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A Survey on Computer Vision for Assistive
Medical Diagnosis From Faces

Jérôme Thevenot , Miguel Bordallo López , and Abdenour Hadid

Abstract—Automatic medical diagnosis is an emerging
center of interest in computer vision as it provides unob-
trusive objective information on a patient’s condition. The
face, as a mirror of health status, can reveal symptomatic in-
dications of specific diseases. Thus, the detection of facial
abnormalities or atypical features is at upmost importance
when it comes to medical diagnostics. This survey aims
to give an overview of the recent developments in medical
diagnostics from facial images based on computer vision
methods. Various approaches have been considered to as-
sess facial symptoms and to eventually provide further help
to the practitioners. However, the developed tools are still
seldom used in clinical practice, since their reliability is still
a concern due to the lack of clinical validation of the method-
ologies and their inadequate applicability. Nonetheless, ef-
forts are being made to provide robust solutions suitable
for healthcare environments, by dealing with practical is-
sues such as real-time assessment or patients positioning.
This survey provides an updated collection of the most rel-
evant and innovative solutions in facial images analysis.
The findings show that with the help of computer vision
methods, over 30 medical conditions can be preliminarily
diagnosed from the automatic detection of some of their
symptoms. Furthermore, future perspectives, such as the
need for interdisciplinary collaboration and collecting pub-
licly available databases, are highlighted.

Index Terms—Computer vision, face analysis, facial
symptoms, imaging, medical diagnosis.

I. INTRODUCTION

THE global increase in life expectancy within the world
population during the past century has been possible as a

result of the improved access to clinical facilities and develop-
ments in medical diagnostics. To further enhance diagnosis with
an objective second assessment, computer-based solutions have
recently been developed to help in the early detection of some
diseases. In addition, as a result of the expansion of the human
lifespan and its quality, the boost of clinical needs induces high
costs for the society. These costs are suitable to be reduced with
the inclusion of automatic processes. Vision is a key component
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for building artificial systems that can perceive and understand
their environment, similarly to humans who perceive the great
majority of information about their environment through sight.
During the past decade, there have been numerous research and
development efforts in the field of wearable health monitoring
systems that were motivated by the need to monitor a person’s
health status outside of the hospital [1]. However, most pro-
posed techniques for health monitoring require users to attach
bulky sensors, chest straps or sticky electrodes. This obviously
discourages regular use because the sensors can be uncomfort-
able or encumbering. To confront these issues, the development
of non-contact healthcare has increased, along with technolo-
gies robust and simple to use for the diagnostic of conditions
and the follow-up of patients [2], [3]. Camera-based methods
offer an unobtrusive solution for the monitoring and diagnosis
of subjects. Recording devices such as web cameras or smart-
phones are nowadays common tools, providing an easy access
solution of any physiological measurements reachable by such
technologies.

The human face houses most of the sensory apparatus – eyes,
ears, mouth, and nose – allowing the bearer to see, hear, taste,
and smell. Apart from these biological functions, it also provides
several signals about health. Indeed, certain medical conditions
alter the expression or appearance of the face due to physio-
logical or behavioral responses. These facial signs of disease
can provide information to the clinician concerning the state of
the patient. From a computer vision viewpoint, detecting ab-
normalities in patient facial structures and/or expressions is a
challenging research problem. The critical issues concern the
establishment of basic understanding of the correlations be-
tween the face symptoms and the health conditions and to the
development of computational models that encode the identified
correlations. The main issue is the lack of a code-book, which
maps the range of facial patterns to clinical conditions based on
proven medical evidences (e.g., indicating that many diseases
and brain disorders produce facial abnormalities and interrupt
normal facial expression).

Establishing the relationship between digital images and clin-
ical information is a challenging task that can be overcome by
detecting medical symptoms. For example, a multitude of ge-
netic syndromes can cause craniofacial abnormalities that can
eventually come in pairs with a defect on other organs or sys-
tems [4]. While some of these syndromes can have very dis-
tinctive facial features, others can be harder to detect at first
sight. The study of facial morphology is highly interesting
when it concerns the discrimination of craniofacial pathologies,
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requiring for this purpose the establishment of robust facial
landmarks [5]. Furthermore, considerations on how to define
a normal face [6] from a point of view of aesthetic and so-
cial interactions have generated multiple studies to characterize
facial morphological features such as facial symmetry or skin
color. While evaluating craniofacial abnormalities is straight-
forward by comparing anatomical measurements of a subject
with the ones of an average healthy individual, the facial diag-
nostic of other conditions can be more challenging. Further-
more, clinicians provide a subjective assessment which can
vary among the practitioners, and be influenced by the eth-
nical background of the patient [7]. For this purpose, recent
literature has exposed the apparition of new technologies as
well as the development of image processing tools to capture
the required data, essential for clinical assessment of health
conditions in a subjective manner. The main idea behind using
computer vision for a clinical purpose would be to decrease the
errors related to human factor in the decision-process regarding
patients. Furthermore, while medical examinations are costly,
analysis based on facial imaging remain low-cost and their de-
velopments could eventually lead to a reduction of healthcare
expenditures.

The aim of this article is to provide the reader with an
overview of the research problem with references to existing
works, to stimulate the research and to help unifying the efforts
towards the development of new tools and databases for eval-
uating and monitoring the progress in the field. In this regard,
this article can be used as a reference of both experienced and
non-experienced researchers. Only distant non-invasive imag-
ing modalities available to the public were chosen, to provide
reproducible studies for research groups without access to ex-
pensive or encumbering medical equipment such as magnetic
resonance imaging or computed tomography. This survey article
presents a general overview of different works in the literature
on using computer vision for health diagnosis from faces. It also
discusses the open issues and future directions. The focus is not
only on conventional sensing technologies (e.g., digital imag-
ing) but also on novel imaging methods such as thermography
or stereo-photogrammetry. From this survey, the reader will get
an understanding of the challenges inherent of the detection of
different medical conditions and how they have been tackled so
far. Eventually, some leads for new research based on alternative
approaches or combination of existing ones could be inspired
from this review.

