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Abstract—educing energy consumption is a pressing issuee-
ducing energy consumption is a pressing issueR in low-power
machine-type communication (MTC) networks. In this regard,
the Wake-up Signal (WuS) technology, which aims to minimize
the energy consumed by the radio interface of the machine-type
devices (MTDs), stands as a promising solution. However, state-
of-the-art WuS mechanisms use static operational parameters,
so they cannot efficiently adapt to the system dynamics. To
overcome this, we design a simple but efficient neural network
to predict MTC traffic patterns and configure WuS accordingly.
Our proposed forecasting WuS (FWuS) leverages an accurate
long-short term memory (LSTM)-based traffic prediction that
allows extending the sleep time of MTDs by avoiding frequent
page monitoring occasions in idle state. Simulation results show
the effectiveness of our approach. The traffic prediction errors
are shown to be below 4%, being false alarm and miss-detection
probabilities respectively below 8.8% and 1.3%. In terms of
energy consumption reduction, FWuS can outperform the best
benchmark mechanism in up to 32%. Finally, we certify the
ability of FWuS to dynamically adapt to traffic density changes,
promoting low-power MTC scalability.

Index Terms—Energy efficiency, machine-type communication,
neural network, traffic prediction, wake-up signal.

I. INTRODUCTION

Future cellular networks need to support and drive a large
variety of existing, emerging, and even unforeseen, Internet
of Things (IoT) use cases [1]–[3]. Indeed, machine-type
communication (MTC) is an essential component of the fifth
generation (5G) of wireless networks as it enables machine-
type devices (MTDs) to communicate and interact with each
other without human interventions [4]. Applications include
mission critical services, intelligent transportation systems,
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fleet management, smart grid, industrial automation, real-
time monitoring/control, and remote medical systems [5]–[10].
Consequently, the number of MTDs is explosively growing,
and billions of MTDs, such as sensors, actuators, and meters,
are predicted to be operational in the coming years.

Energy efficiency is a key design requirement for IoT
networks composed of MTDs that must operate for several
years without battery recharging or replacement [11], [12].
Most of these MTDs have limited energy resources due to their
small size, low cost and/or hard-to-reach locations [13]–[15],
which poses unprecedented challenges on the radio access
network [16]. A fundamental approach lies in bringing the
complexity of IoT devices down by decreasing the computa-
tion capability, using low-order modulations, and introducing
deep sleep modes [17]. Indeed, idle channel monitoring is
one of the major energy consumption sources at the MTDs,
particularly in networks with low traffic [18]. In this regard,
the 3rd generation partnership project (3GPP) introduced wake
up radios (WuRs) in its Release 15 [19] to prolong the lifetime
of battery-powered devices. For both, long term evolution for
MTC (LTE-M) and narrow-band IoT (NB-IoT), device power
consumption in idle mode is reduced by exploiting a wake-up
signal (WuS). Similarly, IEEE 802.11 introduced WuS in the
IEEE 802.11ba amendment [20], [21].

For many NB-IoT use cases envisioned by 3GPP, commu-
nication is infrequent over long periods of time [22], and
therefore the standard includes Discontinuous or Extended
Discontinuous Receive (DRX or eDRX) mode in idle opera-
tion [22]. During DRX/eDRX, the device waits for the recep-
tion of regular paging events (occasions) to decide whether to
switch to active mode. Such paging events are preceded by
the transmission of a narrowband WuS to allow the device to
remain in a low power state by default, and only wake-up to
decode a paging event if the WuS is identified [23].

WuS is transmitted within a configurable time before the
device is paged, page occasion (PO), maximizing the sleep
time [18], [24], [25]. As MTDs avoid frequent wake-ups
from listening to paging information not intended for them,
the power consumption in idle mode reduces. Thus, a low-
complexity wake-up receiver is an essential requirement [3]. A
paradigm shift from the traditional duty cycling (DC) medium
access control (MAC) operation to on-demand WuR operation
is envisaged due to the latter’s energy efficiency superior-
ity [26]. It has been shown in [27] that a WuR’s average
power consumption is around 1000 times lower than that of
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TABLE I
BRIEF SUMMARY ON BENCHMARKS AND OUR PROPOSAL

Ref. Features

DRX [30] Standard DRX mechanism with optimized param-
eters, Poisson traffic model, traffic analysis, target
mean delay

WuS [37] Standard WuS, predefined time interval between low-
power states with beacon seeker (WRx-On), Poisson
traffic model, traffic analysis, target mean delay

FWuS Low-power MTC traffic model using PPPs, AI-
based traffic analysis, dynamic forecasting model to
optimize WuS parameters, adjustable time interval
between WRx-On states, target mean delay

the main radio. Furthermore, the implemented WuR in [28]
achieves around 70 times longer lifetime than DC protocols
(with 1% duty cycling) under light traffic load. With such
potential energy savings, WuR appears as a promising tech-
nique for achieving a lifespan beyond 10 years, which is the
targeted lifetime for NB-IoT and 5G IoT devices. Moreover,
WuR enables instantaneous response to on-demand IoT data
transmissions, resulting in much shorter latency [26].

