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Abstract—Simultaneous localization and mapping (SLAM) has
been extensively researched in past years particularly with regard
to range-based or visual-based sensors. Instead of deploying
dedicated devices that use visual features, it is more pragmatic to
exploit the radio features to achieve this task, due to their ubiq-
uitous nature and the widespread deployment of Wi-Fi wireless
network. This paper presents a novel approach for collaborative
simultaneous localization and radio fingerprint mapping (C-
SLAM-RF) in large unknown indoor environments. The proposed
system uses received signal strengths (RSS) from Wi-Fi access
points (AP) in the existing infrastructure and pedestrian dead
reckoning (PDR) from a smart phone, without a prior knowledge
about map or distribution of AP in the environment. We claim a
loop closure based on the similarity of the two radio fingerprints.
To further improve the performance, we incorporate the turning
motion and assign a small uncertainty value to a loop closure if
a matched turning is identified. The experiment was done in an
area of 130 meters by 70 meters and the results show that our
proposed system is capable of estimating the tracks of four users
with an accuracy of 0.6 meters with Tango-based PDR and 4.76
meters with a step counter-based PDR.

I. INTRODUCTION

With growing applications of the Internet of Things (IoT),

recent research shows an increasing interest in indoor position-

ing due to the rapid demand of location-based services, such as

indoor guidance and asset tracking [1]–[4]. To perform indoor

positioning, the knowledge of the existing infrastructure must

be provided in advance (for example a map of the environment

or locations of the beacons). In the scenario of emergency

response in disaster areas or large scale environments, such

kind of knowledge is not available or difficult to obtain

beforehand, which makes the indoor positioning challenging.

Therefore, recent researchers are focusing on developing ef-

ficient methods and technologies to simultaneously localize

mobile devices (robots and smartphones) and generate a map

of the environment [5]–[8]. The underlying problem is well

known by the term, Simultaneous Localization and Mapping
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(SLAM). Extensive researches have been done with regard to

visual-based [9] or range-based sensors [10].

Loop closure detection is elementary to any SLAM system.

It denotes a situation that the mobile device has entered

a previously-visited location, which permits to correct the

accumulated odometry error. In order to perform loop clo-

sure detection in SLAM, dedicated devices (i.e., laser range

finders or cameras) are required to measure the similarity

of observations by scan matching [11] or feature matching

[9], which are usually computationally expensive. However,

growing popularity of Wi-Fi wireless networks provide a new

opportunity to detect loop closure and perform SLAM in a

different way.

Most existing buildings with Wi-Fi network deployed can

be exploited for localization and mapping with low hardware

requirements and computational cost (for example with the

ubiquitous IoT devices like normal smartphones) due to their

ubiquitous nature of in-built sensing capabilities [1], [12].

The current signal-strength-based SLAM requires an analytical

model to feature the radio signal distribution over distance [6],

[13]. However, it is not practical to build such a model due to

many multiple path issues in uncontrolled environments. On

the other hand, radio fingerprinting [2], [14], [15], represents

a location with a collection of radio signals from Wi-Fi

access points, which is considered to be more robust against

the signal distortions. Therefore, we adopt this technique to

simultaneously determine the location of a user and create a

radio map of the environment.

In addition to the Wi-Fi network, a typical indoor en-

vironment consists of many landmarks, such as turnings,

elevators, rooms, and doors, which can be also considered as

features for the positioning of a device. These landmarks can

be recognized through inertial sensors, which are available

in most commercial off-the-shelf smartphones [16], [17]. In

contrast to large location uncertainty of radio fingerprints due

to the distortion of signals, such kind of landmarks can better

confine the location of a device and enhance the positioning

accuracy of fingerprinting-based approaches [15], [18].

In opposite to the feature map or occupancy map built by

laser range finders or visual cameras, our goal is to build a map

(in particular a radio map) with radio fingerprint as feature,

and use that for the positioning. To ensure a good positioning

accuracy in large scale environment, a fine-grained radio map

is required [1], [2] and it will be time consuming to create

such a map with a single user. Therefore, a low cost method

(e.g., acquire fingerprints via crowdsensing by multiple users)

to create the radio map is a necessity.

This paper presents a system that fuses the pedestrian dead
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reckoning from a smartphone, and received signal strength

(RSS) measurements from surrounding Wi-Fi access points

(AP), to estimate the trajectory of multiple users and map

the radio signals in unknown environment via a collaborative

fashion, using graph SLAM technique. To further improve

the accuracy, we incorporate the turning features and reduce

the uncertainty of loops inferred based on radio fingerprints

similarity. The proposed approach requires neither the map of

the environment nor the locations of the access points. We

tested the system under two different dead reckoning systems,

one is based on Tango that has a high motion tracking accuracy

through vision-based odometry, and the second one is based

on step counter using on-board inertial sensors that has a poor

motion tracking accuracy. By leveraging on in-built sensing

capabilities from smart phones and crowdsensing nature, our

system can generate a radio fingerprint map in a large indoor

environment at low cost as compared with traditional site

surveying methods.

We summarize the contributions of this paper as:

• We present a solution that incorporates Wi-Fi fingerprint

and dead reckoning information for crowdsensing SLAM

in unknown indoor environments;

• We propose an algorithm that automatically learns a

model to characterize the uncertainty of a loop based on

the degree of similarity using the short term odometry

measurement;

• We integrate the turning features to further reduce the

uncertainty of radio fingerprint-based loop closures and

improve the overall accuracy;

• We throughly evaluate our approach in one building at

our campus with an area of approx. 9000 square meters

with two different pedestrian dead reckoning systems.

We organize the rest of this paper as follows. The related

work is discussed in Section II. Section III formulates the

problem and explains the detail of the proposed system.

Section IV presents the experimental results. Conclusions with

possible directions of future work are made in Section V.

II. RELATED WORK

Over the past decades, indoor positioning shows a growing

popularity due to the increasing demand of location-aware

applications [1], [2]. A large number of researches have been

performed regarding indoor positioning given a reference of

the infrastructure (i.e., map of the environment or distributions

of beacons). Obtaining and maintaining such kind of informa-

tion is challenging, particularly in large scale environments

[19] or emergency response for example search and rescue

in disaster scenes [20], [21]. A solution to this problem is

SLAM (Simultaneous Localization and Mapping), which has

been investigated extensively in robotics community. In this

section, we present a summary of the related work in SLAM,

using different kinds of techniques. Throughout the years,

many techniques and algorithms have been proposed, mainly

including filtering-based solutions (for example the Kalman

filter [5] and the particle filter [22]) and graph-based solutions

[7], [23].

Depending on the types of sensors used, one can classify

the SLAM into laser-based SLAM, visual-SLAM, magnetic-

SLAM, WifiSLAM, and FootSLAM. Laser-based SLAM uses

laser-range finders to create a structural map of an envi-

ronment. The detection of loop closure is achieved by scan

matching. Visual-SLAM methods, utilize cameras like Kinect

or Tango [24] to construct a 3D model of the indoor scene.

Bundle adjustment [25] is another popular technique for

SLAM that uses visual images and has been used in commer-

cialized SLAM systems such as Google’s Project Tango [26].

Magnetic-SLAM systems, exploit digital magnetic compass

for localization and mapping of a device [27]. The loop closure

is inferred by examining spatial similarity of a sequence of

magnetic measurements. For example, authors in [18] corre-

lated motion patterns with the magnetic field to address the

SLAM problem. A unique magnetic fingerprint may not be

guaranteed due to the distortion of the environment, which

makes this solution challenging for real applications.