The article is organized as follows. An overview of the dif-
ferent imaging techniques, their particularities and limitations
is described in Section II. Section III gives a typical description
of the methodological workflow of the facial analysis process.
Section IV provides a brief description of the facial anatomy.
Section V reports specific medical conditions with computer-
assisted solutions. This non-exhaustive list attends to present the
different options available for an automatic diagnostic approach.
The main findings and references are summarized in Section VI.
Section VII discusses the significance of the findings, and pro-
vides futures perspectives and requirements of computer-based
diagnostics of medical conditions from facial imaging, while
Section VIII concludes the article.

II. FACIAL IMAGING MODALITIES

The nature of the imaging data can be diverse depending on
relevant facial features to assess and the aim of the study. While
conventional options such as basic digital imaging or video have
been widely used, some alternative options have emerged to
collect further information. The continuous reduction of costs
for new imaging devices, as well as the late development of
new tools in image processing, have further encouraged the
studies of these alternative solutions [8], [9]. This section briefly
introduces the possibilities in terms of facial imaging modalities,
with a short description of their strengths to detect specific
symptomatic clues.

Conventional digital cameras can encode the visible light in
three different channels, (red, green and blue). As the most
common option for assessment of skin color [10] and facial
morphology [11], the ability of conventional digital imaging
to discriminate specific health conditions has been extensively
studied. However, one drawback of two-dimensional imaging
applied to facial morphology is its inaptitude to provide depth
of the anatomical landmarks, an issue solved using stereo pho-
togrammetry [12].

The technique of stereo photogrammetry consists in generat-
ing a three-dimensional surface from a set of images acquired
from different locations. Multiple images are combined through
computational models to estimate the actual 3D position of the
scanned environment. This approach permits to obtain 3D co-
ordinates of object points from triangulation and reconstructing
its volume from them, allowing accurate volumetric distance
measurements. Due to its spatial accuracy, this technique has
been largely used in studies of craniofacial deformities [13],
since an accurate volumetric delimitation of facial edges can
be obtained. Following this trend, extensive research has been
performed to represent the face volumetrically [14], capturing
subtle information of conditions (e.g., schizophrenia) [15]. The
recent introduction of low-cost depth cameras (e.g., Microsoft
Kinect 1&2) provides exciting new opportunities for detailed fa-
cial image analysis. For example, the study of Nakamura et al.
[16] used low-cost depth camera to grade torticollis severity
from the patient’s facial direction and tilt. Furthermore, these
sensors have already been applied in clinical applications related
to reeducation and therapeutic exercises [17].

Video cameras allow the recording of the temporal variations
of a scanned environment, enabling the assessment of small
movements or color variations, even when they are unperceiv-
able by the human eye. Videos are necessary for specific condi-
tions related to motion or presenting symptoms solely perceived
over a certain period. For example, multiple studies related to eye
tracking have been performed to correlate visual behaviors with
psychiatric [18] or anxiety disorders [19]. However, while video
imaging provides more information than basic digital imaging,
the nature of the data remains very similar.

There is an increase of studies using imaging modalities fo-
cusing on a different spectral range than the conventional visible
one, providing new leads of research. As one of them, thermal
imaging is a non-contact, non-invasive imaging method which
provides information on human body temperature by assessing
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the infrared spectrum of the subject. Thermal cameras can detect
radiation in the infrared range of the electromagnetic spectrum,
usually from 0.9 to 20 µm, converting the amount of radiation
into visible images. Since infrared radiation is directly propor-
tional to the temperature emitted by all entities, thermal images
make it possible to see objects even without visible illumination.
The nature of the information provided by this method makes
it highly relevant for applications related to clinical medicine
[20]. Indeed, not only the thermal-print provides information on
the shape of the face [21], but also multiple contributing ther-
mal factors can be assessed (e.g., blood flow, cell metabolism,
sweat gland activation), causing local changes in superficial
skin temperature. More specifically, different reasons such as
inflammatory processes [22], fever [23], [24], cancers [25] or
even medications [26] can be responsible for changes in the
skin temperature. Due to the increase of thermal camera accu-
racy and resolution [27], research has been performed lately to
evaluate how much information the distribution of heat in the
face can provide. For example, various applications related to
mass-screening have been using thermal imaging as a fever de-
tection tool [28] for severe acute respiratory syndrome related
to H5N1 or more recently to Ebola virus.

III. COMPUTER VISION METHODOLOGY FOR

FACIAL ANALYSIS

The computer vision methodology applied in assistive medi-
cal diagnosis typically follows a similar structure: it relies on the
extraction and combination of several face descriptors obtained
from pre-processed images and uses them to build models that
can generalize to unseen data. These features, extracted both in
the spatial and spatio-temporal data, are then input into classi-
fiers to predict if the new sample if of a certain type (classifi-
cation) or to assess the severity of a symptom or condition in a
continuous way (regression).

As preprocessing, the first step of most computer vision tech-
niques consists in segmenting specific regions of interest from
each sample and detecting either faces or landmarks. The re-
gions containing the useful facial information are cropped and
registered into a predefined template, usually preserving the in-
terpupillary distance (used as reference). The selection of use-
ful information is derived from the location of the symptoms to
evaluate. For example, studies on facial abnormalities will focus
on regions known to be affected and will compare morpholog-
ical measures with the ones expected in “healthy” subjects. An
eventual secondary step in preprocessing is the conversion of
the colorspace, either to reduce the complexity of the model by
using solely grayscale values if sufficient, or to enhance specific
color-based features if necessary (eg. studies related melanoma,
hepatitis, etc.).

Local descriptors based on texture analysis such as variants
of Histograms of Oriented Gradients (HOG) [29] or Local Bi-
nary Patterns (LBP) [30], have also been extensively exploited
as they can evaluate local characteristics that can be affected by
the medical condition. A typical methodology used with hand-
crafted features encodes the face information by dividing each
frame into blocks and extracting multiscale features from the

ones within the regions of interest of the studied disease, con-
catenating the results into a high dimensional descriptor to ex-
ploit multiple information simultaneously. However, since this
combination generates very large feature vectors, dimensional-
ity reduction techniques have been extensively used. Among the
most used methods are Principal Component Analysis (PCA),
Independent component Analysis (ICA), or variations that try
to learn the weight of each feature component.

The next step after feature extraction is the classification,
with complexity of methods varying based on the discrimina-
tive power of the features. Cosine similarity and K-Nearest-
Neighbors have been used with mixed performance, while
model-based classification utilizing a bi-class support vector
machine (SVM), shows to be the preferred method when the
amount of data allows the partition into meaningful splits of
training and testing data. As the result of the analysis, the post-
processing provides the “final verdict” on the medical condition
targeted and can eventually show which features suggested the
decision, as a supporting tool for the user.

