in
parallel voting on what would be the best decision, some of
these algorithms may be proposed by the XR platform, XR
providers, or even by third parties. Finally, the E2E conduct-
ing plane launches and configures the service function chains
(SFCs) inside each domain, and uses the WIM to stitch the
different SFCs across the different domains. The VNFs com-
posing the SFCs should have monitoring agents that report to
the domain-specific automation loop. Once the E2E XR ser-
vice is up and running, the E2E conducting plane informs the
XR provider that the XR service is ready, and ultimately the
end user is accordingly notified.

2) Modification of XR Service: Fig. 3 depicts the proce-
dures to modify slices in order to preserve the good func-
tioning of an XR service. When an analytics engine notices
or predicts a significant degradation in QoS/QoE in the near
future, it sends alerts to the decision engine of its own domain.
If the domain-specific decision engine can mitigate the issue
inside the domain, it sends its decision to the respective
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Fig. 3. Multidomain XR service reconfiguration.

actuator that will implement the decision within the bound-
aries of the domain. If the domain-specific decision engine
cannot resolve the issue at the domain level, it sends a modi-
fication request to the E2E decision engine. The E2E decision
engine may also receive alerts directly from the E2E analyt-
ics engine. After receiving an alert or a modification request,
the E2E decision engine can decide to gather more insights
and search for a new service recomposition that will keep the
XR service healthy. Once a feasible configuration is found, it
sends it to the E2E actuator. The latter translates the decision
into actions and sends them to the relevant domains and/or
XR device controllers.

IV. OPENRAN FOR XR SERVICES

OpenRAN is an initiative led by most big actors of the
telecom industry toward providing an open RAN solution. It
consists in defining open and interoperable interfaces, virtual-
izing the RAN infrastructures and enabling RAN intelligence
by leveraging AI and ML techniques [46]. Providing open
interfaces and driving their standardization helps opening the
RAN from a single-vendor closed environment to open mul-
tivendor deployment, enabling in the same time vendors,

operators, and third parties to deploy innovative solutions
and services as RAN applications. RAN virtualization would
maximize the use of common off-the-shelf hardware and
would allow to elastically deploy RAN service on the cloud,
while AI/ML permits the optimization of the (virtual) RAN in
real or near-real time.

The main idea behind OpenRAN is to drive the RAN to
become multivendor and to open it to vendors, network oper-
ators, and third parties. This would permit to incorporate
more intelligence at the RAN level. Such openness permits
many small actors to build AI/ML solutions that can greatly
improve the performance of the RAN, it would permit also
service providers to customize RAN behavior to better suit
their service needs. In short, OpenRAN can help reduce the
network CAPEX and OPEX, it can improve the efficiency and
performance of the network, and due to the enhanced agility
of its architecture, it can quickly integrate new capabilities.

OpenRAN architecture consists in a Service Management
and Orchestration (SMO) framework that contains the nonreal-
time radio intelligent controller (Non-RT RIC), a Near-RT
RIC, and all the interfaces between these and RAN com-
ponents, such as remote unit (RU), centralized unit (CU),
distributed unit (DU), and gNB base stations in the case of
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5G deployments for instance. The SMO manages the cloud
resources and the network functions whether being physi-
cal network functions (PNFs) or virtual/cloudified network
functions (VNFs). The Non-RT RIC enables intelligent RAN
optimizations in nonreal time, i.e., it leverages the services
of SMO in order to provide a policy-based guidance lever-
aging AI/ML techniques. Near-RT RIC is considered as one
of the RAN functions. Guided by the guidance of Non-RT
RIC, Near-RT RIC also leverages ML models to offer a
near-real-time optimization of the RAN.

OpenRAN is expected to greatly improve the QoE of XR
services. Leveraging AI/ML techniques, it can achieve intelli-
gent and proactive traffic steering capabilities which can offer
some performance guarantees in the face of changing radio
conditions. Also, it can help shifting from the current semi-
static QoS framework toward service specific QoE prediction.
This helps ensure proactive network optimization where the
radio resources can be allocated in advance just before QoE
degradation happens. OpenRAN allows dynamic configura-
tion of the RAN resources, which, for instance, is changed
according to the type of services requested by the users or
by the status of the network. For instance, during congestion
times, when the RAN would not be able to satisfy the require-
ments of all users, while by splitting the resources among all
users would lead to poor QoE for them all, it may be bet-
ter to reconfigure the network to satisfy the requirements of
some prioritized users. The openness of the interfaces can help
XR service providers to improve their services by implement-
ing mitigation strategies at the service level according to the
information reported by the RAN. For instance, such mitiga-
tion strategies consist in changing the resolution, frame per
second (fps), or the used codecs [47], [48].