Improving the efficiency of the standardized DRX mecha-
nism for MTC has been the focus of much attention, e.g., [11],
[29]–[32]. Authors in [29], [30] discuss the tuning of a given
set of DRX parameters in LTE/LTE-A and analyze the impact
on energy-efficiency, while an improvement to DRX based on
the inactivity timer management is provided in [31]. Authors
in [32] propose a DRX mechanism that exploits the radio re-
source control connection release and re-establishment to save
significant energy in MTDs, while an artificial intelligence
(AI)-based adaptive DRX is devised in [11]. However, since
the DRX mechanism is not specifically designed for MTDs,
more suitable mechanisms are required [33].

Meanwhile, MTDs operating with WuR are considered
in [18], [34]–[37]. Specifically, authors in [34] consider low-
complexity WuS to improve energy-efficiency while MTC re-
synchronization is carried out. The benefits of using passive
WuR in wireless energy harvesting networks are highlighted
in [35], whereas efforts to improve WuS in interference-free
OFDM based systems are made in [18]. In all cases, WuS
mechanisms use static operational parameters, which in [36],
[37] are determined by the base station (BS) at the beginning
of the session. Remarkably, AI-based mechanisms for effi-
ciently tuning WuS parameters in low-power MTC networks,
although naturally appealing, remain unexplored. Therefore,
we consider there is vast potential for further reducing energy
consumption by incorporating intelligence into WuS.

Herein, we aim at designing an efficient AI-enabled WuS
mechanism. The main contributions of this paper are outlined
next. First, we model the position of MTDs and event epi-
centers as distinct and independent Poisson point processes
(PPPs), and define a function to model the influence of
events on MTC traffic. It is noteworthy that the model is
able to characterize the different traffic patterns described in
the literature, e.g., [38]–[40]. We leverage a simple neural
network (NN) to predict MTC traffic patterns and configure

TABLE II
TABLE OF ACRONYMS

Symbol Description
A Active state
DRX Discontinuous reception
FWuS Forecasting WuS
I Idle state
LSTM Long short-term memory
MTC Machine-type communication
MTD Machine-type device
NB-IoT Narrow-band internet of things
PDWCH Physical downlink wake-up channel
PO Page occasion
PPP Poisson point process
RFI Radio frequency interface
RMSE Root mean square error
RNN Recurrent neural network
TTI Transmission time interval
WuR Wake-up radio
WRx-On Low-power state with beacon seeker
WuS Wake-up signal

WuS accordingly. We refer to such mechanism as forecasting
WuS (FWuS). Then, we use FWuS to optimize the wake-
up parameters of the MTDs. In addition, the mean delay and
power consumption performance are quantified for a set of
wake-up parameters. Finally, numerical results evince the su-
periority of our proposed method with respect to WuR [37] and
DRX [30] based reference mechanisms. Table I summarizes
the main features of the proposed solution and the benchmarks.
To the best of our knowledge, optimizing WuS in this type
of scenario has not been proposed before. Our work takes
on significant relevance when considering the ever increasing
number of connected MTDs, the urge for reducing their
energy consumption down to actual operation requirements,
and societal and economic goals regarding sustainable.

The rest of this paper is organized as follows. Section II
describes the system model, while Section III overviews
WuS technology and describes the traffic model. Section IV
formulates the problem and introduces the proposed scheme.
Section V describes the framework for evaluating the system
performance. Numerical results are illustrated in Section VI,
and conclusions are drawn in Sections VII. Tables II and III list
respectively acronyms and symbols used throughout this paper.
For simplicity, we have omitted the well-known acronyms.

II. SYSTEM MODEL

We consider the coverage area of a single BS, where
multiple coordinators [41] are deployed to serve as gateways
of short-range MTDs, as depicted in Fig. 1. This allows
saving energy at the MTDs, which otherwise would need more
power to communicate with the BS, and serves as a solution
to those MTDs that cannot directly contact the BS due to
the use of short range communication technologies [42]. The
MTDs are equipped with a WuR module to save energy by
allowing the radio frequency interface (RFI) to monitor the
medium at regular intervals looking for triggering signals.
Each coordinator controls all the information exchange within
its cell, deciding whether to send a WuS that allows the MTD
to exchange information.

Note that in some applications the coordinator is in charge
of granting/scheduling access to MTDs that have requested it
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TABLE III
LIST OF SYMBOLS

Symbol Description
d Distance between the place of occurrence of an event and

the position of a sensor
D Packet delay
D Mean packet delay
p(d) Distance function
gi Predictions of inter-arrival time (expected values)
goi Observed inter-arrival time (known results)
PA Probability that a device goes to active mode
pf False detection probability
pi Probability of being in Si

Pij Transition probability from a state Si to Sj , P (Sj |Si)
pmd Miss-detection probability
PW Mean power consumption
PWi Power consumption in Si

PWb Power consumption of a benchmark scheme
q Geometrical distribution parameter
R(k, s) Traffic rate in a time slot k and state s ∈ I, A
Si WuS state; i = (1, 2, 3, 4)
tmac Delay due to the MAC protocol
ton On time
tpd Power down time
tsleep Forecasted sleep time
tu Start up time
t1 WRx-On time
t2 Active-decoding time
t3 Inactivity time
t4 Sleep time
η Relative power saving
ηmax Maximum relative power saving
ηmin Minimum relative power saving
λE Event density
λM MTDs’ density
ΦE PPP of event epicenters
ΦM PPP of MTDs deployment