Most of the existing work is still not associated with the recent
significant progress in the machine learning field that suggests
the use of deep features and neural networks. Deep learning
methods have recently had high successes in medical imaging
field [31], [32], but their use in clinical practices still remains
limited. The reason behind this may be the scarcity of training
data, since these approaches require enough training samples,
which are not always available.

IV. FACE ANATOMY

To consider the face as a mirror of the health, it is impor-
tant to understand what facial imaging is reflecting. A complex
biological system lies below the superficial layer of the skin
and each of its component can affect what can be seen. Eventu-
ally, the facial appearance depends on several factors. The most
important is the morphology of the skull, defined by the con-
cavities and convexities of the bones underlying the soft tissues.
Thus, facial aesthetics are highly pre-determined by the facial
skeleton features, such as the prominence of cheekbones or the
protuberances in the inferior mandible [33].

Besides skull morphology, the appearance of the face is af-
fected by features such as muscles to perform expressions, in-
nervation allowing blood supply (venous drainage and branches
of the carotid system), cutaneous sensory innervation [34] or fat
compartments. Fig. 1 depicts the superficial fat compartments
of the face, contributing to the face aspect. The activity of the
facial muscles can reveal important information on the health
condition of a subject. For example, while the partial loss of
muscle activity is symptomatic of facial paralysis, involuntary
movements can be characteristics of multiple conditions such
as hemifacial spasm, Meige syndrome, dyskinesia, tics [35]. All
the features related to the various systems and their interactions
have to be taken into consideration in treatments involving fa-
cial procedures. While the injury of a facial nerve can affect its
function and lead to clinical deficits, it can also result in local
paralysis if a motor nerve is involved, to loss of sensation, de-
crease of taste, abnormalities in lacrimal activity or even salivary
deficiency in cases of other nerves affected [36].
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Fig. 1. The superficial fat compartments of the face.

Facial mapping, corresponding to the segmentation of the
face into different regions of interest, has been extensively used
in skin analysis based on facial location and the properties of
the underlying tissues. From a point of view of computer vi-
sion, mapping the face allows to focus on areas that are highly
relevant to specific conditions. Typically, the areas are defined
from distinct facial anatomical landmarks such as the edges
of the lips, the eyes, the nose and the contours of the face
[37]–[39]. The areas defined between these landmarks have dif-
ferent information inherent of their locations. Eventually, in
medical applications, the combination of data collected in each
region of interest can provide indications on specific conditions.

V. AUTOMATIC DIAGNOSIS FROM FACIAL IMAGES

The assessment of facial symptoms can be crucial for the di-
agnostic of specific medical conditions. While a practitioner can
study different facial features from careful observation, in some
cases the challenging evaluation of subtle changes and their
subjective assessment can alter the reliability of the diagnostic.
Thus, computer vision was suggested as a solution to offer an
automatic and objective assessment of facial features to help
clinicians in their diagnostic [40]. This section addresses vari-
ous applications of computer-based facial analysis: from basic
monitoring of vital signs and assessment of pain, to the evalu-
ation of specific conditions based on asymmetries, expressions,
facial movements or facial heat distribution. For each condition,
an overview of the different approaches is given with the most
relevant outcomes reported.

A. Monitoring of Vascular Pulse

Plethysmography is the detection and measurement of vol-
umes changes within the body. Its main application is the moni-
toring of the vital autonomic functions related to respiration rates
and cardiac output (i.e., pulse). The study of cardio-vascular
pulse waves traveling through the body and the monitoring of
blood flow and its velocity, provide indications in the diagnostic
of vascular disease [41], but also can help in the monitoring
of conditions related to sudden infant death syndrome, sleep
apnoea or pulmonary disease [42]. While different methods
have been developed in the past to detect pulse [43], alternative

non-contact solutions based on photoplethysmography or ther-
mal imaging, able to capture the pulsatile peripheral blood flow,
have been promoted. Typically, the pulse waves from a dedi-
cated light source are evaluated by assessing their variations in
transmission and reflection on the surface of the skin. However,
recent literature has shown that standard regular cameras can
perform the pulse measurement in normal ambient light [44].

It has been suggested that the monitoring of physiological
data can be used to assess the impact of physical exercise [45].
Furthermore, non-contact physiological monitoring can be ap-
plied in multiple domains such as telemedicine and homecare,
since low-cost devices such as webcams, and smartphones can
already perform the task [46]–[50]. Camera-based photoplethys-
mographs studies can be divided into two parts: the selection of
regions of interest and their analysis. The first step of the pro-
cess requires motion correction to reduce the impact of motion
artifacts within the selected areas of interest. In this context,
the positioning of the patient in a way that minimizes the face
tracking is important.

The image analysis of the pulse often follows an approach
based on color changes, typically using the information of the
green channel of the RGB signal. Indeed, the green channel,
highly correlated with variations in light, shows to be the most
relevant to capture the pulse, while the red channel is useful
to perform illumination correction [51]. The variations of the
illumination-independent signal are analyzed along time, con-
solidating the fundamental signal frequency, corresponding to
the pulse, and eliminating the possible noise [47], [48], [52].
Other color-based approaches have been performed using the
HUE channel [53] or by a conversion to YCbCr (luma, blue
chroma and red chroma) color space [54]. One of the main ad-
vantage of color-based analysis is the limited amount of facial
pixels required to monitor the vascular pulse [42]. An alterna-
tive approach for measuring the pulse from facial video is to
capture and track the subtle movements of the face, augment-
ing them using Eulerian video magnification [55]. Subsequent
improvements of the system [56], [57] focused on the vertical
movements of the head and the utilization of Fourier or Cosine
transforms, and Principal Component Analysis (PCA). These
methods obtain results with similar accuracy as color-based
methods, but with improved robustness to illumination changes.

In most of these studies, the estimation of pulse is strongly
correlated with the heart rate assessed from finger sensors or
electrocardiograms, presenting 1–2% errors. However, while
the acquisition process for monitoring the vascular pulse has
been simplified, further challenges related to motion artifacts
such as respiratory and head movements still require to be taken
into consideration [51], [54]. It has been recently suggested [58]
that using two regions of interest could be a solution to evaluate
dynamic heart rate by detecting other physiological signs (e.g.,
eye blinking, yawning). Investigations are also still required to
improve the robustness of the methods for different lighting
conditions [59] and skin colors, while keeping the time span
required to obtain the first confident evaluation of the heart rate
as short as possible.