The proposed architecture natively supports the OpenRAN
approach. Indeed, the RAN domain can be regarded as an
instance of a “Domain-Specific XR Service Monitoring and
Reaction Plane” where the SMO would be forming the closed-
loop that drives the domain. In this particular instance, the
Non-RT RIC would be encompassing all of AE, DE, and ACT.
The openness of OpenRAN would permit the XR platform to
dynamically deploy new policies to be followed by the Non-
RT RIC or even replace it by another algorithm if deemed
appropriate. This would allow the RAN to be continuously
and dynamically configured to always support the currently
deployed XR services.

V. NEW IP FOR XR SERVICES

During the last decade, there has been a dramatic change in
the very fabric of the applications produced. Concepts, such
as Holography and XR are no longer considered novelties but
actual application features that need to be implemented in a
manner that guarantees that the various QoS requirements are
met. The fact that it is of paramount importance for these
applications to be able to operate in real time in order to pro-
vide an immersive experience to the end user makes them
extremely latency–sensitive. On top of that, holography-based
applications, in particular, require by nature huge amounts of
bandwidth to be allocated. In other words, it is imperative

to introduce network mechanisms that are able to provide:
1) guaranteed low end-to-end latency and 2) optimal utilization
of the available bandwidth.

Up to this point, standard TCP and UDP have been consid-
ered the de facto transport layer protocols. Unfortunately, they
do not seem to be able to keep up with the ever-changing land-
scape of cloud-based XR applications. Both of these protocols
bear two distinct shortcomings that jeopardize the network’s
ability to keep up with the QoS requirements in regards to XR
applications. The first one is their inability to guarantee a low
upper bound of end-to-end latency [49], [50]. The second one
is the fact that both of them, in their original form are not
designed to optimally utilize the available network assets. The
New IP initiative was introduced by the ITU-T Network 2030
Focus group. The New IP initiative is the study of various tech-
nologies that have been identified as of vital importance for
the next evolution of the Internet. These technologies aim to
provide advanced flexibility and deterministic services in the
already established network paradigms. In order to do so, it is
essential to reexamine the modus operandi of certain aspects
of the Internet data plane, the protocols involved, and the sub-
sequent architecture. The backbone of the New IP initiative is
the New IP datagram format. This particular datagram format
incorporates offsets that correspond to advanced functionalities
that are crucial to XR applications. One of them is referred to
as the New IP Payload. The purpose of the New IP Payload is
to establish additional context for each payload. This type of
context serves as a form of representation of the significance
of each piece of information within each payload. That way,
information within payloads can be rearranged in a manner
that corresponds to their significance.

The inclusion of the New IP Contract facilitates a plethora
of services, as well as their operational and administrative
control at a level of packet granularity. Contrary to tradi-
tional QoS, Contracts are assurances that are implemented
at packet level. Contracts are implemented via various spec-
ified Actions. Via the use of Contract Clauses, it is possible
to specify under which conditions an Action is performed.
As an example, let use a generic operation that selectively
removes information from a payload each time there is not
enough available bandwidth. Generally speaking, holography-
based applications are notorious for being bandwidth intensive.
Thanks to the New IP Payload, we know the relative posi-
tion of the bytes of information that are less significant and
thus their removal would not greatly affect the overall service.
Thus, via the implementation of the New IP, it is possible to
choose which parts of the actual Hologram to deliver/display,
in case there is not available bandwidth for the entire structure.
Two additional Actions that cater to the latency-related needs
of XR applications are described in [11]. The first one is the
Bounded Latency Action that instructs the router to deliver a
packet within a specified time horizon. The second one is the
Coordinate Action that allows multiuser applications to adjust
the timing of their corresponding packet deliveries.

The significance of these Actions becomes rather appar-
ent when contemplating two distinct requirements that the
majority of XR applications share. The first one is the low
end-to-end latency. In addition to that, some XR traffic flows
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are temporally correlated to other ones. This fact introduces
the necessity to facilitate synchronization among specific traf-
fic flows. Due to these issues, the Deterministic Networking
Working Group [51] was established. Although it is clearly
stated that the Deterministic Networking Working Group is
not involved with the modification of transport protocols, like
the variations mentioned above, the study of technologies that
operate alongside them is well within its scope of operations.
The cornerstone of Deterministic Networking is the creation
of deterministic data paths that are able to guarantee bounds
of latency, loss, and jitter. The data paths are formulated in the
context of layer 2 bridged and layer 3 routed segments. The
New IP initiative focuses on large layer 3 networks and more
specifically on developing methods of flow identification and
packet forwarding over layer 3.