WifiSLAM [6], [13] techniques use the radio signal and

motion data of the device for localization and signal strength

mapping in unknown environments. With SLAM technique,

the hassle of site surveying can be avoided, and radio map

can be created and updated conveniently whenever needed.

For example, authors in [6] solved the WifiSLAM problem

by mapping the high-dimensional signal strength into a two-

dimensional latent space with a Gaussian process. Authors in

[13] proposed a generalized and effective algorithm to solve

the WifiSLAM using GraphSLAM algorithm. Both approaches

assume the signal strength at two close locations are similar

and the measurement likelihood can be modeled as a Gaussian

process. In contrast, our approach does not require any model

to describe the signal strength distribution, and the closeness

of locations is determined by the similarity of the radio

fingerprints.

FootSLAM [28] uses inertial-based measurements to de-

termine the underlying building structure. No ranging or

visual measurement were required; the only features used are

the probability distributions of human motions at different

locations. Several extensions, for example ActionSlam [29],

incorporate location-orientated actions (for example entering

elevators or door opening) as features to compensate for

the IMU drifting error. Additional information [30] can be

further incorporated into FootSLAM, for example a prior map

or signal strength from a Wi-Fi access point. Authors in

[31] proposed SenseWit that utilizes inertial measurements to

generate a floorplan by identifying featured locations (turning,

water dispenser, and door) in indoor space.

When the indoor environment becomes huge, generating the

radio map with single mobile device becomes time consuming.

The power of crowd comes into play in this scenario. Mobile

crowdsensing is a popular computing paradigm, which enables

ubiquitous devices to collect sensing data at large scales [32]–

[34]. This technique can be utilized to unleash the potential

of mobile phones of people who move inside the indoor

environment [35]. Prior research have harnessed the power

of crowdsensing to reconstruct indoor floor plans by com-

bining user mobility traces, images of landmarks, and Wi-Fi

fingerprints [36], [37]. Localization by combination of 6-DOF



gyro-odometry and Wi-Fi localization has been done in [38],

using multiple robots. Authors in [39] proposed an approach

to utilize pairwise distance measures between users to reduce

the positioning error in fingerprinting-based approaches.

Our system combines crowdsensed RSS from Wi-Fi APs

and dead reckoning information from a phone to localize a

device and build a radio map of the environment. To improve

the accuracy, we additionally incorporate turning features

extracted from users’ trajectories into our system. Section III

explains the details of the system implementation.

III. COLLABORATIVE SLAM BASED ON POSE GRAPH

OPTIMIZATION

We present a novel approach that incorporates radio finger-

print measurement and motion information for collaborative

SLAM in an unknown environment. The approach presented

here does not require any prior knowledge about the map or

the distribution of the access points nor does it need a labor-

intensive phase to collect the measurements in the existing

infrastructure. Our approach features a cost-effective alterna-

tive to estimate the trajectory of multiple users in unknown

environments. A radio map is created simultaneously, which

can be used as reference to localize other users afterwards.

In our proposed collaborative framework, user walks in

the environment and collects the radio measurements. Our

approach merges the tracks from different users, performs

loop closure detection, and optimizes the graph to generate

a consistent radio fingerprint map. The data collected will

be shared among all users through the server and each user

will contribute to certain part of the map. The collaborative

approach will accelerate the conventional way of map building.

With our collaborative approach, the mapping of a building

will become easier, since all users will participate in the map

creation, which eliminates the expensive on-site survey phase

in the conventional way of fingerprint map generation.

The goal is to estimate the entire trajectories from obser-

vations (i.e., Wi-Fi observations and motion measurements)

taken from different users at different times without a prior

knowledge about the environment. The problem addressed

here is known as SLAM, which has been well studied in the

field of robotics [10], [22], [40], [41]. Among those, the graph-

based approach, which formulates the problem as maximum

likelihood estimation using pose graphs, is regarded as one

of the most effective way to solve SLAM problem. Based

on the raw sensor measurements, graph-based SLAM [22]

creates a graph, where nodes denote the poses of the users

and edges decode the constraints between two nodes. The

problem turns into graph optimization, which determines the

best configuration of the poses by considering all constraints

in the graph.

Loop closure is important for any SLAM system and is

considered as one of the main challenges in implementing

a SLAM system in large-scale environment. It represents

a situation that users have revisited a previously observed

location. Since the odometry will inevitably drift for long

term run, loop closure allows to correct the accumulated

odometric errors and create a consistent map of the scene. The

loop closure problem has been researched extensively using

visual-based or ranging-based sensors [9], [42], which are

usually costly and computationally expensive. Instead of using

the dedicated devices to perform loop closure detection, we

focus on the radio fingerprints, which are available in existing

indoor infrastructures and can be easily retrieved from every

smartphone.

Formally, let xk
1:T = {xk

1 , ...,x
k
T } be the path of user k we

would like to estimate up to time T , where x
k
t = (xk

t , y
k
t , θ

k
t )

represents the global 2D location and heading of the user at

time t. Let z
n,j
m,i and Σn,j

m,i represent the mean and covariance

of a measurement (i.e., constraint or edge) between node x
m
i

and x
n
j . We use C to denote the set containing all pairs of

constraints. ẑ
n,j
m,i(x

m
i ,xn

j ) is the prediction of a measurement

based on the current configuration of node x
m
i and x

n
j . The

graph-based SLAM aims to find the best configuration x
∗ to

meet the following criteria:

x
∗ = argmin

x

∑

(xm
i
,xn

j
)∈C

(zn,jm,i − ẑ
n,j
m,i(x

m
i ,xn

j ))
⊺

Σn,j
m,i

−1

× (zn,jm,i − ẑ
n,j
m,i(x

m
i ,xn

j ))

(1)

In particular for graph-based SLAM, z
n,j
m,i is known as edge

or constraint which represents a rigid-body transformation

between node x
m
i and x

n
j . The transformation is a 3×1 vector

which encodes the 2D translation (i.e., x
n,j
m,i and y

n,j
m,i) and the

rotation θ
n,j
m,i. The constraint can be either sequential odom-

etry measurement (i.e., odometry-based constraint) or loop

closure (observation-based constraint), which is determined by

aligning the sensor observations at two non-consecutive poses.

Since observations are usually erroneous, all constraints are

additionally parameterized with a certain degree of uncertainty

(i.e., Σn,j
m,i). For laser range finders, the transformation z

n,j
m,i

can be determined by matching two scans [11] using model-

based registration, for example iterative closest point (ICP).

Given a signal strength measurement from an AP, it is straight-

forward to know if an area has been visited by a user, since

each reported RSS value is associated with a unique MAC

address. However, estimating the precise transformation z
n,j
m,i

between two observations turns out to be tricky, since radio

signal neither reports distance nor bearing, and the detection

range of an AP can be up to 50 meters, which is usually

much larger than the accumulated error of a pedestrian dead

reckoning system.

The distance to an access point can be approximated by

the signal strength via an analytical signal-to-distance model.

This model is used by some researchers to address the SLAM

problem [6], [13], [43] and indoor positioning [1], [2]. How-

ever, obtaining such a model is usually not practical, as the

propagation of signal will be distorted by many environmental

factors (for example, multiple path or obstruction from obsta-

cles). Instead of modeling them explicitly, this paper represents

the location with radio fingerprint, which consists of the

address of detected device and the measured signal strength.