However, while the previous methods had latencies varying
from tens of seconds [47], [48], [51] up to few minutes [50],
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TABLE I
HOMOLOGY OF PAIN EXPRESSION ACROSS THE LIFESPAN

Muscular basis Response

Corrugator Brow lower1,2,4,5,6, brow bulge3

Orbicularis oculi Eye squeeze1,3,4,5,6, cheek raise1,2,4,5, lids tighten1,2,5

Levator Nose wrinkle1,4,5, lip raiser1,2,4,5,6, eye closure1,2,
nasolabial furrow3,4

Zygomatic Lip corner pull1,2,3,5

Risorius Horizontal mouth stretch4

Pterygoid Vertical mouth stretch3,4,5

Mentalis Chin quiver3

Nasalis Flared nostril4

1Prkachin (adults) [61]. 2Prkachin & Solomon (adults) [62]. 3Grunau & Craig (neonates)
[63]. 4Gilbert et al. (children) [64]. 5Kunz et al. (adults/elderly) [65]. 6Kunz et al. (young
adults) [66].

[52] depending on the conditions of imaging acquisition, recent
developments succeeded to reduce these times to few seconds
[49] Finally, a study by Muender et al. [59] evaluated the feasi-
bility of gathering heart rate from online videos as a step towards
online physiological data collection. From their study, the po-
tential applicability of heart rate assessment by online support
requires not only a minimum network bandwidth (>16 mbps),
but also good instructions to the participants to reach minimal
offset error (<3 bpm).

B. Pain

Knowing the patient’s pain is very relevant for practitioners
and other health-care personnel to provide information on the
state of the patient, and to suggest some preliminary medication
such as painkillers. Extensive research related to automatic pain
assessment has been performed. These studies have pinpointed
the correlation of facial expressions with the activity of spe-
cific muscles, with regards to the age group population studied.
A summary of the pain related facial movements adapted from
Prkachin [60] can be seen in Table I. The Prkachin and Solomon
FACS (Facial Action Coding System) pain scale is currently the
only metric defining pain on a frame-by-frame basis [62]. The
automatic recognition of pain expression can contribute to the
reliability of pain measurements, improving the subjective as-
sessment by practitioners. Pain assessment is at most relevance
when the patient cannot express its suffering (ie. young age,
mental condition, physical disability).

Some of the available databases rely on the use of facial
videos from simulated pain expressions of actors, such as the
Acted Facial Expression Database (STOIC) [67]. The database
includes videos from 35 actors among which 15 sequences have
been identified as expressions of pain. Another database without
referential scale is the Infant Classification of Pain Expression
(COPE) database, described in the work of Brahnam et al. [68].
This database, composed by 206 color images of 25 partici-
pants, has been used in multiple studies for the detection of pain
from neonates’ facial display [69]–[72]. The lack of baseline
reference to grade the pain levels can be addressed by induc-
ing a spontaneous painful reaction from external stimuli. The
not publicly available Spontaneous Pain Expression Database

[73] which includes videos of expressions of 20 participants
undergoing thermal heat stimulation at non-painful and painful
intensities.

A more representative approach of induced pain has been de-
scribed in the work of Lucey et al. [74], in the UNBC McMaster
shoulder Pain Expression Archive database. This database con-
tains more than 200 video sequences composed of 48,000 coded
frames and the reported pain scores based on both self-reports
and measurements from observers. This database brought a clin-
ical baseline to the studies of pain by using a population suf-
fering shoulder pain. Eventually, Ashraf et al. [75] and Lucey
et al. [76] developed a method to detect pain using an active
appearance model -based features extraction to cluster frames
and to assign them a label to train a SVM classifier. Sikka
et al. [77] improved the accuracy of pain classification from
68.31–80.99% up to 83.7% by using a multiple instance learn-
ing based on multiple segments representation. Such approach
considers temporal information and issues related to label am-
biguity. Finally, Kharghanian et al. [78] recently applied an un-
supervised feature learning approach, raising the pain detection
accuracy up to 87.2%.

An issue raised by databases without physiological informa-
tion is that pain severity is assumed to be correlated solely with
the intensity of the stimulus. This hypothesis does not have
clear fundamentals, due to the bias induced by the personal sub-
jectivity of pain. As an alternative robust baseline, the BioVid
Heat Pain database [79] provides, in addition to facial expres-
sion videos, a synchronized collection of physiological data that
measure a set of physical responses such as skin conductance
level (SCL), electrocardiogram (ECG) and electroencephalo-
gram (EEG). This database was generated to assess how com-
bined facial features, head pose estimation and facial expression
can relate an induced pain to physiological data. This publicly
available database features videos of 90 participants grouped by
age (18 to 65 years old).

The methodology used in facial pain analysis varies across
studies. However, local descriptors have typically been used, as
they showed statistically significant outcomes to discriminate
pain in in enfant (90% accuracy) [72], or when related to esti-
mated pain intensity (Pearson correlation 0.5 to 0.6) [80]. The
compression of the data utilizing techniques such as PCA and
the selection of robust classifiers like Support Vector Machines
(SVM) [69]–[71], [75], [76] are also of importance. Other ap-
proaches such as tracking distances between face landmarks and
evaluating the number of edge points in the nasal root as a detec-
tion of wrinkles have also shown their relevance [73]. Finally,
Sikka et al. [81] developed an algorithm based on computer vi-
sion and machine learning to monitor the pain of children after
appendectomy. Their model performed equivalently to the nurse
in detecting pain, suggesting the relevance of developing tools
to support the clinical personal.

The main challenge in studies related to pain is the establish-
ment of a ground truth with reliable labels. A novel approach
to collect data was suggested in the study of Hasan et al. [82],
where they collected images and self-reported levels of pain
by patients using a mobile app. While the use of mobile apps
could ease the data collection process, special attention should
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Fig. 2. An example of Bell’s palsy.

be given to the reliability of data and ethical concerns which
might raise from them. The generation of extensive and repre-
sentative databases is of crucial importance to the realization of
reliable and normalized pain studies.