By classifying data flows, it is possible to establish specific
data paths for the time-sensitive traffic flows. The reservation
of specific network assets for each latency-sensitive service
provides network-layer certainty of information transmission.
Furthermore, by classifying data flows, one may simultane-
ously facilitate time-sensitive and best-effort services. This
takes place by distributing the available transmission medi-
ums between DetNet and non-DetNet flows in a fair man-
ner. DetNet-enabled devices contain ports; each of which is
equipped with a specific number of queues that are utilized by
DiffServ and Best-Effort traffic. Each DetNet-enabled device
in the network can be configured to utilize per-class or per-flow
queuing [52].

The IEEE standard named IEEE 802.1Qch [53] (Cyclic
Queuing and Forwarding) introduced the concept of cyclic
operations in regards to coordinating queue and dequeue func-
tionalities. The utilization of CQF relies on dividing time into
intervals. Two queues are utilized for each class in order to
perform enqueue and dequeue functionalities in separate time
intervals. That means a traffic flow that arrives in interval x
shall be put in one queue and shall be transmitted via the other
queue during the x+1 interval. Then, the resulting frame shall
arrive to a specified switch during the same time interval. This
sets a harsh bound that dictates that the propagation latency
has to be less than the selected time cycle. As a result, CQF
is not suitable for large-scale networks due to the inherent
difficulty of properly choosing a suitable time cycle. In [54],
Cycle Specified Queuing and Forwarding is proposed in order
to solve this issue. CSQF is rather similar to CQF with the
exception of utilizing an explicit description of the various
transmission cycles at every DetNet node present in the path
spanning from source to destination.

Furthermore, the New IP initiative entails another key con-
cept that needs to be taken into consideration in order to
establish efficient forms of networking that are able to support
next-gen XR applications. This concept is Multipath Routing.
Multipath Routing is the simultaneous management and uti-
lization of multiple paths in order to transmit streams of data
flows. The implementation of this concept offers certain ben-
efits, such as fault tolerance and increased bandwidth. Each
stream is assigned a separate path. By doing so, multiple trans-
mission queues are created, thus ensuring better utilization
of the available bandwidth. In case the number of streams

exceeds the number of available paths, some of them are cho-
sen to share the available paths. On top of better transmission
performance, Multipath Routing introduces advanced fault tol-
erance by assigning an alternative path to the stream, should
the established one fail.

One way of implementing Multipath Routing is by utilizing
routing strategies that operate in combination with the existing
protocols. Equal-Cost Multipath Routing is the most notable
Multipath Routing strategy. It is implemented by distributing
traffic among various equal-cost paths by utilizing hash func-
tions. One significant drawback of using this routing strategy
is that it does not take into consideration the changes that are
bound to occur in the status of the network status. This inabil-
ity to keep up with the dynamic nature of the network leads to
suboptimal load balancing. In [55], the Internet Engineering
Task Force introduces Multipath TCP which is a set of exten-
sions to standard TCP. These extensions enable transport
connections to take place by utilizing multiple paths simulta-
neously. However, all the solutions explored to this point fail
to provide a low upper bound of end-to-end latency. In [56],
latency-controlled end-to-end aggregation protocol (LEAP)
is introduced. LEAP is a multipath transport layer protocol
that provides probabilistic end-to-end performance guarantees
thanks to path multiplexing and interflow coding. The utiliza-
tion of packet-level encoding enables the information of each
data flow to be carried through all the available paths. The
information is then retrieved at the destination. In [57], a rather
similar approach is explored in the context of UDP for video
streaming.

VI. TOOLS AND OPEN SOURCES

Recently, we have witnessed an explosion of tools and open-
source components focused on service, network, and infras-
tructure orchestration. ETSI-MANO aligned implementations,
such as Open-Source MANO (OSM), ONAP, OpenBaton, or
OPNFV, have been under active development in the last few
years and are increasingly mature (and complex). Driven by
the telecommunication sector, such MANO solutions leverage
the advances of the virtualization and containerization tech-
nology to create a more cost-efficient and flexible approach
for the deployment and management of VNFs and NSs on top
of commodity hardware.

For instance, OSM, one of the most popular community-
driven solutions, is an ETSI-hosted project used to model
and orchestrate NSs with the support for different VIMs.
In the proposed XR platform, these MANO tools can fit
the XR Service Deployment Plane where distinct domains
(and implementations), both technological and administrative,
might coexist. Moreover, this multidomain vision requires
an integrated cross-domain resource component, such as an
actual ETSI MANO instance with multidomain support or an
additional tool, such as Apache Libcloud or Terraform. The
cross-domain resource component allows abstracting the dif-
ferent infrastructure providers APIs and provides the required
interoperability across distinct underlying environments. For
instance, Apache Libcloud allows interacting with multiple
popular cloud providers using a unified API, whilst Terraform
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can be used to reassemble a single workflow to efficiently man-
age infrastructure and specify different component blueprints
(i.e., compute instances, storage, and network) within dis-
tinct service providers. Additional tools such as the Openslice
can also have an important role into the onboarding and
management of NSs and VNFs.