[15], [38], [43]. However, in some others, the MTDs need to
be attentive to the coordinator [37], [44], which may inform
the MTD of event anticipation or about an event that was
not sensor-detected. In this way, MTDs need to be checking
the physical downlink wake-up channel (PDWCH) regularly
because, even when their sensors have not been activated by an
event, the coordinator still may request information from them,
or for anticipating future activation for smooth applications
like target tracking. An appealing approach may be that in
which a coordinator activates specific MTDs based on AI-
enabled forecasting mechanisms. Such mechanisms can be
deployed at the coordinator side to keep the MTDs simple and
energy-efficient. Moreover, the coordinators can control the
medium access, avoid collisions, and consequently reduce the
energy consumed by the MTDs when they are not scheduled
and would be performing idle listening [45], [46].

For the sake of contextualization, consider the following
potential scenarios: i) target tracking, and ii) visitors of a
historic arena. In the first case, MTDs that detect an event may
trigger the surrounding nodes, and a set of MTDs activated
by the coordinator may track/localize the target. Activating
only the sensors close to the path followed by the target is
a reasonable approach. The awakened group of MTDs may
localize the target accurately. In the second scenario, the
objective of the MTC network is to detect the visitors who
are trying to enter forbidden areas. During the open hours of
the museum, the rate of these events may be larger than during

Fig. 1. Illustration of an MTC network where the coverage area of the
BS is split in several smaller areas1 in which a coordinator controls and
collects information from the MTDs. Traffic exchanged between MTDs and
the coordinator is modeled as a two-state complete Markov chain.

the night shifts. Daytime operation of the network can be based
on periodic WuS scheduling, whereas nighttime operation can
follow a more suitable wake-up approach.

A. MTDs Deployment and Event Sensing

Consider a single coordinator and let the MTDs be deployed
randomly and independently in its coverage area. We resort
to homogeneous PPPs to model the position of devices and
event epicenters [47]. Note that PPP has been the most popular
spatial model for various types of wireless networks [48], [49]
because of salient features such as the independence between
points and the simple form of the probability generating func-
tional [50]. The PPPs of the MTDs positions and event trigger
epicenters in the Euclidean plane are denoted respectively by
ΦM and ΦE . These processes are assumed to be independent
and to have density λM and λE , respectively.

Let p(d) denote the probability that a certain MTD senses an
event with epicenter at a distance d in the Euclidean plane <2.
Then, we have p(d) : [0,∞)→ [0, 1], where p(d) is typically
non-increasing to represent a decaying influence of events
as the distance d increases. Fig. 2 depicts an instantaneous
realization of the MTC network and event epicenters.

B. MTD State Modeling

Each MTD has sensors that trigger an interrupt if they detect
an event (e.g., a peak in energy consumption or a relevant
variation in energy consumption). Upon detecting an event, the
MTD connects the necessary parts to process this signal, which
had been turned OFF to save energy [51]. The information is
stored in the MTD awaiting an RFI activation signal from the
coordinator. The MTD measures and processes, but does not
transmit until indicated by the coordinator.

Each MTD can be in one of two states:
1) idle (I): the MTD wakes up (ON) the RFI at regular

intervals, while it waits a WuS from the coordinator.

1This paper focuses only on intra-cell communication. Note that cells do not
have to be precisely hexagonal or the same size, since the MTDs deployment
density (MTDs/m2) depends on the area and not on the shape of the region
of interest. We adopted the current representation for aesthetic reasons and in
analogy to the classical literature on mobile communications.
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Fig. 2. Illustration of the influence of events on the surrounding MTDs.
Colored squares are related to the event activation probability in the colorbar
(right). The absence of a square means zero activation probability.

The MTD may experience a sensor-detected interrupt,
however, that information is stored and the MTD re-
mains in state I until receiving a WuS. The MTD saves
considerable energy as its RFI is OFF most of the time.

2) active (A): the device exchanges information with the
coordinator. The RFI is continuously ON, which trans-
lates into high energy consumption.

The transition from state I to A occurs when a WuS is received
from the coordinator, thus enabling the information exchange
between the MTD and the coordinator. Upon receiving the
WuS, the MTD goes to state A, either because it detected
an event through its sensors and the coordinator granted a
communication authorization (uplink grant) through the WuS,
or because the WuS informs it of an imminent predicted event
(request to transit to state A). The MTD stays at state A for
the duration of the event.

The triggering events change the MTC traffic characteristics
towards the coordinator. In Fig. 1, four MTDs are in state
A (indicated with solid red arrows) and two are in state I
(indicated with dashed green arrows). The MTDs wait for the
WuS from the coordinator that would trigger state A. Note
that according to the application, there are three elementary
MTC traffic patterns [8]–[10]: periodic update, event-driven
and payload exchange. Nevertheless, real world applications
often combine these traffic types. Hence, considering the three
elementary classes above enables building models with an
arbitrary degree of complexity and accuracy [38]–[40].

Finally, we assume time is slotted in transmission time
intervals (TTI). In slot k and state s ∈ {I, A}, MTDs generate
traffic with rate R(k, s), depending on their current state.

