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Abstract—Indirect Immunofluorescence (IIF) Imaging of Hu-
man Epithelial type 2 (HEp-2) cell image is an effective ev-
idence to diagnose autoimmune diseases. Recently, computer-
aided diagnosis of autoimmune diseases by the IIF HEp-2 cell
classification has attracted great attention. However, the HEp-2
cell classification task is quite challenging due to large intra-
class and small inter-class variations. In this paper, we propose
an effective approach for the automatic HEp-2 cell classification
by combining multi-resolution co-occurrence texture and large
regional shape information. To be more specific, we propose
to: a) capture multi-resolution co-occurrence texture information
by a novel Pairwise Rotation Invariant Co-occurrence of Local
Gabor Binary Pattern (PRICoLGBP) descriptor, b) depict large
regional shape information by using an Improved Fisher Vector
(IFV) model with RootSIFT features which are sampled from
large image patches in multiple scales, and c¢) combine both
features. We evaluate systematically the proposed approach on the
IEEE International Conference on Pattern Recognition (ICPR)
2012, the IEEE International Conference on Image Processing
(ICIP) 2013 and the ICPR 2014 contest data sets. The proposed
method outperforms the winners of the ICPR 2012 contest using
the provided experimental protocol. Our method also greatly
improves the winner of the ICIP 2013 contest under four different
experimental setups. Using the leave-one-specimen-out evaluation
strategy, our method with the introduced two features achieves
comparable performance with the winner of the ICPR 2014
contest that combined four features.

Keywords—HEp-2 Cell Classification, PRICoLGBP,
Improved Fisher Vector, Multi-resolution Co-occurrence Texture,
Large Regional Shape.

I. INTRODUCTION

Indirect Immunofluorescence (IIF) imaging of Human Ep-
ithelial type 2 (HEp-2) cell image is an effective evidence
to diagnose autoimmune diseases. At the very beginning,
the fluorescence patterns were classified mainly by manual
labeling. Unfortunately, the process of human labeling requires
high expert knowledge and is quite time consuming. The HEp-
2 cell classification task is very challenging due to large intra-
class and small inter-class variations. As shown in Fig. 1, the
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Fig. 1: Sample images of all six categories from the ICIP 2013
contest data set with each column from one category. The
six categories are “Homogeneous”, “Speckled”, “Nucleolar”,
“Centromere”, “NuMem” and “Golgi”. The first two rows show
the “Intermediate” samples, and the last two rows show the
“Positive” samples.

cell images from the same categories (i.e., “Intermediate” or
“Positive”) look very different. Moreover, cell images from
different categories not only share similar shapes, such as
“Homogeneous” and “Speckled”, but also show similar tex-
tures, such as “Nucleolar” and “Golgi”. Notice also that the
“Positive” cells in raw images are perceivable by human eyes;
whereas the “Intermediate” cells can not be observed clearly.

Recently, computer-aided diagnosis of autoimmune diseases
by the IIF HEp-2 cell classification has attracted much at-
tention and hence dozens of pattern recognition techniques
have been developed towards automatic diagnosis of the au-
toimmune diseases [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. Briefly, previous works have shown that the
texture and shape cues are very effective in the HEp-2 cell
classification task [5], [13], [7], [14], [15], [16]. For instance,
Theodorakopoulos et al. [5] proposed to combine the morpho-
logical and texture features for the HEp-2 cell classification,
in which a uniform Local Binary Pattern (LBP) [17], [18] was
used to extract the texture feature. Similarly, Manivannan et
al. [16] described the texture information by depicting local



patterns under a Bag of Word (BoW) framework [19], in which
the local patterns were combined with other three features.
In [14], Theodorakopoulos et al. attempted to capture the shape
information by a bundle of local gradient descriptors. In [15],
Vestergaard et al. depicted the shape information by using the
shape index histograms with dount-shaped spatial pooling, in
which the introduced shape index histograms were derived
from shape index [20].