On the other hand, the implementation and management of
a virtualization infrastructure is a great challenge. It requires a
comprehensive approach to stitch together the ephemeral and
distributed large number of microservices. Multidomain use
cases require such microservices to be deployed and located
across multiple infrastructure providers. In the same way, the
wide spread of diverse edge/cloud environments impose differ-
ent challenges pertaining to the automation and optimization
of the overall orchestration process, the needed observability
over the infrastructure (both north-south and east-west network
traffic), and the security and privacy enforcement of the XR
services across these hybrid edge/cloud environments.

In that regard, Kubernetes have become a de facto plat-
form to support the orchestration of microservices within a
Cloud-Native environment. Kubernetes, a cloud-native com-
puting foundation (CNCF) graduated project and supported by
all the major cloud providers, is today a popular choice for the
deployment, automation, and management of container-based
services and applications. Indeed, many distinct Kubernetes
distributions (and platforms built on the top of Kubernetes)
exist like OpenShift, AWS Elastic Kubernetes Service, Google
Kubernetes Engine, Azure Kubernetes Service, or even
Kubernetes-based platforms designed with lightweight envi-
ronments in mind, such as Rancher, K3S, Microk8s, or
KubeEdge. The later ones are more focused on resource-
constrained deployments, such as local or edge domains. Thus,
in the proposed XR platform, Kubernetes can be explored to
support the container-based workloads of the envisioned next-
generation applications. Additionally, tools such as KubeVirt
can be also considered to address the inevitable transition-
ing from classical VM-based workloads through a common
platform.

The myriad of integration approaches and technology
options generates a side effect which results in highly complex
and heterogeneous environments, especially when consider-
ing edge/cloud environments, as mentioned before. Within the
proposed XR platform, this means the possibility to provide
not only the requiring stitching between the provisioned XR
services but also an efficient integration and communication
among all the components of all planes and domains, includ-
ing the Domain-Specific XR Service Monitoring and Reaction
and the XR Service E2E Conducting planes.

For Cloud-Native environments, one feasible path is to
leverage the concept of Service Mesh along with different
integration fabrics (i.e., the domain and cross-domain inte-
gration fabrics and the Conductor Integration Fabric). The
underlying Service Mesh concept relies on the usage of
network proxies (the so-called sidecars), together with each
service (or using different arrangements such as one proxy per
node). Then, those network proxies allow to observe, control
and implement security features across all the network traf-
fic between components. While this provides a more unified

approach to manage network communications within a Cloud-
Native environment, it also brings additional latency (i.e., the
network traffic needs to go through the proxies) and com-
plexity (i.e., they also need orchestration). Nevertheless, the
Service Mesh and the integration fabrics concepts might pro-
vide a more flexible communication strategy to support the
network communications among all the XR platform elements.

Numerous Service Mesh implementations have emerged in
the past years, such as Istio, NS Mesh, Linkerd, Consul,
Traefik Mesh, Open Service Mesh, or GlooMesh. Most of
these Service Mesh implementations rely on the Envoy side-
car implementation to realize the Service Mesh concept.
Still, some of them address different use cases like multi-
cluster management or support different network protocols.
For instance, Istio, one of the most widely used Service
Mesh implementations, works at layers 4–7. Amongst others,
Istio provides service discovery, traffic management capabil-
ities, traffic encryption between services, observability over
the communications, and built-in access control mechanisms.
Moreover, Istio and Envoy can also delegate the access control
to external policy enforcement tools such as the Open Policy
Agent. Rather than network focused, such an approach might
turn into a more comprehensive approach for applying differ-
ent policies across distinct components of the XR platform by
leveraging a common policy-driven strategy and syntax. On the
other hand, NS Mesh, another Service Mesh implementation,
working at layers 2 and 3, is a more recent attempt to support
an additional range of use cases and network protocols.

Moreover, given the ever-growing Service Mesh ecosystem,
a standard Service Mesh interface was proposed to unify the
consumption of Service Meshes APIs across different imple-
mentations. Such a standard interface plays a relevant role to
allow multidomain setups, as discussed before. In the same
way, specific tools, such as the GlooMesh, also address the
problem of integrating multiple and different domains through
a single management interface on top of already existing dis-
tinct Service Mesh environments. On the other hand, given the
additional hop in the network communications, the Service
Mesh concept implies a performance penalty in the already
strict requirements of an XR service. Therefore, aside from the
functionalities, the efficiency of different Service Mesh imple-
mentations needs to be considered for the full realization of
the proposed XR platform.