III. TRAFFIC AND WAKE-UP MODELING

The traffic exchanged between the coordinator and the
MTDs is modeled using an ergodic Markov chain with two
states [47], I and A, as illustrated in Fig. 1. The payload
exchange pattern is modeled through the q parameter in the
geometric distribution. This parameter q considers how bursty
could be the traffic generated by an event. A device goes to
state A with probability

PA = 1− exp

(
−2πλE

∫ ∞
0

p(d)∂d

)
. (1)

Once in state A, the MTD remains there for a number k of
TTIs, geometrically distributed with parameter q, thus, with
probability mass function

fK(k) = (1− q)qk, k = 0, 1, . . . . (2)

The introduction of the additional parameter q in the Markov
chain model allows tuning the temporal correlation of the indi-
vidual rate processes of the MTDs and, as a result, that of the
total rate process. Hence, the parameter q of the Markov chain
enables tuning the model to suit various MTC applications and
event reporting strategies. Furthermore, the parameter q can be
used to study the impact of events on the temporal correlation
of the total traffic at the coordinator. Focusing first on the case
of small values of q, e.g., q ≤ 0.1, the traffic behaves similarly
to a Bernoulli process (memoryless) [47], since it has a short
memory. Increasing the value of q increases the memory, i.e.,
the total rate at a given time k is correlated with many past
values. This is because once state A of the Markov chain is
entered, one stays there longer [47].

We emphasize that, although modeled as in Fig. 1, the
traffic that arrives to the coordinator has parameters that are
different from the one seen by each MTD since the coordinator
combines the traffic from several MTDs. In fact, the MTDs
could have traffic patterns with parameters that are different
from each other. For simplicity, we consider that the MTDs use
a medium access control (MAC) technique to avoid collisions
at the coordinator side. Since the proposed method focuses
only on the coordinator, it is independent of the resolution of
this problem at the MTD level and the additional complexity
that this entails.

A. Wake-Up Scheme
Idle listening at the MTDs is avoided by leveraging WuS

technology. The coordinator sends a WuS to opportunistically
instruct the MTD that it must monitor for paging. Otherwise,
the MTD skips the paging procedures, thus, it can potentially
keep parts of its hardware switched off most of the time [17].

Fig. 3 depicts the different states and power consumption
profiles for the proposed method as well as the benchmarks
used for comparison purposes. Fig. 3 a) illustrates the DRX
states as depicted in [30]. Notice that the level PW1 in DRX is
not reached by any state. Conversely, the consumption in ON
state is comparable with that in the active-decoding state even
when no packet arrives. However, by using WuS, the device
can activate a low-power beacon seeker whose consumption
(PW1) saves energy with respect to the ON state in DRX, as
shown in Fig. 3 b). Note that the MTD is allowed to traverse
to a WRx-On state waiting for an active indicator within the
aforementioned compact WuS (beacon) which reveals the PO
(t2). Such beacon communicates to the MTD the necessity
of commuting to a decoding state where the consumption is
higher. This switching occurs at regular intervals and has a
duration t1, while the device remains in sleep state between
them to save energy. At the end of the decoding state, if no
more packets are to be exchanged, the device waits for an
inactivity time (t3) before returning to the sleep state.

Observe that despite the potential decrease in power con-
sumption triggered by a WuS scheme, some idle states may
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Fig. 3. Illustration of the different consumption profiles for the proposed
and the benchmark schemes. a) DRX mechanism consumption profile as
described in [30] (top), b) different wake up states and their respective power
consumption (middle), and c) proposed FWuS, where turning ON the RFI
during WRx-On events is avoided based on forecasting inter-arrival time
(bottom). In case of a), PW1 is indicated only as a reference since this profile
never works at this consumption level.

still occur where no WuS is detected. In this paper, we aim
to avoid these states (marked with red crosses) based on a
forecasting model, which is presented later in Section IV.

B. Traffic Model

The transitions between wake-up states are modeled with a
4-state Markov chain as illustrated in Fig. 4. S1 represents the
WRx-On, at which the MTD monitors PDWCH looking for a
WuS alerting of a PO. S2 is the active-decoding state where
the MTD decodes the information packets, while S3 represents
the state for the inactivity timer. Finally, S4 corresponds to the
sleep state in which the device is not able to receive any signal.

The MTD remains in state I for a time t4, while switching
to S1 inmediately after. At S1, the MTD monitors the channel
searching for a WuS for a fixed time t1. If the MTD detects
a PO, it goes to S2 to decode the received information. If the
whole information arrives before t2 ends, the MTD goes to
S3, otherwise t2 is reset and the MTD remains in S2. At S3,
the device waits for a PO for a time t3 (inactivity timer). If a

Fig. 4. The wake-up model as a semi-Markov chain.

scheduled PO is received within t3, the MTD returns to S2,
otherwise it goes to S4 completing the wake-up cycle. Notice
that the device consumes a start up time (tu) in transitions
from S1 to S2, and a power down time (tpd) from S3 to S4.
The transition probability from state Si to Sj is denoted as
Pij = P (Sj |Si) and also given in Fig. 4.

In this paper, we aim to optimally configure t1, t2, t3 and
t4 as to minimize the energy consumption of the MTDs.