Although the approaches mentioned above have shown
improvements on the HEp-2 cell classification, few of them
has exploited the multi-resolution characteristic of the texture
in HEp-2 cell images. Besides, while the shape information has
been used in previous works, the methods to depict the shape
information are not strong enough because most of them model
the shape by using a histogram which may fail to accurately
reveal the first order and the second order statistics of the
distribution in shape descriptors.

In this paper, we attempt to exploit the multi-resolution
characteristic of the texture in the HEp-2 cell images and
the more effective way to model the distribution of shape
descriptors for accurate HEp-2 cell classification. To be more
specific, our contributions in this paper are highlighted as
follows:

e We propose to capture the multi-resolution texture in-
formation by a novel Pairwise Rotation Invariant Co-
occurrence of Local Gabor Binary Pattern (PRICoL-
GBP) descriptor, which is able to well capture the multi-
resolution characteristic of the texture in the HEp-2 cell
images.

e We propose an effective way to represent the rich shape
information by using an Improved Fisher Vector (IFV)
model over the RootSIFT features, which are extracted
from larger image patches in multiple scales.

e We show that the our multi-resolution texture descrip-
tor and the proposed approach to represent the shape
information are complementary.

The rest of the paper is organized as follows. We review
the related work in Sec. II and present the proposed texture
and shape features in Sec. III. We describe the benchmark data
sets and evaluation metrics in Sec. IV, show implementation
details and comprehensive evaluations in Sec. V, and finally
conclude the paper in Sec. VL.

II. RELATED WORK

In this section, we review the related work of the HEp-2
cell classification from the perspective of feature extraction
and combination. Roughly, we divide the existing methods
into three categories: a) texture based approaches, b) shape
based approaches, and c¢) approaches based on combining both
texture and shape.

A. Texture based Approaches

Texture features are very effective for HEp-2 cell classifi-
cation. In this line, LBP [17], [18] and its variants [21], [22],
[23], [24] have been widely used to capture texture feature for
HEp-2 cell classification, e.g., [25], [26], [6], [7].

Among LBP based methods, Co-occurrence of adjacent
LBP (CoALBP) [26], [6], Gradient-oriented Co-occurrence of
LBPs (GoC-LBPs) [7] and Pairwise Rotation Invariant Co-
occurrence of LBP (PRICoLBP) [23] were the three of the
best performing LBP variants in HEp-2 cell classification. In
[6], Nosaka et al. proposed to use CoALBP for the HEp-2
cell classification and performed the best in the contest for
HEp-2 cell classification which was held with the International
Conference on Pattern Recognition (ICPR) 2012. In this ap-
proach, each image was filtered by a Gaussian function to
remove noise and manually rotated with nine orientations (to
improve the robustness to rotation), CoOALBP features were
extracted for all images (both the original images and the
manually rotated images), and a linear Support Vector Machine
(SVM) was adopted for classification. The success of Nosaka’s
approach can be attributed to: a) the strong discriminative
power of the CoALBP in which 10 templates were used
to capture the strong spatial layout information, b) the used
green channel, which is much stronger than the red and blue
channels, and c) the manually rotated images to augment the
training sample. However, the discriminative power of the
CoALBP is limited because the CoALBP is built upon the co-
occurrence of two LBPs with only four neighbors rather than
the co-occurrence of two LBPs with eight neighbors which
was exploited in PRICoLBP. Moreover, while the manually
rotated images are used to augment the training sample for
improving the robustness to rotation, it is still not rotation
invariant. Besides, only the green channel was used.

In addition to the methods mentioned above, the original
LBP [18], Completed LBP (CLBP) [25], and other famous
texture features, e.g., Maximum Response Filter Banks (e.g.
MRS) [27], Gray-Level Co-occurrence Matrices (GLCM) [28],
Wavelet [29], were also used in the HEp-2 cell classification.