The monitoring and reaction plane and the notion of closed
automated loops are critical characteristics that shall be part of
the XR platform. These loops, as discussed before, rely on the
ability to collect and process different kinds of data as input
for the analytics logic. Such data collection, which shall occur
near real time, is essential to understand the services provided
by the XR platform, the network communications, and the
infrastructure (e.g., edge/cloud resources) where the various
components run. The Service Mesh concept can also sup-
port such monitoring by providing service and network-related
insights to the monitoring and reaction plane. Additional
monitoring-related tools, such as Prometheus, can be used
to gather insights from the different components in a more
comprehensive way. Prometheus is a widely used monitoring
solution for collecting and storing metrics from third-party
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systems, supported by a growing number of plugins. In the
proposed XR platform, Prometheus can be leveraged and inte-
grated with the Service Mesh sidecars up to the integration
fabric components. Other solutions, such as the ElasticSearch
stack, more focused on logs can also fit the overall monitoring
approach.

Likewise, for the feasibility of the integration fabric con-
cept (which comprises the messaging bus), multiple tools and
open-source components, such as Apache Kafka, RabbitMQ,
or ActiveMQ, amongst many others, can be leveraged. For
instance, Apache Kafka, one of the most widely used messag-
ing systems, has the notion of a distributed set of messaging
brokers organized within elastic clusters. Kafka brokers are
used to storing and serving messages. Those messages, orga-
nized by topics and partitions, can then be partitioned and
replicated, respectively, ensuring different service levels of
performance, durability, or fault tolerance, and that is accord-
ing to the needs of each use case. In the proposed XR platform,
Kafka has a decisive role in providing asynchronous bus
communication channels to interconnect the elements within
each domain and all the XR platform domains. In this way,
Kafka messages can be used to model all the communica-
tion functionalities (e.g., service registration, discovery, and
monitoring messages) and facilitate the integration with exter-
nal systems. As a reference example, OSM follows a similar
approach, whereby Kafka has the role of messaging bus for
OSM components.

VII. PERFORMANCE EVALUATION

Whilst the main intention beneath this article is to demon-
strate the feasibility of the proposed architecture in the real
world and that is by showcasing: 1) how compliant it is to
ongoing relevant standards and 2) what open sources and tools
that can be used for each component of the architecture, in
this section, we will carry out two sets of experimentation to
partially demonstrate that the architecture is effectively imple-
mentable. In the first experiment, we present some low-level
implementation details about the proof of concept showing
how the infrastructure would be constructed. We particularly
address the cross-domain orchestration and monitoring issues.
In the second experiment, we propose a smart mechanism
that minimizes resource usage while maximizing the QoS.
This mechanism is realized in a closed-loop fashion with
all of: 1) the monitoring agents; 2) the analytical engine
(i.e., prediction mechanism) that consumes monitored data;
and 3) a decision engine that decides when to ask for new
resources.

A. Proof of Concept—Application Deployment Time and
Resource Usage Monitoring

Continuous monitoring can be useful to minimize the
response time to incidents and to guarantee that the appli-
cations and the infrastructure behave as predicted. Namely,
tracking cluster resources, such as memory, CPU, storage, and
bandwidth, facilitates the process of managing cloud-native
environments. As discussed before, through specific moni-
toring agents, those monitoring capabilities, are an integral

Fig. 4. Topology of applications, adapted from [58].

part of closed-loops processes. With that in mind, hereunder,
we conduct an experiment to demonstrate the monitoring
capabilities on a Cloud Native deployment of the proposed
architecture.

Considering a scenario whereby an XR application is
deployed on multiple domains (i.e., having its microservices
deployed on different Kubernetes clusters) through the Cross
Domain Resource MANO, the Rancher tool was used in
the experiment taking into account its multicloud provider
support. Rancher enables the creation and orchestration of
multiple Kubernetes clusters, through a cluster agent that
is installed in all Kubernetes nodes. By having the support
for different cloud providers, Rancher can intermediate and
facilitate the orchestration of different domains. In the con-
ducted experiment, Rancher is used to set up a two-node
Kubernetes cluster that is used to deploy and monitor distinct
micro-service-based applications. Additionally, a Prometheus
and a Grafana installation are performed. This provides a
simple and efficient way to visualize several natively sup-
ported clusters and pod-specific metrics. By leveraging this
monitoring approach, and in particular the Prometheus tool,
additional XR-specific instrumentation would be achieved by
having additional libraries and Prometheus Exporters to expose
virtually all kinds of XR-related metrics