C. Facial Paralysis

Facial paralysis commonly refers to the weakness of facial
muscles, affecting their ability to perform movements and even-
tually, on a paralysis of the affected area. While facial paralysis
can originate from supranuclear or nuclear lesions affecting
the central part of the face, most of the facial nerve paralysis
are caused by infranuclear lesions and affect solely one side
of the face. Facial paralysis can have multiple causes such as
Bell’s palsy, infection, trauma, tumors, strokes and different
syndromes such as Guillain-Barre or Moebius.

Computer-assisted diagnostic has been developed with a fo-
cus on the detection of bilateral asymmetries occurring in facial
paralysis when subjects are typically requested to perform facial
expressions (e.g., smiling). Image processing methods are able
to measure the distances between anatomical landmarks and
facial features and compare both sides of the face [83]–[89].
Furthermore, motion components can also be evaluated during
the process to estimate facial muscular response from voluntary
emotion [85], [90]–[93]. The accuracies of detection reported
vary between 88.3% for smartphone camera acquisition (Lin-
ear Discriminant Analysis + SVM method) [88], up to 96.3%
from conventional video cameras (Active Shape Models + LBP
method) [89]. Finally, Hontanilla et al. [94] proposed a 3D sys-
tem called FACIAL CLIMA to analyze facial motion. Their
system, similar to stereo photogrammetry, uses three cameras
to automatically assess the motions of anatomical landmarks on
the face.

Bell’s palsy is the most common cause of facial paralysis
and has a poorly understood etiology. Fig. 2 depicts the possi-
ble symptoms of Bell’s palsy, the most common cause of facial
paralysis. Specifically, Bell’s palsy is diagnosed clinically by a
series of forced expressions to evaluate the weakness of specific
muscles of the face. It has been suggested that a simple ruler
can be enough to assess the severity of Bell’s palsy by mea-
suring bilateral anatomical asymmetries during specific mus-
cles movements [95]. These asymmetries are related to nerve

damage, commonly assessed by electromyography which can
also evaluate its severity [96]. Eventually, Barbosa et al. [97]
used both iris segmentation and automatically detected key
points location to assess asymmetries and diagnose palsy us-
ing a hybrid rule-based and machine learning classifier. As an
alternative to standard video imaging, 3D measurements gen-
erated from space-coding method [98] as well as Kinect V2
[99], [100] have been suggested to detect facial asymmetries by
retrieving 3D coordinates of facial landmarks.

Different studies tried to provide an objective solution to
quantify the severity of the condition [84], [86], [89], [99],
using the House-Brackmann facial nerve grading as a reference
scale. However, this grading system has been criticized as it does
not score accurately each facial function [101]. To address this
issue, a tool called “Electronic Facial Paralysis Assessment” was
described by Banks et al. [102], and was later validated against
multiple grading scales (Spearman rho: 0.72 – 0.90) [103].

Methods developed for the diagnostic of Bell’s palsy have also
been tested in similar health conditions involving facial nerve
dysfunction. In their studies, Linstrom et al. [104] and Wu et al.
[105] used facial motion analysis to assess not only patients with
Bell’s palsy, but also patients with acoustic neuroma (intracra-
nial tumor), glomus jugulare tumors, facial neuromas, parotid
masses, temporal-bone fractures and essential blepharospasm
(abnormal contraction of the eyelid).

Eventually, studies of bilateral asymmetries and synkinesis
(involuntary muscular movements) demonstrated the ability of
computer-assisted methods to accurately detect facial dysfunc-
tions, reducing the impact of the subjective assessments per-
formed clinically [105]. In addition, it was concluded that during
a voluntary emotion, patients tend to exaggerate the muscular
activity of the non-affected side to move the side affected by
the condition. Methods based on analysis of the eyelid motion
(blepharokymography) have also been developed to assess fa-
cial paralysis during blinking [106]. As an extended research on
facial asymmetry using 3D-dynamics scans, Quan et al. [107]
showed that captured facial dysfunction can also discriminate
stroke patients, also suggested by Matuszewski et al. [108].
Similar study was performed using Kinect by Breedon et al.
[109].

D. Neurologic Conditions and Neurodevelopmental
Disorders

Neurological disorders refer to a group of diseases which
affect the brain, spine and the nerves connecting them. Several of
these conditions present symptoms suitable for computer vision
methods. For example, the severity of neurological conditions
such as Parkinson’s disease can be assessed by tracking motions
of the patients [110]. Similarly, video acquisition is clinically
used with patients affected by epilepsy to track seizures [111],
mainly to assess changes in both mouth and eye features [112],
during an episode of abnormal neurological electric activity
such as absence seizure [113].

Some birth defects can be discriminated from facial charac-
teristics. For example, facial structural deformities induced by
congenital diseases can be representative of specific conditions
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Fig. 3. Facial characteristics associated with fetal alcohol syndrome
[132].

[114] and eventually used as classification criteria. In this con-
text, computer-assisted tools have tried to classify people that
present certain conditions, such as Down’s syndrome [115], the
Cornelia de Lange syndrome [116], or other syndromes [117]
in an automatic way. Despite Down’s syndrome having a de-
fined set of facial features, individuals affected by the syndrome
will generally present just seven or eight of them [118]. More-
over, the similitudes between siblings can make it challenging
to distinguish people affected from non-affected relatives. In
computer-assisted diagnosis, Down’s syndrome assessment can
be performed from a single image. A typical methodology con-
sists in the detection of anatomical landmarks, then on the ap-
plication of texture analysis using local descriptors, and finally
on classifiers to discriminate affected subjects. Numerous works
have focused on the automatic detection of subjects with Down
syndrome [11], [115], [119]–[122]. The performance of the au-
tomatic discrimination methods reaches up to 97% accuracy
from groups of infants. However, ongoing research is still being
done, mostly to expand databases and increase the number of
relevant features as well as classification methods [115].

The fetal alcohol syndrome is a birth defect related to high
consumption of alcohol during pregnancy, which alters the nor-
mal development of the fetus and eventually leads to both phys-
ical and mental defects of the newborn. Fig. 3 shows the facial
characteristics of individuals affected by fetal alcohol syndrome.
Extended research has been performed to screen fetal alcohol
syndrome from image analysis, based on specific facial pheno-
types [123], [124]. Most of the research using computer vision
to assess this condition has focused on both the measurements
of the eyes and lips, as well as the smoothing of the philtrum.
It has been shown that the assessment of the condition can be
performed from simple facial images [125]. The obtained error
rate is 14.3% of false negatives and no false positives [126].