B. Shape based Approaches

Shape feature is another important aspect in HEp-2 cell
classification. In [30], Ponomarev et al. attempted to explicitly
represent shape feature by simply counting the distribution of
the object number, the average object area and the average hole
area. However, this method is very sensitive to the variations
in cell shape. In [15], Vestergaard et al. introduced a novel
second-order donut-like shape index histogram descriptor for
the HEp-2 cell classification and won the merit winer of the
HEp-2 cell classification contest which was held with the
International Conference on Image Processing (ICIP) 2013.
In their method, a two-stage preprocessing was used, in which
each image I was firstly augmented with its logarithmic repre-
sentation In(7) and the logarithmic representation was mapped
linearly into [0,1], and then three sorts of features were
extracted: a) the proposed donut-like shape index histogram, b)
the “intersity” of each image (negative/intermediate/positive)
as an integer flat, and c) the morphological features over
the provided mask (containing the area of the mask region,
eccentricity, major and minor axis length, perimeter). The
strategies to depict the shape information mentioned above,
however, are not strong enough, because the shape is modeled
by using a histogram which may fail to accurately reveal the



first order and the second order statistics of the distribution in
shape descriptors.

C. Approaches based on Combining both Texture and Shape

The complementary property of texture and shape feature
in the HEp-2 cell classification has also been investigated
previously, e.g., [8], [5], [31], [16]. In [8], Kong et al. adopted
Varma’s MR8 method [27] to extract the texture feature in
which each local region was normalized at first and the
whole image was represented with the BoW approach over
the extracted MR8 features, and used a pyramid histogram
of oriented gradients (PHOG) [32] to depict the shape infor-
mation. The texture and shape histogram were weighted and
concatenated, and a k-nearest neighbor (kNN) classifier with
x? distance was used for classification. In [31], Shen et al.
proposed to combine PRICoLBP [23] and BoW with SIFT
feature [33] for the HEp-2 cell classification. The dimension of
their used PRICoLBP feature is 5,900, in which 10 templates
was used and the dimension of PRICoLBP per template is
590. For BoW with SIFT feature, the codebook is of 1024
codewords and generated with k-means algorithm. The two
sources of features were concatenated and a linear SVM with
square root normalization [34] was used as the classifier. In
[16], Manivannan et al. proposed a method based on combining
of four different features and ranked the first place in the HEp-
2 cell classification contest [35] which was conjuncted with
the ICPR 2014. In their method, each image was rotated to
four orientations, multi-scale patches were sampled densely,
four types of features were extracted, and Locality-constrained
Linear Coding (LLC) was adopted for each type of features
and each orientation. In total, 16 histograms were obtained
to train 16 linear SVMs. In addition, Theodorakopoulos et al.
also investigated the combination of different features, e.g.,
combining GoC-LBPs [7] and a multivariate distribution of
SIFT features [5], combining of the morphological features
and a bundle of local gradient descriptors [14]. However, the
previous works usually exploit the shape features in small
region or represent the shape by using only a histogram. Notice
that, a small region might not reveal richer shape information
and using simply a histogram might fail to depict the shape
information sufficient enough.

In this paper, we attempt to exploit the co-occurrence
texture in multi-resolution and depict shape information in
large region. Different from the previous texture features
(e.g. CoALBP, PRICoLBP), we propose to depict the multi-
resolution co-occurrence texture information with the help of
the Gabor filters. Different from the previous shape features
[30], [15], we propose to capture the shape information over a
large region by using the Improved Fisher Vector (IFV) model
[36].

III. MULTI-RESOLUTION CO-OCCURRENCE TEXTURE
AND LARGE REGIONAL SHAPE INFORMATION
A. Multi-resolution Co-occurrence Texture Information

1) Local Binary Pattern: The LBP [18] is considered as a
simple and effective texture descriptor. For any pixel A in an

image, we can compute its LBP pattern by thresholding the
pixel values of its circularly symmetric P neighbors with its
pixel value. The LBP of the pixel A is defined as:

P-1 ‘ L, x>0
LBPpr(A) = ZZ:% s(Vi=Ve)2', s(x) = 0, =<0,

where P is the number of the neighbors, R is the radius, V,
is the pixel value of the point A, and V; is the pixel value of
the point A’s i-th neighbor. Since the s(V; —V,) is invariant to
monotonic change of illumination, thus the LBP is gray-scale
invariant.