In order to thoroughly evaluate monitoring capabilities,
three different (i.e., topology-wise and purpose-wise) appli-
cations were deployed. A 2-tier application fulfils the objec-
tive of generating effective and realistic network traffic and
resource usage, with the use of iperf3 and stress-ng. A 3-tier
application serves the purpose of providing a simple-yet-
realistic standard architecture as a starting point for demonstra-
tion purposes. A 12-tier application consists of a Web-based
e-commerce application to showcase a complex and realis-
tic application. These different applications were chosen as
reference scenarios of how next-generation XR applications,
composed of numerous microservices and different topologies
as shown in Fig. 4, can be effectively monitored on a cloud-
native environment and their orchestration supporting a new
wave of prediction, scheduling, and intelligent orchestration
mechanisms.
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Fig. 5. Average pod deployment time of each application.

Availability is a critical factor when providing XR services
in cloud-native environments, since downtime (e.g., due to ser-
vice migrations) can negatively impact overall user experience.
To this extent, it is of the utmost importance to comprise a
mechanism for measuring application deployment time (i.e.,
the time it takes from creation to proper functioning), in
order to properly assess and regulate performance. Also, we
highlight the fact that this deployment time, we commonly
mention, does not account for service availability, i.e., we mea-
sure the time until the pod is running, not until the service
itself is accessible and fully operational (e.g., some databases
need time to migrate and web servers need time to initialize).

In order to evaluate the deployment time of the aforemen-
tioned applications, a component that calculates the deploy-
ment time based on events registered from Kubernetes was
developed, as out-of-the-box metrics reported by Kubernetes
(i.e., kube-state-metrics) neither provide such a mechanism nor
account for time spent pulling a container image. Fig. 5 shows
these time periods per pod and per application.

The observed values represent the average of five tests. The
deployment time of an application as a whole is obtained by
taking the maximum deployment time of its pods (i.e., the pod
that took the longest time to be deployed). Values registered
in Fig. 5 can be explained by the increasing complexity of
each application. Indeed, the more tiers, the longer it takes to
deploy an application. Additionally, in these tests, the images
were not pulled, since this process was already performed in
the first tests, and thus the images were present locally.

The first application has only two pods and does not show
relevant differences for deployment time between the two
pods. The second one has three pods, which depend on each
other, and this explains the differences between each pod’s
deployment times. The last one contemplates the same reason-
ing for the differences in pod deployment time, since it has
11 pods, with dependencies among them. Such dependencies
between services in cloud-native applications often exist and
might have an impact on numerous operations (e.g., service
migration and scaling). Microservice-based XR applications
are not expected to be different. Indeed, they are expected to
have complex topologies and numerous dynamic constraints.
Thus, their management in (near) real time is a fundamental
aspect of the envisioned orchestration.

Fig. 6. Stages included in deployment time (3-tier application case).

In order to understand the discrepancy in deployment times
across different services and applications, it is important to
dissect the various stages of the deployment process. This
process includes scheduling the pods, pulling the container(s)
image(s), and finally creating and starting it. Fig. 6 represents
the three services from application 2 (3-tier) and their deploy-
ment times. Even though the pulling stage depends on the size
of the image, it is the stage that takes the longest. In order
to counteract the image pull time, pods can be configured in
such a way that the pull is only performed if the image is not
present locally (cached) on the node bound to the pod. In this
case, the first time the deployment was performed, the images
were not cached and therefore were pulled, whereas subse-
quent deployments of the same pods did not need to pull the
container(s) image(s), thus realizing a short deployment time

Nevertheless, it is important to debate how such an approach
reflects on fast-paced and rapidly developing environments, as
it raises a multitude of questions regarding node configura-
tion and cluster management. Maintaining local images across
nodes becomes ever more difficult when dealing with multin-
ode, highly complex cloud-native environments. Prioritizing
deployment time at the expense of complexity is a matter that
demands its proper evaluation, and understanding its impact is
crucial in order to properly adapt cloud-native environments
to specific use cases. To get around this problem, one of the
possibilities is the use of smart caching techniques. The use
of these techniques during orchestration enables the prefetch
of the required images of XR services and places them in the
nodes or in close vicinity of the nodes.

In addition to measuring and analyzing deployment time,
it is also important to evaluate and analyze mechanisms that
allow for the visualization of resources (e.g., CPU and memory
usage) for predictive behavior of both the application and
infrastructure and thus take proactive actions to ensure the
effectiveness and efficiency of the platform. In this sense,
Grafana provides out-of-the-box dashboards to visualize such
metric, as Figs. 7 and 8 portray.