To improve the assessment of the condition of fetal alcohol
syndrome, 3D measurements taking into account the depth of
the facial features have been performed by stereo photogram-
metry [12], [127]–[130]. These studies lead to the development
of a reliable device for anthropometric measurements for small
infants. Mutsvangwa et al. [128] showed that these measure-
ments can provide different accuracy for discriminating sub-
jects affected by the symptoms depending on the age. Thus,
the accuracy of the method for 5 years old subjects reaches

95.46%, while the rate decreased to 80.13% for 12 years old
subjects. In addition to age grouping, Fang et al. [131] demon-
strated that grouping patients based on their ethnic background
provides better results. They used 3D facial laser scanning for
patients and controls from two study sites (Finland and South
Africa), with classification accuracies from 80% to over 90%
by separating the cohorts.

The combination of anatomical landmarks and textural in-
formation allows to obtain a numeric representation of the face
with numbers corresponding to well-defined features. It been
suggested that multiple syndromic condition could be classi-
fied in clinical practice with such method [133], [134], despite
overlapping features occurring in studies on facial dismorphism
[135]. However, one drawback is the manual intervention for
landmark placement [136], [137].

E. Psychiatric Disorders

Psychiatric illnesses are disorders associated with abnormal
behavioral and mental patterns compared to the social norm,
causing suffering or disabilities in the daily life of the person
affected. The diagnostic of mental conditions can be challeng-
ing due to unclear symptoms inducing a subjective assessment
of the illness. For example, attention deficit hyperactivity dis-
order (ADHD) is the most common psychiatric disorder diag-
nosed among children. However, this syndrome shares multiple
symptoms with other mental illnesses such as bipolar disorder
[138]. The nature of ADHD remains poorly understood and
its diagnostic still controversial [139], an issue quite common
amongst different psychiatric conditions. As ADHD is charac-
terized by symptoms such as hyperactivity, impulsivity, inatten-
tion, etc., Kinect has been suggested as a modality to assess
behaviors of patients under specific tasks [140]. Eventually,
Jaiswal et al. [141] created the database KOOMA, containing
video and Kinect recordings of 55 subjects (controls, patients
with ADHD/autism) listening, reading stories and answering
questions. Using facial expression analysis and 3D analysis of
behavior, they were able to reach a classification accuracy of
96% for controls vs condition groups (ADHD/autism), these dis-
orders sharing some common symptoms between each other’s.

Multiple studies on mental disorders revealed that the anal-
ysis of eye movement could greatly improve the diagnostics
not only for ADHD [142], [143], [144], but also other psychi-
atric conditions [145], [146] such as schizophrenia [147]–[150],
bipolarity [18], [150], autism [147], [151]–[153] or social pho-
bia [19]. The basis of these studies is that people affected by
these conditions will have specific types of ocular movement
that could be symptomatic of illnesses or phobias [154]. An-
other approach by Benfatto et al. [155] was developed based on
features extraction and SVM to classify children with dyslexia
from control ones with 95.6% accuracy.

As the most common mental disorder, depression has been
widely studied in order to quantify its severity in different
groups of population [156]–[158]. It has been demonstrated
that during a period of depression, a person affected is more
likely to present facial expression disturbances, due to mood
changes [159], [160]. The lack of objectivity in the measurement
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techniques to evaluate depression encouraged the development
of computer-assisted diagnostics. Typically, studies on auto-
matic detection of depression are based on the analysis of head
movement and facial dynamics from stimuli. Usually, the stim-
uli consist of specifically designed interviews. The facial re-
sponses are collected as a video and analyzed to determine spe-
cial features associated with depression, with accuracies from
76.7% up to 79.0% [161], [162]. In addition to depression,
a similar protocol has previously been applied in a study on
schizophrenia by Wang et al. [163], demonstrating the inability
of schizophrenic patients to express different emotions. Eventu-
ally, thermal imaging has been applied to assess facial thermal
changes from induced emotion to classify moderate and high
schizophrenia patients [164]. This study used MANOVA and
SVM classifiers on features from the forehead, nose (represen-
tative area for stress analysis [165]) and right cheek, reaching
an identification rate of 94.3%.

F. Mandibular Disorders

Temporomandibular disorder involves pain as well as a dys-
function of the muscles during mastication, inducing a restricted
mandibular movement. The diagnosis is complex since the con-
dition can have different etiologies. The use of thermal imag-
ing has shown mixed accuracy depending on the aimed diag-
nostic. Extended research on temporomandibular disorder has
been performed, mostly from the assessment of heat distribu-
tion obtained by thermal imaging [166]–[168]. Despite opti-
mistic earlier studies suggesting the ability of thermal imaging
to discriminate patients with an unspecific temporomandibular
disorder with an accuracy in the range of 85–90% [169]–[172],
recent studies focusing on diagnostics of specific conditions
have shown mixed accuracies. For example, while skin tem-
perature was proven to be associated with chronic myogenous
temporomandibular disorder [173], thermal imaging failed to
provide an accurate diagnostic of both this disorder [174], [175]
and arthralgia [176] However in these studies, the severity of
the participants’ conditions was not assessed before the tests, as
demonstrated relevant in a following study [177].

It has been suggested that the studies of further forms of
thermal analysis are required, not only to fill the lack of a stan-
dardized protocol for temperature measurements [174], but also
to gain a deeper understanding of thermal patterns [176]. An im-
provement of the selection of the regions of interest is required,
to assess a larger part of the muscles and to determine accu-
rately which areas are related to specific mandibular disorders.
Eventually, Haddad et al. [178] considered multiple regions
of interest directly related to specific muscles. They reported
that thermal imaging could be used as a supporting tool for
clinical screening myogenous temporomandibular disorders but
they also suggested that a stimulation (thermal, mechanical or
chemical) could accentuate the results. This suggestion was fur-
ther confirmed in another study involving thermal imaging and
chewing test [179]. A profile thermal image is depicted in Fig. 4.

G. Other Conditions

The methods described in previous sections are suitable to be
applied in other conditions as well. For example, the use of facial
imaging has also been applied to evaluate facial abnormalities,

Fig. 4. Digital and thermal images of a subject with simulated inflam-
mation (hot water exposure).

using facial features and classifiers to assess conditions such as
acromegaly [180], [181] and Cushing’s syndrome [181], [182]
or craniofacial deformations associated with specific syndromes
[13], [136].