These fingerprints are location-dependent and are assumed

to be unique to describe a location in an infrastructure. The

closeness of two locations can be determined by comparing
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Fig. 1. Illustration of our collaborative simultaneous localization and radio
fingerprint mapping (C-SLAM-RF) system. The proposed system automati-
cally creates a radio fingerprint map of an environment using the radio and
odometry measurements from a group of users. The fingerprint-based and
turning-based loops are identified and incorporated into a graph-based SLAM
algorithm for optimization.

the degree of similarity of the fingerprints.

We claim a loop closure if the similarity between two radio

measurements at xm
i and x

n
j reaches a threshold ϑs. We then

infer that their locations are the same and add a constraint

z
n,j
m,i, with all elements zero, to the graph. Actually, the two

locations are unlikely to be exactly the same, which will

produce a small amount of error to the loop closure. The

error can be compensated by associating a covariance Σn,j
m,i

to the constraint. A choice of this can be a diagonal matrix by

setting small values on the main diagonal. Our solution is a

careful examination of the uncertainty of a loop based on the

degree of similarity in a training phase. Based on training data,

we automatically learn a nonparametric model to characterize

the degree of similarity conditioned on the distance of two

locations.

The uncertainty of the loop closure inferred from radio

fingerprints is very high, we therefore exploit the turning

features to improve the accuracy. We identify the turnings

using motion information, match the turnings, and assign the

loop closure with a small covariance if a match is found.

Figure 1 gives an overview of the system. We will describe

the details of each component in our proposed solutions in

the following subsections. We summarize the notations of the

symbols used in this paper in Table I.

A. Radio Fingerprints and the Similarity

Radio fingerprinting represents location with radio signals

from radio-based sensors, for example Wi-Fi APs, Bluetooth

beacons, and RFID tags. These fingerprints are robust against

location-dependent distortions as compared to the model-based

approaches, since the propagation of the radio signal in an

environment is hard to predict due to the blockage of obstacles

and multipath fading issue. This is quite similar to appearance-

based approach, where the scene is represented by a number

of visual features. Extracting visual features involves a large

amount of computation, while this process can be ignored for

TABLE I
SUMMARY OF IMPORTANT VARIABLES USED IN THIS PAPER

Symbol Meaning

x
k
t

the pose of user k at time t, i.e., x
k
t =

(xk
t , y

k
t , θ

k
t )

x
k
1:T the trajectories of user k up to time T

z
n,j
m,i

the transformation (i.e., translation and rota-

tion) between node x
m
i and x

n
j

Σn,j
m,i

the covariance of the transformation z
n,j
m,i be-

tween node x
m
i and x

n
j

F
k
t

the radio fingerprint and pose of user k

recorded at time t, i.e., Fk
t = (fkt ,x

k
t )

f
k
t

the radio fingerprint at pose x
k
t , which

consists of the RSS from L APs: f
k
t =

{fk
t,1, ..., f

k
t,L}

s
n,j
m,i the cosine similarity between f

m
i and f

n
j

d(xm
i ,xn

j )
the relative distance between pose x

m
i and x

n
j

where fingerprints F
m
i and F

n
j are recorded

θ(xm
i ,xn

j )
the relative orientation between pose x

m
i

and x
n
j where fingerprints F

m
i and F

n
j are

recorded

ϑs
the threshold used to claim a loop closure

based on the cosine similarity s
n,j
m,i

ϑr
the threshold used to filter out the low RSS

measurement

r
the binning size to train the model (i.e., the

uncertainty given a measured similarity)

{sk, dk}
K
k=1

the K training samples, where sk denotes

the similarity and dk denotes the distance

between a fingerprint pair

b(s, r)
a set of samples that sits in an interval r

around a similarity s

var(d|s) variance of the samples given a similarity s

c(b(s, r))
the number of samples that sits in an interval

r around a similarity s

akt
the acceleration measurement of user k at

time t

s
the step length of the step counter-based

pedestrian dead reckoning

Rk
t (τ)

the normalized auto-correlation of the ac-

celerometer data for lag τ at the tth sample

of user k

µk
t (τ)

mean of the sequential acceleration measure-

ments for a lag τ at time t

σk
t (τ)

standard deviation of the sequential accelera-

tion measurements for a lag τ at time t

ckt the step counter at timestamp t of user k

w
the window size to segment the inertial mea-

surements for turning detection and matching

Ck
t the track segmentation of user k at time t

C
k

t the relative positions of Ck
t with respect to x

k
t

θk
−

t , θk
+

t

the mean orientation of poses with timestamps

smaller or larger than t in segmentation Ck
t

ϑf
the threshold used to claim a valid turning

match



the radio fingerprint, since the AP can be regarded as the

unique feature for the positioning.

We represent a fingerprint of user k at time t as a pair

F
k
t = (fkt ,x

k
t ). x

k
t = (xk

t , y
k
t , θ

k
t ) denotes the odometry at

time t when user k traverses the environment. fkt represents the

radio measurement at location x
k
t , which consists of the RSS

values from L access points: fkt = {fk
t,1, ..., f

k
t,L}. Let Lm

i and

Ln
j denote the number of detections in f

m
i and f

n
j , respectively.

L
n,j
m,i =

∣

∣f
m
i ∩ f

n
j

∣

∣ is used to represent the common APs

in both f
m
i and f

n
j . The similarity function sim(Fm

i ,Fn
j )

yields a positive value, representing the similarity between two

radio measurements, namely f
m
i and f

n
j . We apply the cosine

similarity which has been extensively used in the literature

[44] [45].

s
n,j
m,i = sim(Fm

i ,Fn
j ) =

∑L
n,j

m,i

l=1 fm
i,lf

n
j,l

√

∑Lm
i

l=1

(

fm
i,l

)2
√

∑Ln
j

l=1

(

fn
j,l

)2

(2)

We refer the readers to [2] [46] for a comparison between

different similarity measures.

B. Pedestrian Dead Reckoning

The spatial relationship between sequential poses in Equa-

tion 1 can be determined by the odometry measurements,

which is known as odometry-based constraint. Nowadays,

smartphones are equipped with various types of sensors,

including IMU sensor, camera, light sensor, and proximity

sensor. This enables one to implement a variety of pedestrian

dead reckoning systems using different techniques. We eval-

uated our system under two pedestrian dead reckoning sys-

tems (PDR): Tango-based PDR using visual-inertial odometry

(VIO) and step counter-based PDR using accelerometers and

compass. The goal is to compare the approach under various

tracking systems with different tracking accuracies.

Tango is developed by Google that uses visual-inertial

odometry, to estimate the location of a device without GPS

or any external referencing. It uses visual features with a

combination of inertial measurements from accelerometer and

gyroscope to track the movement of a device in 3D space.

Lenovo Phab 2 Pro and Asus Zenfone AR are two examples

of commercially available Tango phones.

Alternatively, the IMU sensor embedded inside a phone can

be used to implement a step counter-based dead reckoning.

A typical IMU system is comprised of accelerometer, gyro-

scope, and magnetometer for motion or orientation sensing.