The graphics show the CPU usage and the memory usage of
the deployed 12-tier application. This application has different
pods, each with different functions, which explains why dif-
ferent containers use the memory differently, depending on
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Fig. 7. CPU usage graph in case of the 12-tier application.

Fig. 8. Memory usage graph in case of the 12-tier application.

their function. Likewise, a multiuser XR application might
behave differently according to the environment, the num-
ber of instances, users or even different settings of each user.
Monitoring the resource usage at the pod level (or at the appli-
cation level) as part of the closed-loop mechanims, is useful to
detect early deviations that might indicate unhealthy situations
or be used to predict individual service behaviors.

B. Closed-Loop Example

In this experiment, we demonstrate the operation of the
domain automation loops by introducing a proactive autoscaler
in the “XR Service Specific Decision Engine” component
interface of the architecture. The key concept is to showcase
the benefits of incorporating AI in the domain automation
loops, when considering requirements that are characteristic
of XR applications, such as latency and throughput.

Off-the-shelf autoscalers for Kubernetes-like nodes are oper-
ating mainly based on compute resource utilization metrics. As
such, they are detached from the application-specific character-
istics that are more directly linked to the quality provisioning
levels in comparison to, e.g., CPU and memory utilization. XR
application workflows are such an example, in which scaling
strategies should also consider parameters that are related to
the actual workload of the application. Furthermore, reactive
autoscaling suffers from the inherent problem of the runtime
deployment overhead. Depending on the technology, scaling
operations (in-out or up-down) may introduce an overhead in
time or costs that is suboptimal. This is particularly relevant
in the XR-application workflows, where the application com-
ponents are provided as large VMs (sometime in the order of
dozens of GBs). On the other hand, proactive scaling mecha-
nisms formulate decisions based on predictions that are created
by a dedicated predictive mechanism. Given that each type
of computational node requires a different time to complete

its scaling operations, it is quite useful to perform multistep
prediction to have access to a wider range of information
regarding the expected state of the resources.

Toward that end, we employed the proposed architecture
that enabled the out-of-the box integration of a model for
proactive autoscaling that considers a richer state space than
mere runtime compute utilization. The model is based on a
novel multistep Deep-Learning prediction mechanism [59] that
was originally used to predict network traffic. We conducted an
experiment to evaluate this mechanism against a typical reac-
tive autoscaler. The results have shown that the architecture
facilitated the smooth integration of the model as a plug-in,
maintaining its generic mechanisms for monitoring, analysis,
and actuation.

The experiment is comprised of the following steps.
1) A reference implementation of the platform architec-

ture domain automation loops is created using the
CloudSim Plus9 environment. The simulation itself is
based on typical requirements of an XR application.
The workloads produced closely resemble the ones
that are associated with XR applications. Furthermore,
information regarding these workloads is extracted from
dedicated load-balancer entities that are in charge of
properly distributing the workloads among the available
computational nodes.

2) A proactive autoscaling model is trained based on the
characteristics of the XR application. The model is inte-
grated in the reference implementation to instantiate the
logic of the XR Service Specific Data Analytics and
Decision Engines. The performance of that system in
terms of latency, throughput, and computational cost is
then compared against a baseline reactive autoscaler. In
both cases, the action of scaling up or down is conducted
by the XR Service Specific Actuation Engine.

To evaluate a proactive autoscaler as part of a closed-control
loop, described in the proposed architecture, we conducted
a large-scale simulation using the CloudSim Plus environ-
ment. The duration of the simulation was one week and it
included almost two million tasks that were produced and sent
to the available computational nodes to be processed. The task
production rate was based on multiple Gaussian probability
distributions in order to simulate various typical periodic pat-
terns in task production, as well as numerous sudden bursts in
task production that are statistically likely to happen. The task
distribution among the available computational nodes was con-
ducted using a standard Round Robbin algorithmic approach.
The simulation is based on two distinct time cycles. The first
one is the production of tasks that take place once every
second and the second one is the measurement of the tasks
that were sent to each computational node during the last
minute. The decision to scale up or down is being made once
per minute independently for each computational node based
on the measurement that corresponds to its number of tasks.
During our experiments there were five computational nodes
that were always operational and fifteen more that could be
allocated if the scaling mechanism decided to do so. It was
decided that the time that is required for the deployment of

9https://cloudsimplus.org/
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TABLE I
EVALUATION OF STANDARD REACTIVE AND INTELLIGENT PROACTIVE