In ophthalmology, video analysis and eye tracking have been
suggested to assess conditions related to eye movement such as
vertigo [183]. The monitoring of eyelids can be used in case
of ptosis [184], as induced by ocular myasthenia gravis. Digital
infrared thermal imaging has also been studied to assess orbital
inflammation in Graves’ ophthalmopathy [26], [185], or from
non-specific conditions [186].

The objective assessment of the psychophysiological state
of a subject can be made by measuring the arousal response
or stress, where thermal imaging has shown to be a suitable
technology [165], [187], [188]. Typically, these studies focus
on evaluating the skin heat on regions of interest within the
face, the periorbital and nasal areas showing to be the most
discriminatory features.

Recent efforts have been made to establish the possible cor-
relation between Traditional Chinese Medicine (TCM) -based
face inspections with specific clinical conditions. In this con-
text, the study of Hung et al. [189] used a TCM device to
correlate face color with pulmonary function as a measure of
the severity of bronchial asthma. Liu et al. [190] and Wang et al.
[191] used facial chromaticity to identify patients with hepati-
tis. These studies suggest that establishing the relationship with
chromaticity and medical conditions is of vital importance. The
focus of these studies consists of two parts: the colorspace and
the classifier used. There is a clear need to establish a publicly
available database of pictures covering a wide range of different
imaging conditions (e.g., lighting parameters) with a sufficient
sample size.

VI. SUMMARY

The analysis of facial imaging can help to automatically detect
some symptomatic facial features, in an objective manner. How-
ever, in most medical conditions, the final diagnosis of an illness
is obtained from the combination of multiple symptoms. Table II
provides an overall summary of the different facial symptoms
accessible from automatic facial analysis as described in this
survey. The possible conditions associated with these facial fea-
tures are also reported, pointing out the risk of misdiagnosis.
The published work related to each specific condition based
on the facial feature is provided as reference. Furthermore,
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TABLE II
OVERVIEW OF THE DIFFERENT DETECTABLE FACIAL SYMPTOMS AND THEIR ASSOCIATED MEDICAL CONDITIONS

Facial symptoms Possible conditions References Facial symptoms Possible conditions References

facial morphology
abnormalities/
characteristics

Down syndrome1 [11], [115], [119]–[122] disturbances in facial
expressions

depression2 [161], [162]
schizophrenia4 [15] ADHD2, 5 [141]
acromegaly1 [180], [181] autism2,5 [141]
craniofacial deformations1, 4 [13], [136] schizophrenia2,3 [163], [164]
fetal alcohol exposure1, 4 [12], [123]–[131], [135], [136] abnormal heat in orbital area Graves’

ophthalmopathy3
[26], [185]

Cornelia de Lange
syndrome1

[116], [133], [134] nonspecific condition
(Ophthalmology)3

[186]

Cushing’s syndrome1 [181], [182]
other syndromes1, 4 [117], [133], [134], [136], [137] asymmetry + synkinesis facial nerve

dysfunction1, 2
[86], [88], [89],
[104], [105]

facial asymmetry facial paralysis1,5 [83]–[85], [97]–[100], [102] abnormal eyelid movement facial paralysis5 [106]
stroke patients5 [107]–[109] ptosis2 [184]

abnormal eye
movement

ADHD2 [142]–[144] abnormal iris area facial paralysis1, 5 [97], [98]
dyslexia2 [155] abnormal muscular response Bell’s palsy and

facial paralysis2,4
[85], [90]–[94]

Parkinson2 [144]
autism2 [147], [151]–[153] abnormal skin color bronchial asthma1 [189]
schizophrenia2 [147]–[150] yellowish face color hepatitis1 [190], [191]
bipolarity2 [18], [150] abnormal facial orientation torticollis5 [16]
social phobia2 [19], [154] heat in mandibular area mandibular disorder3 [169]–[179]
vertigo (ophthalmology) 2 [183] abnormal head pose pain2 [79]

facial heat increase acute respiratory syndromes3 [23], [24], [18] facial muscular contraction pain1,2,3 [55], [68]–[82]

1Standard digital imaging. 2Standard video imaging. 3Thermal imaging. 4Stereo photogrammetry imaging. 5Other imaging modalities.

TABLE III
OVERVIEW OF THE DIFFERENT CONDITIONS DETECTABLE, GROUPED BY IMAGING MODALITIES

Standard digital imaging Standard video imaging Thermal imaging Stereo photogrammetry Other imaging modalities

Neurodevelopmental and
neurologic

Vascular pulse Psychatric Neurodevelopmental and
neurologic

Facial paralysis

Psychatric Schizophrenia Fetal alcohol exposure Bell’s palsy
(blepharokymography),

Down syndrome, Fetal alcohol
exposure, Cornelia de Lange . . .

ADHD, Autism, Depression,
Schizophrenia, Bipolarity . . .

Ophtalmology Morphological abnormalities Facial paralysis (Microsoft
KinectTM / CartesiaTM), Stroke
related (3D Dynamic Scans /
Microsoft KinectTM)

Morphological abnormalities Ophtalmology Inflammation in Grave’s and
other conditions

Cranofacial deformations Other conditions

Acromegaly, Cranofacial
deformations, Cushing’s
syndrome

Vertigo, Ptosis Dentistry Facial paralysis Torticollis (Microsoft
KinectTM)

Facial paralysis Facial paralysis Mandibular disorders
Other conditions Bell’s palsy, Nerve dysfunction Other conditions
Hepatitis, Bronchial asthma Other conditions Arousal, Stress, Severe acute

respiratory syndromes
Dyslexia, Absence seizure Pain

Pain Pain

multiple imaging modalities are available and can be used to
detect specific symptoms requiring specific information from
the face. Table III provides an overview of the conditions de-
tectable from each imaging modality.

VII. DISCUSSION

Healthcare and wellness are common concerns for all popula-
tions. However, fulfilling the needs of the population in terms of
healthcare services suggests a high cost for the society, derived
partially from medical examination tests and practitioners’ ex-
penditures. To reduce these expenses, identifying diseases and

managing patients require some changes in the actual clinical
protocols. Ideally, these changes would reduce the amount of
patient examinations and decrease the time they spend in clin-
ical facilities. While the time spent during the management of
medical conditions can be rarely decreased (e.g., treatments),
the resources spent to obtain an accurate diagnosis could be
reduced with the help of automatic tools. Eventually, the diag-
nostics could be performed faster and in a non-invasive way
avoiding any subjective bias.