Following Zee [47], we implemented the step counting based

on auto-correlation. Given the acceleration measurement akt of

user k at time t, the step counting is achieved by examining

the periodic step patterns through normalized auto-correlation

Rk
t (τ) for a lag τ :

Rk
t (τ) =

∑l=τ−1
l=0

[

(akt+l − µk
t (τ))

(akt+l+τ − µk
t+τ (τ))

]

τσk
t (τ)σ

k
t+τ (τ)

, (3)

where µk
t (τ) and σk

t (τ) are mean and standard deviation of the

sequential acceleration measurements {akt , a
k
t+1, ..., a

k
t+τ−1}.

The algorithm first identifies an optimal τopt to maximize

Rk
t (τ). Then τopt is used as a replacement of τ to count

further steps. Similar to Zee [47], the sampling rate of the

IMU is 50Hz, we therefore set the initial searching window τ

to [40, 100].
During the walking of a person, we assume the phone is

always held in front of him. Therefore, we use the magne-

tometer reading to approximate the orientation of the user.

Let ckt and θkt be the step counting and the orientation of user

k at time t respectively, the position (i.e., xk
t and ykt ) of user

k is determined by:

xk
t = xk

t−1 + s · (ckt − ckt−1) · cos(θ
k
t−1) (4)

ykt = ykt−1 + s · (ckt − ckt−1) · sin(θ
k
t−1), (5)

where s is the step length, which is assumed to be fixed

throughout the experiments. The estimation of the pose in

odometry frame works in recursive fashion. The initial values

of x and y are set to zero. The initial headings of different

PDR systems are treated differently. For Tango-based PDR, the

initial heading of a user is set to zero. For step counter-based

PDR, the heading is determined by the in-built magnetometer

based on geographic cardinal directions. The magnetic materi-

als in the building might affect the accuracy of the orientation

estimation. In the future, we would like to compensate for the

orientation by incorporating the gyroscope readings [48].

The odometry-based edge is determined based on the rela-

tive translation and rotation between the sequential odometry

measurements. For a user k, the rigid-body transformation

(∆xk
t , ∆ykt and ∆θkt ) between the pose at time t − 1 and

time t can be computed as:





∆xk
t

∆ykt
∆θkt



 =





cos(θkt−1) − sin(θkt−1) 0
sin(θkt−1) cos(θkt−1) 0

0 0 1





⊤ 



xk
t − xk

t−1

ykt − ykt−1

θkt − θkt−1





(6)

C. RSS Thresholding

The time required to compute the similarity in Equation (2)

grows linearly with the number of APs in the two fingerprints.

The computational time can be significant in densely AP cov-

ered environment, which is the typical case in modern office or

commercial buildings. A large amount of computational time

can be saved if the size of the measurements can be reduced.

Therefore, we propose to filter out the RSS observation with

value below a threshold ϑr.

Thresholding prunes observations with small RSS values,

which represent spurious readings due to multiple propagation

issues in indoor environment. In addition, larger RSS values

indicate a location close to the access point with more confi-

dence. These measurements are expected to better confine the

location of the user. In the experimental section, we show that

thresholding technique can provide a better accuracy while

consuming less computational time.

D. Finding Loop Closure Candidates

To find the observation-based edge (i.e., constraint) between

the non-consecutive poses in Equation 1, we need to perform
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loop closure detection. The observation-based edge consists of

two different types of edges, namely similarity-based edge and

turning-based edge. In our approach, each fingerprint carries

the odometry information where the fingerprint is recorded

(i.e., x, y, and the orientation θ of a user). We first compute

the relative distance d(xm
i ,xn

j ) and orientation θ(xm
i ,xn

j )
between the odometric poses of two fingerprints Fm

i and F
n
j . If

these values are smaller than pre-defined thresholds (50 meters

and 0.3 radians for distance and orientation respectively), we

compute the similarity s
n,j
m,i between them. We add a tuple

< x
m
i ,xn

j , s
n,j
m,i > as a candidate of the loop closure if the

similarity s
n,j
m,i exceeds a threshold ϑs, which is one of the

few parameters that has to be supplied by the user. The impact

of ϑs on the performance is not too critical, as shown in

our experiments. In most cases, ϑs = 0.7 gives good results.

We reject the similarity with values smaller than ϑs, to avoid

false positive loop closures. To improve the accuracy of the

system, we further check if this loop is a turning-based loop.

We identify a turn by examining the orientation changes and

checked the fitness of their respective tracks by a matching

algorithm. If the fitness score is higher than a threshold, we

consider this loop as a turning-based loop. The detail of the

detection of turning-based loop can be found in Section III-G.

E. Model Training

To optimize Equation 1, an uncertainty estimation of the

constraint is necessary for all edges in SLAM graph. For

odometry-based edges, the parameter is obtained from the

motion model. We now need to derive a model to represent

the uncertainty of the observation-based edges. Our solution

is to train such model by passing over the observation data

(i.e., odometry and radio fingerprints), which is recorded by

the smart phone as shown in Figure 1.

Our goal is to generate an uncertainty model to feature

the distance variance of two radio fingerprints given their

similarity. To build such a model, we need to know the

true locations where the fingerprints are recorded or relative

distance between the recorded positions, which is not possible

without any external reference system. Although the error from

odometry accumulates in the long term, it is sufficiently small

for a short time of duration. In this work, we assume odometry

is accurate enough for the distance traveled less than 100

meters, which is suitable for most inertial tracking platforms

[48] [49] [50]. For example, authors in [49] evaluated the

visual odometry with wide angle and fisheye cameras, and

showed a relative positioning error of less than 1.4% with

a distance of 538 meters traveled. Therefore, we compute the

degree of similarity for close fingerprint pairs. These values are

annotated with the distance between the two locations using

the PDR system. As a result, we will get a set of K training

samples: {sk, dk}
K
k=1, where sk is the similarity and dk is the

distance of the fingerprint pair. Figure 3 shows the scatter plot

of distance versus similarity in one of the buildings. We then

train a model which features the variance of distance given

a similarity by binning. That is, for a similarity value s, we

compute the variance of the samples that sites in the small

interval r around s:

var(d|s) =
1

c(b(s, r))

∑

k∈b(s,r)

dk
2 (7)

where c(b) counts the number of samples in interval r.

var(d|s) denotes the variance of the distance d given a

similarity s. Although binning is a simple way for smoothing,

the computation is efficient, since assigning the sample into a

bin is straightforward. One example of the variance computed

in two different buildings is shown in Figure 2(b). The resulted

variance is stored in a look up table, which could be used in

the second stage of SLAM, as shown in Figure 1.

F. Merging Tracks at Different Times

To leverage the power of crowdsourcing, we utilize the

measurements captured from different users to generate a

radio map of the environment. This involves the loop closure

detection between different users in order to correct their

paths using the power of crowdsourcing. The tracks recorded

from different users are based on different reference systems,

for example different starting positions. The determination of

orientation is different for the two pedestrian dead reckoning

systems. The Tango-based PDR estimates the orientation by

visual-inertial odometry based on the starting pose and the step

counter-based PDR determines the orientation based on the



compass readings and is not relevant to any starting position.

Therefore, these trajectories are needed to be merged into the

same coordinate system to guarantee a robust loop closure

detection between different users.

In this paper, we start the tracking by assuming all users

passing by the same place. This is quite reasonable since users

may pass through several key landmarks in an environment

for example entrance of a building or the elevator. One might

argue that in large buildings for example airport, not all users

share the common place. It is possible to first build several

sub-maps, and then merge them into a large and consistent

map [51] [52] [53]. An edge is added to connect the first

nodes in different tracks. For the transformation matrix z
n,j
m,i,

we set x
n,j
m,i and y

n,j
m,i to zero and the covariance is obtained

by checking the covariance table as detailed in Section III-E.