IV. PROPOSED FWUS SCHEME

The traffic of most MTDs is substantially different from
human traffic accessing the Internet [11]. In most IoT use
cases, the traffic is either generated periodically, or as a burst
after the detection of events [12]. Nonetheless, MTC traffic
can be correlated in time and space [52]. This is because of
the correlated temporal and spatial characteristics of a variety
of events, e.g., low water or mineral concentration in crop soil
and smart electricity metering. This sort of behavior can result
in traffic bursts which can put stress on the receiver, e.g., the
coordinator, since MTC traffic is usually uplink-dominated. It
is therefore desirable to have tractable models that can be used
to assess the impact of this type of traffic at the receiver [47].

In this context, accurate traffic prediction mechanisms are
appealing, specially those relying on AI as they can potentially
capture the inherent dynamics and non-linearities of the system
[52]–[54]. Interestingly, long short-term memory (LSTM) is a
popular type of recurrent NN (RNN) [55] that is specially
designed to learn long-term dependencies of a sequence, thus,
predictions are made based on long-sequences of previous
input values rather than on a single previous input value [52],
[56]. Different from classical solutions, e.g., relying on dy-
namic programming [57] and reinforcement learning [58],
LSTM-based techniques [53], [59], [60] provide autonomous
decision-making and relative fast learning speed, especially in
problems with large state and action spaces.

We propose an LSTM-based traffic forecasting model and
a methodology for properly configuring the WuS parameters.
Note that an LSTM cell is made up of three gates, the input
gate, the output gate and a forget gate. These gates determine
if the information is read (input gate), if it is not relevant and is
disregarded (forget gate), or if it is saved, impacting the current
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Latest Received Packet

Forecasting Model
1) Set t3 = 1 TTI
2) Calculate t4

using (3)

tsleep =

round(tsleep/t4)× t4

tsleep

Fig. 5. Flowchart of the proposed WuS optimization, round(·) represents
the rounding operation to the nearest integer.

time step (output gate).1 The inputs are the time-stamp of the
latest packet (goi ) and the latest relevant inter-arrival time,
which are obtained via feedback. The inputs are modulated and
used to train the unit. The forget gate contributes to dismiss
over-training due to fluctuation in the training set. Then, a
prediction for the next outcoming packet (gi+1) is obtained as
output. As a result, we obtain a trained model for predicting
the inter-arrival time between information packets using the
known traffic data as input. Notice that the events that cause
traffic data are independent among one another.

Recall that we aim to configure the WuS parameters as
to minimize the MTDs’ energy consumption based on the
modeled traffic rate and the given application. Now, observe
that t3 greatly impacts the energy consumption while the
delay greatly depends on t4. Tuning t3 and t4 to minimize
the MTDs’ energy consumption while maintaining a delay
threshold is challenging since energy and delay are not jointly
convex on t3 and t4. Herein, we resort to setting the value
of t3 to 1 TTI to assure low power consumption, while t4
is optimized in a way that allows satisfying a mean delay
constraint (D):

t4 = max
t3=1 TTI
D=D

sleep. (3)

In (3), D is the packet delay and sleep is the time between
every channel monitoring state (S4). Depending on the predic-
tion, the system is able to decide whether to enter state S1 from
S4 or not. Fig. 3 c) illustrates the proposed FWuS scheme,
while Fig. 5 shows the proposed optimization flowchart. Once
the WuS parameters are defined, they cannot be changed due
to synchronization issues. However, we can extend S4 up
to n × t4 (∀n = 1, 2, . . .) as in Fig. 3 c). The system can
dispense with WRx-On events, depending on the prediction,
since it considers that the probability of a packet arriving is
very low. Since the MTDs have limited processing power,
the coordinator runs the forecasting model and configures
the WuS parameters. Specifically, t4 is set according to (3),
where tsleep is predicted by the forecasting model based on
the data. Notice that even when the proposed tsleep is not

1Interested readers in the details of LSTM networks are advised to
review [56], [61].

equal to t4, the WuS parameters were prearranged between
the coordinator and the MTDs. Therefore, in order to maintain
the synchronism between the coordinator and each MTD, the
time between TON beacons should be a multiple of t4.

V. PERFORMANCE METRICS

In this section, we discuss two performance metrics, named
energy consumption and mean delay, which are utilized to
assess the performance of the proposed method and to compare
it with the benchmarks. We find expressions for these metrics
based on the Markov chain in Fig. 4 for a given WuS
configuration. Additionally, to confirm the accuracy of the
predictor, we calculate the root mean square error (RMSE)
between the estimated (gi) and actual (goi ) inter-arrival values,

RMSE =

√√√√ 1

M

M∑
i=1

(
gi − goi

)2
, (4)

where M is the sample size. Moreover, the fitting performance
is validated and tested using the R metric, defined as

R =

√√√√1− 1

M

M∑
i=1

(
1− gi

goi

)2
. (5)

This statistic measures how successful the fit is in explaining
the variation of the data. Therefore, it represents the correlation
between the actual values and the predicted ones. In general,
the higher the R metric is, the better the model fits the data.