SCALING MECHANISMS

a new computational node should be set to 5 min in order to
be similar to the one that is required by VMs. After exten-
sive research on various use cases, it was concluded that each
computational node could handle at most an average of 50
tasks per minute, without showing any signs of deteriora-
tion in its performance. Thus, an upper-bound threshold of
40 tasks per minute was established. During the experimen-
tal evaluation, two scenarios were explored. During the first
one, a standard reactive scaling mechanism was used. The
reactive scaling mechanism is designed to allocate additional
computational resources every time one of the working compu-
tational nodes receives more than 40 tasks per minute. On the
other hand, in order to avoid over-provisioning of resources,
each time a computational node receives less than ten tasks,
this specific computational node is deallocated. A computa-
tional node can only be decommissioned, after all the tasks
that were sent to it, have been fully processed. The second
scenario is based on the use of an intelligent proactive scal-
ing mechanism. The intelligent proactive mechanism operates
in a similar manner with the exception that the scaling deci-
sions are being made based on the predictions that are being
produced by our Deep Learning-based prediction mechanism.
Each computational node has a dedicated prediction mecha-
nism that receives as input the last six measurements of tasks
and produces a multistep prediction that corresponds to the
next six 1-min time steps. At this case, we are only interested
in the last time-step of the prediction since it is vital to gain
knowledge regarding the number of tasks that shall be pro-
duced in a time horizon that surpasses the 5-min mark that is
required to deploy a new computational node.

When comparing the two experimental scenarios, the results
shown in Table I are obtained. The results are as follows.

1) The overall average latency that corresponds to each task
was 3.141-s during the reactive scenario and 0.609 s
when using the intelligent proactive scaling architecture.
That shows an improvement of about 515%.

2) The average latency of each task during the 200 time
steps when the most violent spikes in task production
took place was 0.712 s for the proactive scenario and
5.181 s for the reactive one. Once again, that shows an
impressive improvement of 728%. Furthermore, these
results show that during times of extreme increase in task
production, the ability of the intelligent proactive scaling
mechanism to guarantee a comparatively low latency is
reduced by about 15%, while the ability of the reactive
scaling mechanism drops by a significant 165%.

3) In terms of throughput during the ten-time steps when
the most violent spikes in task production took place, the
intelligent proactive scaling mechanism and the reac-
tive scaling mechanism managed to complete 15219
tasks and 9489 tasks, respectively. That means that the

incorporation of AI managed to improve the throughput
metric as well by a margin of about 160%.

4) All these significant improvements in the performance
come at a cost. Thankfully, the incorporation of AI
managed to keep this cost to a minimum. During the
simulation, the proactive scaling mechanism utilized 6%
more computational resources. More specifically, the
average allocation of computational nodes during the
entire simulation was 9.71 VMs for the reactive scal-
ing mechanism and 10.31 VMs for the proactive scaling
mechanism.

When taking all these factors into consideration, it becomes
apparent that the incorporation of AI methodologies in closed-
control loops, such as the ones explored within the context
of this article can provide substantial benefits in terms of
reduced latency and increased throughput. Both these metrics
are extremely important in the context of XR applications.

VIII. CONCLUSION AND FUTURE WORKS

There are clear signals that in the near future, XR appli-
cations will challenge the computing and communication
infrastructures requiring an unprecedented level of QoE, def-
initely beyond the one that can be achieved with nowadays
technologies. This work proposes an architecture that puts
together the key enablers to support the challenges for the
support of future XR applications, considering the shortcom-
ings of existing technologies and the ongoing innovations. The
design of the proposed XR platform follows the approach at
the basis of the ZSM framework to create self-managed E2E
network slices. Such a platform is organized around three
planes: 1) the deployment plane (i.e., focused on the man-
agement of the compute, network, and storage resources);
2) the domain-specific monitoring and reaction plane (i.e.,
responsible for monitoring the service inside a technological
or administrative domain); and 3) the E2E conducting plane
(i.e., working at the level of services, thus aimed at creating
subslices in each domain and monitoring the E2E KPIs of
the XR services or shifting the services between the different
domains, when necessary).

The proposed architecture is described and contextualized
on XR applications by presenting specific use-case scenarios
dealing with service launch and runtime management. This
article also demonstrated the feasibility of the proposed archi-
tecture by mapping the envisioned functionality to existing
tools and open sources. Furthermore, this article demon-
strated that the architecture was effectively implementable
through two sets of experiments; the first showing the deploy-
ment times of different XR applications on a multidomain
cloud-native environment along with the necessary monitoring
capabilities, and the second evaluating, based on simulations,
a proactive resource autoscaler mechanism as part of an E2E
closed loop of the envisioned architecture.

In the future, the plan is to validate the overall proposed
architecture by setting up a test bed, designed, and imple-
mented based on a selection of the technologies mentioned
above. This will provide the opportunity to validate and
evaluate the approach and, possibly, to improve it on the basis
of the results achieved.
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