Due to the omnidirectional characteristics of antennas, the

facing of a user has very little impact on the radio signals,

therefore the radio fingerprint does not deliver any orientation

information. This is the reason why Section III-E does not

model orientation variance with respect to the similarity. Based

on two fingerprint observations, we have no knowledge about

how accurate is the relative orientation between two poses,

we therefore set θ
n,j
m,i to zero and give a very large covariance

value (i.e., 1000) to the edge, meaning that we are not able to

infer the relative angle from two radio fingerprint observations.

For users starting from arbitrary locations, we refer to [54] [55]

[56] [57] to merge the paths based on the radio measurements

and activity landmarks in our future work.

G. Turning Identification and Matching

A typical indoor infrastructure often contains various land-

marks, such as turnings, elevators, and staircases. These land-

marks are unique in an existing infrastructure and can be used

as a good feature for loop closure identification in a SLAM

system. In this case, a loop closure can be claimed if two

landmarks match each other. Due to the physical constraint

of an environment, such kind of loop closure provides lower

positioning uncertainty as compared to fingerprinting-based

loops. For example, the size of an elevator is usually less

than 3 meters, and the turning radius during human walking

is smaller than a typical corridor width (i.e., 5 meters), while

the positioning error using fingerprinting-based approach is

usually larger than 5 meters.

Here we only focus on the turning features in a trajec-

tory, which is regarded as one of the most common indoor

landmarks. A slide window is used to produce segmentations

of the track. In particular, we define a segmentation Ck
t of

user k at time t as a collection of sequential poses with a

window size of w, i.e., Ck
t = {xk

t′ | −
w
2 ≤ t′ − t ≤ w

2 }.

For each loop closure candidate < x
m
i ,xn

j >, we check if

there are turnings at these poses by examining the orientation

change in segment Cm
i and C

n
j . If yes, we try to match the two

segmentations Cm
i and Cn

j using ICP (Iterative Closest Point)

[58]. If the fitness score (i.e., average of squared distances

between the correspondence points) between Cm
i and Cn

j

is smaller than a predefined threshold ϑf , we regard loop

< x
m
i ,xn

j > as the turning-based loop. Otherwise, this loop
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Fig. 4. Example of the track (blue color) and turnings detected (red circles)
with a window size of 20 based on the approach described in Section III-G.
In total, 111 turnings are identified. These turnings are further examined by
turning matching module to find the potential turning-based loops.
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i and Cn

j in blue and

red color, respectively), and the correspondence points found using ICP (green
color). A fitness score is calculated to determine if this candidate is a turning-
based loop.

closure is referred to as fingerprint-based loop, as shown in

Figure 1. The transformation z
n,j
m,i of both types of loop is set

to zero. We treat the covariance matrix Σn,j
m,i differently: for

fingerprint-based loop, the covariance along x and y can be

found at the looking up table computed previously in Section

III-E; for turning-based loop, we set the covariance along x

and y to 5.0, which is smaller than fingerprint-based loop (i.e.,

8.0 in Figure 2(a) with the highest fingerprint similarity). The

orientation covariance in Σn,j
m,i is set to 1000, meaning that

we do not have any knowledge about the orientation of the

two poses by the radio observations or the matching of two

turnings. The details of turning identification and matching

will be described in subsequent parts:

1) Turning Identification: We first segment the compass

data and find the potential turnings [16]. For the pose x
k
t ,

we calculate the mean orientations for the poses with times-

tamps smaller and larger than t in the segmentation Ck
t , i.e.,

θk
−

t = µ{θkt′ |t
′ − t ≤ 0} and θk

+

t = µ{θkt′ |t
′ − t ≥ 0}.

If |θk
+

t − θk
−

t | is higher than a threshold (for example π
3 as

suggested in [16]), a turning is identified. The window size w

here has the impact on the performance of turning detection



and we show its impact on the accuracy in the experimental

section. One example of the track and turnings detected are

shown in Figure 4. A better approach to improve the accuracy

of turning detection can be found in [59].

2) Turning Matching: The ICP aims to find a transfor-

mation (translation and rotation) between two point clouds

that minimizes the sum of the square distance between the

correspondence points. This approach has been extensively

used to match 2D laser scans in the field of robotics.

To find the correct transformation using ICP, an appropriate

initial transformation has to be provided, otherwise ICP will

fall into the local minimum. Rather than using the global raw

odometry for a segmentation Ck
t , we use the relative translation

between x
k
t′ and x

k
t , i.e., Ct = {T

x
k

t′

xk
t

| − w
2 ≤ t′ − t ≤ w

2 }.

Since the sampling rate of our pedestrian tracking system is too

low (less than 1.0 HZ), we further interpolate the trajectory

to get a large amount of locations for performing ICP. An

illustration of the turning matching using ICP is shown in

Figure 5.

We finally considers < x
m
i ,xn

j > as a valid match (i.e.,

turning-based loop) if the fitness score is smaller than a

threshold ϑf . Robust loop closure detection is essential to

a SLAM system, as incorrect loop closures will ruin the

consistency of trajectory and the map. Other heuristic approach

can be applied to further examine the loops and filter out

the suspicious ones. Authors in [60], for example, proposed

an approach to group the close loop closures and check

the temporal and spatial consistency for robust loop closure

detection. However, this technique goes beyond the scope of

this paper, hence, we add the loop closures without performing

futher consistency check.

H. Pose Graph Optimization

The Equation 1, which represents a graph consisting of

poses (i.e., nodes) and constraints (i.e., edges), is finally

optimized through the pose graph optimization algorithm

GraphSLAM. For the implementation, we choose Levenberg-

Marquardt in g2o [23], which is freely available and is one of

the state-of-the-art SLAM algorithms1.

IV. EXPERIMENTAL RESULTS

A. Experimental Details

We program two smart phones (Lenovo Phab 2 Pro with

Android 6.0.1 and Sony Xperia Z3 with Android 5.0.2) to

receive the signal strength from APs and perform pedestrian

dead reckoning. In particular, the Lenovo phone uses the

Tango for position tracking and the motion tracking data is

recorded every five seconds due to its high tracking accuracy.

We implement the step counting on a Sony phone and record

the step counting and the compass readings every one second.

To evaluate the performance of the proposed approach, we

conducted experiments on the Level 3 of Building 2 at

Singapore University of Technology and Design with a size

of 130m×70m (see Fig. 6). This environment is comprised of

corridors, concrete walls, and wide open space. We asked a

1https://github.com/RainerKuemmerle/g2o
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(a) Evaluation of Tango-based pedestrian dead reckoning system
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(b) Evaluation of step counter-based pedestrian dead reckoning system

Fig. 6. Ground truth, odometry, and estimated path with our proposed
approach under two different pedestrian dead reckoning (PDR) systems,
namely Tango-based PDR and step counter-based PDR.
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Fig. 7. Part of the estimated track over time using Tango-based pedestrian
dead reckoning and fingerprint-based constraints inferred with a similarity
threshold of ϑs = 0.7.

person to hold two phones (i.e., Lenovo Phab 2 Pro and Sony)

and walk in the building along different paths with a regular

walking speed. Four tracks were recorded at different times to

show the power of the collaborative SLAM. For each track,

the user started from the same position. The total distance

traveled is 1906 meters with a duration of 2179 seconds and

a number of 1702 unique MAC addresses are detected. This

results in four log files with a duration of 687, 582, 439, and

471 seconds respectively. The step length s is fixed to 0.7m

throughout this paper. Fig. 2(a) shows a snapshot during the

experiment.
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����
��� 0 �� �� 60

��
�
�

���

0

��

� 

60

¡¢

£¤¥

¦§¨

©ª«

¬­

®¯°±
²³´µ¶

(e) Visualization of track from user1
using step counter-based PDR
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(f) Visualization of track from user2
using step counter-based PDR
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using step counter-based PDR
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Fig. 8. A comparison between ground truth from point cloud-based SLAM, estimated track using our approach, and raw odometry of the three individual
users using two different pedestrian dead reckoning systems (i.e., Tango and step counter).