A. Energy Consumption

In this paper, we adopt a simplified model based on [37] that
refers only to the energy consumption of the RFI, i.e., PW4 =
0. Based on Fig. 3, which shows the power consumption levels
(PWi) for every WuS state Si, i = (1, 2, 3, 4), the mean power
consumption (PW) is calculated as

PW=

4∑
i=1

pitiPWi+
1
2

(
p1P12tuPW2+p3P34tpdPW3

)
p1P12tu + p3P34tpd +

4∑
i=1

piti

, (6)

where pi denotes the probability of being in state Si. Thus, by

exploiting pi =

4∑
j=1

pjPji,
4∑

i=1

pi = 1, and the semi-Markov

chain in Fig. 4, we obtain

p1 = p4 =
(q − 1)2

L
, p2 =

PA

L
, p3 =

PA(1− q)
L

. (7)

where L = 2PA − 4q − qPA + 2q2 + 2.
The time the device spends in each state, multiplied by its

corresponding power consumption, over the total time, outputs
the mean power consumption. Moreover, the time to reach the
state could be dismissed except for the start up time (tu) and
the power down time (tpd), whose values are large enough
to be considered. The power consumption in these transitions
is approximated, without losing generality, by their triangle
geometrical format (see Fig. 3), leading to the 1/2 coefficient
in (6).
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B. Delay Constraints

We assume that a packet experiences delay only when the
situation that generates the detection of a triggering event finds
the MTD in sleep (S4) or WRx-On (S1) state. This is because
in active (S2) and inactivity timer (S3) states, the exchange of
information with the coordinator is immediate. Then, D can
be estimated as

D=p4PA

(
3(tu+t1) +

t24
2

+

∞∑
n=1

pnmdt4

)
+tmac. (8)

Packets experience delay in 3 cases:

1) a packet is intended to be delivered while the RFI of
the MTD is at S1. In this case, the packet experiments
a delay tu + t1;2

2) a packet is buffered on hold while the RFI of the MTD
is at S4 state. Then, the experienced delay is given by
tu + t1 +

∫ t4
0
t∂t = tu + t1 + t24/2;

3) the MTD does not receive the PO scheduled for infor-
mation exchange, thus, there is a miss-detection. In this
case, the device has to wait until the next PO, and the
packet experiences a delay tu+t1+

∑∞
n=1 p

n
mdt4. Herein,

pmd represents the miss detection probability and n is the
number of lost POs.

The mean delay also includes a term tmac that comprises
the delay introduced by the MAC scheme aiming at avoid-
ing/solving collisions. We assume that the communication
requirements could be met with a suitable MAC algorithm.

C. Power Saving Factor

Finally, we calculate the relative power saving (η) regarding
a benchmark, thus, it quantifies the amount of energy that can
be saved by implementing our proposed scheme. This power
saving factor is calculated as

η =
PWb − PW

PWb

, (9)

where PWb represents the power consumption of the bench-
mark scheme and is calculated using (6) with the values
respective to the benchmark.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
method. Without losing generality, we assume a negative
exponential function to model the influence of events on the
traffic of the MTDs, i.e., p(d) = e−d. The MTDs are deployed
with density λM = 10−1(MTDs/m2), and TTI is assumed
equal to 1 ms. All devices are at the state I at the beginning of
the simulation. These parameters are set for all the numerical
results unless specified otherwise.

2In practice, tu dominates here due to the very small values of t1.
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Fig. 6. Training and validation process of the forecasting model. a) RMSE
values during training process for 30 epochs (top), b) validation and test
processes (bottom). The latter shows the correspondence between predicted
and known results. The dotted black line shows the ideal scenario where the
predicted and known results match.

A. Benchmarks

As benchmarks, we resort to the WuS scheme in [37],
and the optimized DRX-based reference mechanism in [30].
The scheme in [37] models a standard WuS behavior (see
Fig. 3 b)). In this scheme, the time interval between WRx-
On states (S1) is predefined in a static and invariable way.
The configuration values of the WuS scheme come from [37].
Meanwhile, the basic operation and representative power con-
sumption behavior of the DRX-enabled conventional cellular
module [30] is shown in Fig. 3 a). Observe that the RFI
remains ON for a time ton, during which the MTD is waiting to
receive information packets. If during this time no packets are
received, the RFI goes to the OFF state, completing the DRX
cycle. This cycle is repeated until a data packet is received,
after which the system goes to the active-decoding state with
duration t2. Then, the inactivity timer is activated for a time
t3. If packets are received in this state, the MTD returns to
the active-decoding state, otherwise, it goes to the OFF state.
In every case, the process is repeated.

In state A, the consumption is higher than in the other states
(PW2). In the inactivity timer state and in the ON state of the
DRX cycle, the consumption is equal to PW3. In the OFF
state of the DRX cycle, the consumption is PW4. Note that
the DRX cycle consists of a time in the ON state plus a time
in the OFF state. The DRX configuration values are taken
from [30].