The face is an interesting region of analysis, as it provides in-
dications on multiple conditions and it is the body area the most
accessible (unobtrusive). The present survey provided a list of
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symptoms that could be assessed from facial imaging. Currently,
these symptoms are clinically detected either directly by clin-
icians or by more expensive modalities. This review suggests
that all the symptoms presented could be detected or at least
assessed objectively using computer vision methods. As shown
in Table III, in some cases the diagnostic of a medical condition
can be provided by multiple imaging modalities, based either
on the assessment of different symptoms of the disease or from
alternative approaches specific to the imaging acquisition itself.

For each medical condition, the combination of multiple
methods would reach a clinically acceptable accuracy for di-
agnostic, usable by the clinician as a support for its own deci-
sion [192]. The results from the computer vision analysis would
not overrule the physician expertise, but be used for extra in-
formation as the patient can be affected by another condition
sharing similar symptoms. This statement points out one com-
mon drawback of most the studies presented here: the symptoms
are assessed in controlled settings (patients affected by a condi-
tion vs. healthy control group) without considering interpersonal
variability. Indeed, in real clinical environment, patients often
present symptoms common to multiple diseases. To consider
the variability, two separated models should be considered: a
general one for patients with unknown condition giving some
hints of possible diagnosis, and a person-specific one obtained
from data acquired across time per single patient.

While most of the studies presented here aim to provide fur-
ther assistance to clinicians in their diagnostic by quantifying
specific features from images and videos, they can also be ap-
plied to detect a larger range of facial symptomatic characteris-
tics subjectively. The combination of symptoms provides hints
to the practitioner to formulate the final diagnostic. This stand-
point further supports the need to perform multiple analysis to
discriminate a specific condition out of a range of eventual dis-
eases. For this purpose, information easily obtainable such as
patient history or anthropometric data could be added in the
analysis to help in the automatic diagnostic. Despite the clinical
evidences of the studies described here, computer vision meth-
ods are still at the research stage in the medical field. One of the
challenges of facial diagnostic is the impact of variable envi-
ronmental conditions involved in long-range image capturing.
While some successful applications (e.g., melanoma detection
in dermoscopy field, pulse monitoring from light changes in
the finger) have shown their applicability in close range image
analysis, the variability of the results when capturing the image
from long range has not yet been evaluated properly.

The main limitation to the development of computer vision
methods for diagnosis from the face is the lack of publicly
available data. While deep learning methods would be a good
solution to improve the diagnostic tools based on facial features,
they require an extensive amount of data to properly train the
features extraction and classification models [31], [32]. Further-
more, the lack of transparency of the selected features could be
an issue to be addressed for clinical applicability. In this review,
the methods have been typically applied to a limited number
of databases, reducing the relevancy of the studies. Despite the
previously reported benefits of creating databases [193], [194],
only a limited amount is available. A reason for this is ethical: the

access to personal medical data is under medical confidential-
ity agreements and involves ethical permits to perform specific
research studies [195]. Thus, spreading the medical data for
studies that were not mentioned in the original ethical permit
is not allowed. Specifically, in facial analysis, this issue is at
upmost importance, since the patient can be identified from its
appearance, even when its anonymity is preserved.

To increase the relevance of the studies on facial analysis
related to medical conditions, the improvement of ground truth
data is required and for this purpose, some solutions should
be considered. The development of collaborations between re-
search groups from medical and computer science fields could
highly improve the access to patient data. In addition, the in-
tegration of several acquisition modalities during patient ex-
amination could greatly increase the robustness of the decision
systems (e.g., combination of image and clinical data). How-
ever, the multidisciplinary nature of the collaborations requires
significant coordination efforts and joint facilities.

In perspective, alternative imaging modalities can be consid-
ered for computer vision methods for clinical purpose. The first
one is mobile phones, the constant improvement of the hard-
ware and the quality of their embedded cameras make them a
perfect candidate for self-assessment. While multiple mobile
applications related to health are available (e.g., Facial Dysmor-
phology Analysis technology Face2Gene [116], [117]), their use
for clinical diagnostic remains limited despite being technically
possible [88]. Furthermore, new hardware are being released
(e.g., FLIR One), allowing to mount thermal camera on mobile
phones, opening a new range of possibilities. Face images ac-
quired using conventional cameras may indeed have inherent
restrictions that hinder the inference of some specific details
in the face. A promising approach for dealing with those lim-
itations is using images acquired beyond the visible spectrum
and/or using non-conventional imaging. With this aim, hyper-
spectral cameras are able to capture data into multiple bands of
the electromagnetic spectrum both in the visible and invisible
ranges. This imaging modality allows to identify the molecular
composition of the scanned environment and the changes of its
spectrum over time in the case of abnormalities due to medi-
cal conditions [196]. While hyperspectral imaging studies have
mainly focused on getting tissue characterization from small-
scale tissue samples [197], new methods for face analysis [198]
and tongue cancer diagnosis [199] are emerging.

The combination of multiple imaging modalities and methods
could lead to an increase of the accuracy of these predictive tools.
However, the lack of standardization of the methodologies due
to restricted access to clinical data to validate them has been
restraining the emergence of novel solutions to assist the medical
community.

VIII. CONCLUSION

This survey was carried out to assess the current state of
evidence related to the implementation of computer vision sys-
tems for facial analysis applied to the diagnostic of medical
conditions. In this review, a range of distant and non-invasive
imaging solutions has been described, providing insights into
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the suitability of each one of the techniques in the assessment
of different types of symptoms related medical conditions.

The analysis of the work related to the traditional approaches
of diagnosis from facial observations showed that the establish-
ment of a correlation between face features and clinical data is
of high importance. This relationship has been extracted from
the review of more than 150 references, where the most rel-
evant methodologies have been identified. The findings show
that utilizing computer vision methods, over 30 conditions can
be preliminary diagnosed from the automatic detection of some
of their symptoms. This review reports clear evidences that
the methods presented here could provide valuable tools for
practitioners, eliminating subjective bias and reducing diagnos-
tics time and costs. However, these systems still require further
validations by clinical trials.
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