TABLE II
THE ROLE OF PARAMETERS IN THE PROPOSED METHOD AND GUIDELINES ON HOW TO CHOOSE THEIR VALUES.

Parameter Range Guidelines to choose the parameters

ϑs [0, 1]

Threshold used to claim a loop closure based on similarity between two radio fingerprints.

A large ϑs will produce less loop closures and a small ϑs will result in false loop closures.

A setting of ϑs = 0.7 is recommended in our approach.

ϑr [-90, -50]

Threshold used to filter out the low RSS measurements. The choice of ϑr depends on the

distribution of the received signal strength in a radio environment. A value of ϑr = −70
is suggested in our approach.

r [0, 1]

Binning size to train the variance model. A small r requires more training time and training

samples. A large r is not able to characterize the detail of the variance model. A setting

of r = 0.2 produces the best results in our approach.

w [0, 200]
Window size to identify a turn. A large w will result in more false turnings and a small w

is not able to infer the correct turnings. w = 40 is suggested in our approach.

ϑf [0, 1]

Threshold used to claim a valid turning match. A large ϑf will discard the true turning

loop candidates and a small ϑf will incorporate too many false turning loops. ϑf = 0.5 is

appropriate for the application.



TABLE III
EVALUATION OF THE SYSTEM PERFORMANCE WITH RESPECT TO DIFFERENT RSS THRESHOLDS ϑr . THE TABLE SHOWS THE POSITIONING ACCURACY

(MEAN, STANDARD DEVIATION, MAXIMUM, AND MEDIAN) IN METERS, AVERAGE NUMBER OF MAC ADDRESSES DETECTED, AND AVERAGE

COMPUTATIONAL TIME FOR LOOP CLOSURE DETECTION.

ϑr

Tango-based Step counter-based

Mean±
Std. Dev.

Max./Median
Number

of MAC

Comput.

time (s)

Mean±
Std. Dev.

Max./Median
Number

of MAC

Comput.

time (s)

-90 1.39±1.51 7.86/1.37 179.23 24.50 14.95±7.09 37.72/14.85 129.36 426.37

-80 1.26±1.21 6.30/1.19 137.81 19.53 5.91±3.76 20.87/5.14 70.08 212.07

-75 1.06±0.49 4.53/0.94 81.29 12.31 5.40±3.60 21.52/4.56 43.36 127.67

-70 0.77±0.46 3.79/0.73 47.97 5.73 5.19±3.48 21.64/4.47 25.49 72.34

-65 0.92±0.44 3.87/0.84 28.94 3.29 5.43±3.43 20.40/4.70 13.41 37.78

-60 1.24±0.89 4.91/1.13 16.22 1.76 5.95±3.82 22.78/5.06 6.08 20.36

-50 2.44±0.95 5.81/2.12 3.29 0.37 11.51±5.82 35.03/11.52 0.67 3.08

odom. 8.03±7.80 31.55/4.22 NA NA 15.39±7.89 41.23/14.58 NA NA

B. Ground Truth and Accuracy Comparisons

To extract the ground truth as comparison, we optimized the

track from Tango using GraphSLAM taken 3D point clouds

as input. We implement loop closure detection based on the

point cloud library (PCL) [61]. We identify Harris keypoints in

a pair of point clouds and compute the corresponding SHOT

(Signature of Histograms of OrienTations) descriptors [62].

We match these descriptors with k-nearest neighbors algorithm

(k-NN) and find an initial transformation using SVD (singular

value decomposition). The transformation is further refined by

ICP. If the number of matched points exceeds a threshold (half

size of the point cloud), a loop closure is confirmed and added

to the graph as constraints. We treat this optimized path as the

ground truth to evaluate the accuracy of our system.

We show the accuracy by the root mean square error

(RMSE) between the ground truth and the estimation. Our

experiments show that we are able to achieve an accuracy

of 0.6 meters with Tango-based PDR and 4.76 meters of

a step counter-based PDR with a size of 130m×70m, as

shown in Figure 6. The optimized track is annotated with the

radio measurement and can serve as the radio map for the

positioning of another user. In Table II, we show the important

parameters used in this paper and the remarks of how to choose

these parameters. The final positioning error is calculated at

the end of the process after the loop closure detection, turning

matching, and pose graph optimization. Larger positioning

errors are expected in a real time system, since we have to

process the incoming data in a sequential way and provide

pose estimation at regular intervals before loop closures are

detected.

To implement a practical indoor localization system, the

mechanism to deal with the change of the radio environment

is a necessity. The evolution of the radio environment (for ex-

ample adding or removing the access points) can be examined

by looking at the signal variance at similar locations, as shown

in [63] [64] [65] [66] [67]. Some MAC addresses might be

static for a fixed duration of time, but are essentially mobile

for example personal hotspots. A good way to address the

mobile hotspots issue is to filter out the MAC addresses by

the organizationally unique identifier (OUI), which is used to

uniquely identify a vendor2. The MAC address from a phone

manufacturer should be removed from the detection list to

prevent the uncertainty of incorporating the additional mobile

hotspot observations. Another approach to filter out the mobile

hotspots is to look at the spatial relations of the detected

positions of a particular MAC address [68] [69] [70].

C. Impact of Different RSS Threshold ϑr

We examined the influence of RSS thresholding on the

accuracy in this series of experiments. We set the similarity

threshold ϑs = 0.7 and use a binning size r = 0.2. We chose

ϑr values between -90 and -50 to evaluate the mean accuracy,

as listed in Table III. As compared to the raw odometry, our

approach can effectively reduce the accumulated odometry

error: with the setting of ϑr = −70, our approach improves

the positioning accuracy by 90.4% and 66.3% for Tango (from

8.03m to 0.77m) and step counter (from 15.39m to 5.19m)

respectively. In addition, the accuracy of the PDR has a very

high impact on the accuracy achieved with our SLAM system:

Tango shows a good motion tracking performance and we

achieved an accuracy of 0.77m with a threshold ϑr = −70.

The accuracy achieved with Tango is better than state-of-the-

art fingerprinting-based approaches [1], [12]. While the step

counter results in a large amount of accumulated odometry

error and the accuracy obtained with our approach is worse

(5.19m). A further investigation to the PDR system will help

to improve the accuracy, which will be one of our future work.

One has to note that the accuracy is achieved without training

as opposed to the fingerprinting-based approaches, where a

time-consuming phase to collect and annotate the fingerprints

is prerequisite to guarantee a good positioning accuracy.