B. Simulation Framework

We use the traffic model in Section III-B to simulate several
log traces of traffic received at the coordinator. In each log
trace, the deployment of the MTDs and event epicenters is
generated according to the corresponding PPP. We consider the
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TABLE IV
SIMULATION PARAMETERS

Parameter Value Ref.

t1 1/14 (TTI) [37]
t2 1 (TTI) [37]
t3 1 (TTI) [37]
tu 15 (TTI) [37]
tpd 10 (TTI) [37]
D 30 ms
PW1 57 mW [37]
PW2 935 mW [37]
PW3 850 mW [37]
PW4 ≈ 0 mW [37]
λE 10−5, 10−4, 10−3, 10−2 [47]
λM 10−1 (MTD/m2) [47]
p(d) e−d [47]
q [0.1, 0.9]
ton 1 (TTI) [30]
pmd 0.01 [37]
pf 0.1 [37]

influence of each event epicenter on the MTDs via p(d). The
latter influences PA in the traffic model through (1). The events
are independent among one another. These traffic data are then
used as input of the LSTM network to train the forecasting
model. Specifically, 70% of the sample data is used to perform
training, 15% for the validation set, while the remaining 15%
for the testing set. For the training, validation, and testing
process, 9.8×104, 2.1×104, and 2.1×104 information packets
were respectively processed, thus making a total of 1.4×105.
The LSTM architecture is configured with 1 hidden layer (100
Neurons), ‘Initial Learn Rate’ equal to 0.0001, RMSE loss
function, maximum 50 epochs [62], [63], and using the Adam
optimizer [64]. Note that the LSTM’s learning algorithm is
local in space and time, while its computational complexity per
time step and weight is O(1) [61], thus, leading to a system
complexity O(2× 100).

The traffic forecasting model is then used to optimize the
WuS parameters. Specifically, the coordinator is configured
with a standard WuS behavior (see Fig. 3 b)). Values of WuS
parameters are obtained from [37], while the value for t4 is
re-calculated using the framework in [37] for our system and
traffic models aiming to be fair in the comparison. Lastly, we
provide the coordinator RFI with the optimized DRX-based
reference mechanism in [30], as suggested by [37]. The DRX
cycle values are adapted according to our traffic model. In this
case, ton is established equal to 1 TTI in order to save energy,
while tu, tpd, t2 and t3 have common values for each method.

Table IV summarizes the parameters used in the simulation
process. We calculate t4 (sleep time) using (3) and (8). All
simulations were carried out in Matlab® [65]. The illustrated
curves are the result of Monte Carlo simulations over 150 runs,
where the position of the MTDs and the events’ epicenter are
randomly distributed in each run.

C. Prediction Accuracy

Fig. 6 a) illustrates the performance of the forecasting
training process. Note that after 30 epochs, the RMSE value
remains approximately constant at around 0.1. In the validation

and test processes, the obtained R values were above 96%,
demonstrating high accuracy to adapt to incoming data. In
addition, Fig. 6 b) shows the statistics on the accuracy of the
predictor over 150 runs. The standard deviation for validation
and test processes are 1.09% and 2.27%, respectively. The
obtained confusion table is as follows

Prediction
WRx-On True False
Positive 91.2% 8.8%
Negative 98.7% 1.3%

Notice that miss-detection probability is actually the false neg-
ative probability, while the false alarm probability is actually
the probability of taking a false positive. Then, by adjusting
these values, we are indirectly adjusting the accuracy of the
predictor model. In this case, less than 10% (8.8%) of the
energy saving opportunities are missed, while the risk for late
activation is just 1.3%. Note that a deeper LSTM architecture
or more training epochs would enhance the prediction accuracy
but it would increase complexity and time of training as well.

D. Delay and Power Consumption Performance

Fig. 7 a) and b) illustrate the required delay and power
consumption, respectively, as a function of predictor’s accu-
racy. The latter is given in terms of miss-detection probability
(probability that the MTD misses a PO or WuS) and the
false alarm probability (probability that the MTD receives a
PO or WuS needlessly, i.e., when there is no information to
transmit/receive). As observed in Fig. 7 a), the false alarm
probability has no impact on the delay, while the miss-
detection probability increases less than 15% (4.3 ms) and
5% (1.4 ms) for values below 0.1 and 0.05, respectively. As
for the power consumption, Fig. 7 b) evinces the tremendous
impact of the false alarm probability, while decreasing the
miss-detection probability below 0.4 has almost no impact.
In this paper, the maximum values of miss-detection and
false alarm probabilities, which serve as constraints to the
forecasting model, are adjusted to 0.01 and 0.1, respectively.

Fig. 8 depicts the power consumption as a function of the
number of MTDs for each scheme. In case of Fig. 8 a), we
consider event densities λE ∈ {10−5, 10−2}, while each MTD
is randomly assigned a value of q ∈ [0, 1]. Note that our
proposed scheme outperforms all the others, while the energy
saving with respect to WuS [37] becomes even greater as the
traffic volume increases. To generalize and better illustrate this,
we adopt a different event density in Fig. 8 b), as well as
different values for q. Note that the range of q was varied
with the aim of testing more/less bursty traffic patterns. In all
the cases, the energy consumption under the proposed scheme
is considerably lower with respect to WuS [37] and DRX
[30]. Interestingly, FWuS saves energy independently of the
number of served MTDs under low bursty traffic, while DRX
and WuS lead to the same power consumption regardless of
the type of traffic when serving 5 to 7 MTDs. Thus, the power
consumption increases with both the number of served MTDs
and q. For small q, the increase of the power consumption
with the number of MTDs is smooth, while as q increases,
there might be sudden jumps in power consumption.
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Fig. 7. System behavior regarding variations in miss-detection and false alarm
probabilities: a) mean delay (top) and b) power consumption (bottom). The
marker represents the operation point of our forecasting model.
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Note that since the power consumption becomes greater
as the number of MTDs increases, the performance figures
corresponding to 1 and 10 MTDs are relevant/representative.
Hence, we characterize in more detail the power consumption
performance for such numbers of MTDs in Table V. Here,
PW,PWmax, and PWmin represent the mean, maximum and
minimum power consumption over the 150 Monte Carlo runs,
while std is the standard deviation.

TABLE V
POWER CONSUMPTION (MW) FOR 1 MTD (WHITE) AND 10 MTDS

(LIGHTGRAY)

Parameters Results
λE q PW PWmax PWmin std

10−5 [0, 1] 21.423 23.594 18.356 2.671
67.738 76.061 59.164 8.602

10−2 [0, 1] 127.723 142.143 112.712 13.915
149.859 154.113 134.215 14.212

10−3 [0, 0.3] 97.023 110.468 83.182 12.366
119.461 130.972 107.041 11.667

10−3 [0.7, 1] 105.603 120.091 93.889 9.659
142.239 152.112 131.943 9.011
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Fig. 9. Delay analysis as a function of the number of MTDs handled by the
coordinator. Maximum variations of +1.4 ms and −2.1 ms, with ‘std’ equal
to 1.1 ms when the number of MTDs is 10.

Fig. 9 illustrates the mean delay experienced by each
scheme. Notice that in all cases the delay is below the
constraint of 30 ms, and the performance gap between our
proposal and WuS [37] is between 3 and 5 ms, while the
gap regarding DRX [30] increases up to 6 ms. Notice that
this figure illustrates the maximum mean delay when varying
the event density between {10−5, 10−4, 10−3, 10−2}, thus
representing the worst-case scenario for the mean delay.

E. Power Saving and Dynamic Adjustment

Table VI illustrates the relative power saving (η) regarding
WuS [37]. In this case, we analyze the amount of energy that
can be saved by implementing our proposed scheme instead
of WuS, and quantify its dispersion via the std metric. Notice
that we use WuS [37] as it is more energy efficient than
DRX [30]. Evidently, the proposed FWuS saves much more
energy than WuS [37], especially under high density of events
and/or MTDs. Savings in energy consumption go from 10%
to around 20% for low-density event scenarios. Meanwhile,
the savings increase up to almost 35% for high-density event
scenarios, thus guaranteeing good performance despite harsh
scenario dynamics.

Fig. 10 illustrates the performance of FWuS when the events
density varies dynamically over a period of time. This is
completely different from the approaches in sections VI-C and
VI-D, where these parameters were completely deterministic.
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TABLE VI
RELATIVE POWER SAVING (η)

Parameters Results
λE q η̄ ηmax ηmin std

10−5 [0, 1] 16.4% 26.3% 12.6% 4.2%
10−2 [0, 1] 28.4.1% 34.2% 22.9% 4.9%
10−3 [0, 0.3] 19.33% 21.3% 16.8% 2.3%
10−3 [0.7, 1] 19.5% 22.3% 15.8% 2.7%
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Specifically, events density increases from 10−5 to 10−1 in
Fig. 10 a), and decreases from 10−1 to 10−5 in Fig. 10 b).
Note that the variations in event density change the activation
probability of the MTDs, thus leading to changes in traffic
patterns and challenging the online predictor. Nevertheless, the
proposed scheme is able to adapt itself to these variations.
Interestingly, the system adapts more smoothly when the
event density decreases since the scheme has more freedom
to predict covered by the false alarm and miss-detection
probabilities that adapt better to the decrease in traffic than
to its increase. Meanwhile, abrupt power consumption peaks
may appear when the event density increases due to the loss of
multiple energy-saving opportunities caused by the restriction
imposed by the miss-detection probability target.

VII. CONCLUSIONS

In this paper, we considered an MTC network controlled by
a single coordinator. We modeled the location of MTDs and
event epicenters as independent PPPs, while considering event-
driven traffic patterns with geometrically distributed burst du-
ration. We proposed an intelligent wake-up scheme (FWuS) to
be used by the coordinator to reduce the energy consumption
in the MTDs and prolong their battery lifetime. Specifically,
FWuS exploits an accurate traffic forecasting model that
optimizes the wake-up parameters, thus, favouring energy

savings. The traffic forecasting relies on a simple LSTM neural
network, which achieves prediction accuracy results above
96% by monitoring the MTC traffic patterns.Numerical results
evinced that the proposed FWuS enables energy consumption
reduction up to almost 35% to the competing scheme with
the best performance, while the mean delay increases only
2–6 ms but is always below the 30 ms constraint. Moreover,
the proposed mechanism was shown to be robust/adaptable
to scenario/traffic with dynamically changing parameters, per-
forming well under traffic variability.

Some interesting research directions to pursue in the se-
quence are: i) considering/exploiting the traffic correlation
between nearby MTDs that potentially detect the same events
to avoid transmission of unnecessary redundant traffic, thus
saving energy; ii) controlling the duration and restart procedure
of the inactivity timer, e.g., via downlink control information,
which seems appealing to reduce the active time; and iii) ana-
lyzing/comparing predictors’ efficiency in terms of complexity
and accuracy trade-offs, including more demanding scenarios
such as those with ‘on device intelligence’. Finally, acquiring
and exploiting data from the industry, while validating the
proposed mechanisms, is a goal for future work.
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