Table III also shows that we maintain a good accuracy

with an RSS threshold between -75 and -65, while the com-

putational time decreases considerably with the thresholding

technique. As an example, for Tango-based system, a threshold

of -70 reduces the computation time to 5.73 seconds as

compared to a threshold of -90 (i.e., 24.28 seconds). At the

same time, the accuracy even increases by 0.62 meters (error

drops from 1.39m to 0.77m). A suitable threshold produces

2http://standards-oui.ieee.org/oui.txt



TABLE IV
EVALUATION OF THE PROPOSED APPROACH WITH TWO DIFFERENT

PEDESTRIAN DEAD RECKONING SYSTEMS UNDER DIFFERENT SETTINGS

OF SIMILARITY THRESHOLD ϑs . THE TABLE SHOWS THE POSITIONING

ACCURACY (MEAN AND STANDARD DEVIATION) IN METERS AND THE

NUMBER OF CONSTRAINTS INFERRED.

ϑs

Tango-based Step counter-based

Mean ±
Std. Dev

No. of

constr.

Mean ±
Std. Dev

No. of

constr.

0.95 5.63±6.76 18 13.86±7.67 2098

0.9 2.15±0.71 94 6.29±3.67 4241

0.8 1.06±0.51 384 5.49±3.61 10582

0.7 0.77±0.46 715 5.19±3.48 17020

0.6 0.81±0.76 1150 5.35±3.34 23859

0.4 0.80±0.79 2198 5.49±3.66 42625

0.2 1.06±0.89 3494 5.94±4.02 66423

0.1 1.09±0.95 4517 6.09±3.94 85834

TABLE V
EVALUATION OF THE MEAN POSITIONING ACCURACY UNDER THE IMPACT

OF DIFFERENT SETTINGS OF ϑs AND ϑr FOR TANGO-BASED APPROACH.

ϑs
ϑr

-90 -80 -75 -70 -65 -60 -50

0.9 2.96 2.65 2.38 2.15 1.81 2.08 2.61

0.8 1.68 1.29 1.16 1.06 1.23 1.41 2.58

0.7 1.39 1.26 1.06 0.77 0.92 1.24 2.44

0.6 1.22 1.02 0.87 0.81 0.89 1.27 2.35

0.5 0.88 0.83 0.78 0.82 0.93 1.57 2.33

0.4 0.99 0.91 0.82 0.80 0.85 1.54 2.40

0.3 1.19 1.16 1.08 0.92 0.89 1.61 2.35

0.2 1.26 1.27 1.22 1.06 0.96 1.65 2.35

0.1 1.28 1.29 1.23 1.09 1.01 1.70 2.30

a good accuracy, as it will filter out the suspicious radio

signals. However, a threshold larger than -65 leads to a bad

result (for example, 1.24 meters of accuracy with ϑr = −60
for Tango-based system). The ground truth, estimation, and

odometry of individual tracks using two different pedestrian

dead reckoning systems are visualized in Figure 8. A part of

estimated trajectory and the constraints inferred are shown in

Figure 7.

D. Impact of Different Similarity Threshold ϑs

Next, we performed a series of experiments to examine

the influence of accuracy with respect to different similarity

thresholds ϑr. We show the results in Table IV. We fixed

RSS threshold ϑr = −70 and a binning size r = 0.2. We

increased the similarity threshold ϑs from 0.1 to 0.95 to

evaluate the accuracy and the number of constraints inferred.

From Table IV, we can observe that the number of constraints

is different for Tango and step counter-based PDR due to

different sampling rates of the device (5 seconds for Tango and

1 second for step counter): Tango-based PDR offers a small

number of constraints as compared to step counter-based PDR.

In addition, the threshold has a high impact on the accuracy

and the number of constraints. Applying a high threshold will

TABLE VI
EVALUATION OF THE POSITIONING ACCURACY (MEAN, STANDARD

DEVIATION, MEDIAN, AND MAXIMUM IN METERS) WITH TWO

PEDESTRIAN DEAD RECKONING SYSTEMS UNDER THE IMPACT OF

DIFFERENT CONFIGURATIONS OF BINNING SIZE r.

r

Tango-based Step counter-based

Mean ±
Std. Dev

Max. /

Median

Mean ±
Std. Dev

Max. /

Median

1.0 1.03±0.63 4.29/0.89 6.23±3.84 24.83/5.59

0.8 0.85±0.50 4.22/0.85 5.71±3.50 21.97/5.03

0.6 0.84±0.39 3.62/0.79 5.32±3.54 21.78/4.60

0.4 0.81±0.62 4.26/0.76 5.22±3.51 21.93/4.46

0.2 0.77±0.46 3.79/0.73 5.19±3.48 21.64/4.47

0.1 0.79±0.40 3.59/0.86 5.23±3.79 20.97/4.13

0.05 0.81±0.39 4.00/0.87 5.29±3.52 21.48/4.50

result in a small number of constraints and a decrease of the

accuracy. For Tango-based system, we obtain a mean accuracy

of 0.77m with ϑs = 0.7, which is an improvement of 86.3%

as compared to the mean accuracy of 5.63m with ϑs = 0.95.

Yet, such an improvement is at the expense of a higher number

of constraints added (i.e., 715 constraints with ϑs = 0.7 as

compared to 18 with ϑs = 0.95). But the accuracy does not get

improved with a threshold smaller than 0.6. One reason could

be because a low similarity value will always come along with

a very large covariance, and has very less strength to correct

the odometric error. A setting of ϑs = 0.7 seems to be a good

trade off between the accuracy and the number of constraints

inferred. Table V showed the accuracy by jointly optimizing

the parameters ϑs and ϑr for Tango-based approach. As can be

seen from this table, a careful examination of ϑs and ϑr will

improve the accuracy. A too large or too small will obviously

deteriorate the performance of our approach.

E. Impact of the Binning Size of Training

Next, we examined the influence of accuracy with respect

to various binning sizes r. We chose RSS threshold ϑr = −70
and similarity threshold ϑs = 0.7. To evaluate accuracy under

impact of different binning sizes, we set r to the following

values r = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. In our approach,

the uncertainty model is trained with all the collected data. We

show a comparison of the results in Table VI. This table shows

that the best choice of r is 0.2. The covariance estimated with

a large r is usually too large to compensate for the error from

the odometry. Optimizing r gives an improvement of 25.2%

(0.77m and 1.03m for r = 0.2 and r = 1.0 respectively)

for Tango-based PDR and 16.6% (5.19m and 6.23m for

r = 0.2 and r = 1.0 respectively) for step counter-based PDR.

Covariance of the loop is a key to optimize the pose graph, as it

is the only information to measure how close the two locations

are in a loop, therefore, a careful examination of the parameter

will lead to an improvement of the accuracy. The covariance

added here (see Figure 2(b)) is much smaller as compared

to the accumulated odometry error (notice that the maximum

positioning error of Tango and step counter in Table III are

31.55m and 41.23m respectively). This is why we are still

able to correct the accumulated odometry error. The approach



TABLE VII
COMPARISON OF MEAN POSITIONING ACCURACY UNDER DIFFERENT

SIMILARITY MODELS TRAINED AT TWO DIFFERENT BUILDINGS

REGARDING TANGO-BASED PEDESTRIAN DEAD RECKONING SYSTEM.

Model
Binning size r

0.05 0.1 0.2 0.4 0.6 0.8 1.0

Bld1 0.81 0.79 0.77 0.81 0.84 0.85 1.03

Bld2 0.84 0.81 0.78 0.85 0.86 0.91 1.07

presented here provides a way to automatically calibrate the

uncertainty model with the odometry measurement. The model

generated in different environments might be slightly different,

as shown in Figure 2(b). To evaluate the accuracy under the

impact of different similarity models, Table VII compared the

results using the similarity models produced from two different

buildings, namely Building1 (the one used for the verification

of the positioning accuracy) and Building2 regarding to Tango-

based approach. As can be seen from this table, the two

models provide similar positioning accuracy, which proves our

assumption that the similarity model can be applied to different

environments.

F. Impact of Turning Detection and Matching

We compared the accuracy with and without the integration

of turning features in the next series of experiments. We fixed

RSS threshold ϑr = −70, similarity threshold ϑs = 0.7, and

binning size r = 0.2. We varied the setting of w and ϑf

to evaluate their impact on the accuracy. Figure 9 shows a

comparison of the results. This figure shows that the accuracy

can be improved by additional integration of turning features:

we obtain an improvement of 22.1% for the Tango-based

pedestrian dead reckoning (from 0.77m to 0.6m with w = 40
and ϑf = 0.5) and 8.3% for step counter-based dead reckoning

(from 5.19m to 4.76m with w = 40 and ϑf = 0.5). The

improvement of Tango is slightly higher as compared to the

step counter-based system. Since the odometry error of Tango

is smaller than step counter, the turning feature here exhibits

great capability to correct the drift error of odometry. However,

for step counter-based PDR, the error is dominated by the

odometry and the turning feature shows less improvement to

the accuracy as compared to Tango-based PDR.

The number of turnings detected with different settings of

w is shown in Table VIII. The constraints are mostly from

the fingerprinting matching. As can be seen from Table VIII,

only 26 turnings are detected with w = 40, which is much

less than the number of fingerprinting-based constraints (715

for Tango-based approach with ϑs = 0.7 as shown in Table

IV). Due to the low sampling rate, Tango-based PDR leads to

a small number of turnings as compared to the step counter-

based PDR. A large value of w leads to an increasing number

of turnings detected. From Figure 9, we can also observe that

a window size w = 40 leads to the best accuracy for both

systems. A too high or too small w obviously results in a less

improvement to the accuracy.

In addition, Figure 9 shows that a too large or too small

ϑf leads to a decrease of the accuracy. A suitable fitness

threshold ϑf will help to remove the false turning-based loop
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(b) Positioning accuracy of step counter-based pedestrian dead reckoning
system under different settings of w

Fig. 9. The impact of turning detection and matching on average positioning
accuracy with two different pedestrian dead reckoning systems under various
settings of window size w and ϑf .

TABLE VIII
COMPARISON OF NUMBER OF TURNINGS DETECTED WITH TWO DIFFERENT

PEDESTRIAN DEAD RECKONING SYSTEMS UNDER VARIOUS SETTINGS OF

WINDOW SIZE w.

Window size w 10 20 40 60 80

Turnings (Tango) 0 6 26 45 78

Turnings (step counter) 0 423 1447 2666 3973

closures. A small ϑf will not be able to identify true matched

turnings and results in a small number of turning-based loops

and therefore has less strength to improve the accuracy. A

large ϑf produces too many false turning-based loops, which

leads to a deterioration of the result. As an example, for step

counter-based PDR with w = 40, a setting of ϑf = 0.5 gives

an accuracy of 4.76m, which produces an improvement of

3.8% and 7.0% when compared to ϑf = 10.0 (4.95m) and

ϑf = 0.02 (5.12m), respectively.

G. Computational Time

Finally, we evaluated the time consumption at each stage

of our approach. The results are listed in Table IX. In our

approach, we process the recordings in a batch matter, which

means that we optimized the graph after all loop closures

are identified. An Intel Core i5-4200M CPU with 2.5GHz

frequency and 4GB RAM is used to process the measurements.

We set ϑr = −70, ϑs = 0.7, r = 0.2, w = 40, and ϑf = 0.5.

As can be seen from Table IX, the entire data processing

took 17.81 (6.08+5.73+5.93+0.07) seconds for tango-based



TABLE IX
EVALUATION OF THE COMPUTATIONAL TIME (IN SECONDS) IN EACH

STAGE USING TWO DIFFERENT PEDESTRIAN DEAD RECKONING SYSTEMS.

Stage
duration(s)

Tango Step counter

Data recording (time per track) 544.75 544.75

Model training+

variance computation
6.08 23.58

Loop closure detection 5.73 72.34

Turning detection and matching 5.93 31.82

Pose graph optimization 0.07 1.65

dataset, which is almost 30 times faster than the data recording

stage (544.75 seconds), while the processing time is much

longer for step counter-based dataset (approx. 129.39 seconds,

i.e., 23.58+72.34+31.82+1.65), due to its higher sampling

rate. Additionally, optimization of the graph only took less

than two seconds (0.07 and 1.65 seconds for Tango and

step counter-based system respectively). In our current offline

implementation, we compute the similarity of all pairs of Wi-

Fi measurements in the entire dataset to find the potential loop

closures. This module consumes too much time (72.34 seconds

for the step counter version as shown in Table IX), and thus

cannot be used for real time pose estimation. However, we

believe the computation can be further optimized to make on-

line implementation possible, e.g. we only need to compare the

current Wi-Fi measurement with the previous measurements

for the loop closure detection (estimated to be 72.34/2179 =

0.03 seconds), which is less than the current Wi-Fi sampling

rate of one second interval. Nonetheless, we believe further

optimization is needed to ensure online implementation in real

time.

When more users are involved in the experiment, it will take

longer time to run the algorithm due to the increasing number

of nodes and the constraints in the graph. Still, our approach

is efficient when compared to vision-based approaches, as

vision-based approach requires heavy computational resources

due to feature extraction and feature matching. In addition,

there can be data association problems which will result in

the loop closure failure. On other hand, the MAC address of

the AP is unique. It is not necessary to run the optimization

algorithm for each new Wi-Fi measurement. We suggest to run

the optimization when a loop closure is detected or a certain

amount of loop closures has been identified. Solutions to

reduce the computational time can be found in [71] [72]. One

might notice that the model training described in Section III-E

takes long time. But this phase can be performed offline, and

the learned model can be saved and applied to other users or

different environments once it is generated.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for collab-

orative simultaneous localization and radio fingerprint map-

ping (C-SLAM-RF) in unknown environments. The proposed

system makes use of a pedestrian dead reckoning system

and the RSS measurement from surrounding wireless access

points. We further incorporate the motion features to improve

the accuracy of the system. The proposed approach does not

require any knowledge of the map and locations of the access

points. The performance of our approach is evaluated in a

large scale environment under two pedestrian dead reckoning

systems with different motion tracking accuracies. Our results

reveal that the accuracy of a pedestrian tracking system plays

an important role in the accuracy of our approach. We obtained

an accuracy of 0.6m and 4.76m for Tango and step counter-

based pedestrian dead reckoning systems, respectively. The

quality of the radio map will increase with more users involved

in collecting the measurements due to the crowdsourcing

nature of the proposed approach. One of our future work is

to enhance the accuracy of step counter-based PDR by stride

length estimation and the fusion of gyroscope measurement.

Another direction would be the evaluation of the indoor

positioning accuracy by applying the radio map constructed

from our SLAM system.
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