The patterns with very few spatial transitions are considered
to depict the fundamental image micro-structures. Such pat-
terns are called as “uniform patterns”. Ojala et al. [18] defined
a uniformity measure for the uniform patterns, the uniformity
measure is U (LBPp r(A)) < N (N is usually set to 2). The
U(-) can be calculated as:

P-1
U(LBPp(A)) = > |s(Vi = Vi) = s(Vicx = Vo),
=0

where the pixel value of V_; is equivalent to the pixel value of
Vp_1. For example, “11000000” and “10000001” are uniform
patterns, and “10000100” and “10101100” are non-uniform
patterns. _

Rotation invariant LBP (LBP"*) and rotation invariant uni-
form LBP (LBP™) are also introduced in [18], where the
LBP"™ can be defined as:

LBP% r(A) = min{ROR(LBPp (A),i) | Vi€ [0,P —1]},

where ROR(x, ) performs a circularly bit-wise right shift for
i times. The LBP",.(A) is defined as

YEs(Vi— V.), U(LBP(A)) <2

LBP}5(4) = {p+1

otherwise,

The LBPg ; has 256 patterns in total, in which 58 patterns
are uniform and the rest 198 patterns are non-uniform. Usually,
the 198 non-uniform patterns are summarized into one pattern.
Thus, usually, 59 patterns are used for the uniform LBP. The
rotation invariant uniform LBPg ; includes ten patterns.

2) Single-Resolution Texture Information: Pairwise ro-
tation invariant co-occurrence LBPs (PRICoLBP) is recently
introduced by Qi et al. [23] for texture related tasks. As shown
in Fig. 2(b), the PRICoLBP is built on the two adjacent LBP
points. To calculate the PRICOLBP pattern for any given point
A, it contains the following two key steps:

e According to the gradient and the normal orientation
of the point A (Normal orientation is the direction that
is orthogonal to the gradient orientation.) and the pre-
defined templates as shown in Fig. 2(a), the position
of point B; can be uniquely determined. The gradient
orientation can be calculated as §(A) = arctan(jﬂyﬁg‘:; ).

e With a pair A and B;, pairwise rotation invariant encod-
ing was used to encode the co-occurrence of two LBPs.




In practice, the gradient magnitudes of the points A and B;
were used to weight their co-pattern.

In the first step, given a reference point A, the template
position of the point B;, can be determined according to the
following equation:
where a; and b; are pre-defined coefficients for template ¢, and
G(A) and N(A) are the gradient and the normal directions of
the point A. In practice, ten pairs are used for [a;, b;] as shown
in Fig. 2(a), one pair corresponds to one template.

(b) PRICOLBP

(a) Templates

Fig. 2: Pairwise Rotation Invariant Co-occurrence of Local
Binary Pattern. The left-hand panel shows ten templates built
on the reference point A. G 4 is the gradient orientation of the
point A, N4 is the normal direction of the point A. The right
hand shows one co-occurrence pair of LBPs. The PRICoLBP
captures stronger structures than the single LBP.

When the point pair A and B; are determined, a pairwise
rotation invariant encoding strategy is used to encode the pair.
Denote LBPp, (B, i) as the uniform LBP of point B by
using i-th index as the start point of the binary sequence. The
PRICoLBP can be defined as follows:

PRICOLBPp r(A, B;) = [LBPE'r(A), LBPp ¢(B;,i(A))]co,

2
where i(A) € {0, P—1} is an index, which can be determined
by minimizing the binary sequence of the point A. [-,]co is

a co-occurrence operator firstly introduced in [28]. Suppose
LBPp'R(A) has M patterns, and LBPp, p(B;,i(A)) has N
patterns, then their co-occurrence has M x N patterns.

When P = 8 and R = 1, the LBng‘1 has ten pat-
terns, the LBPg,1 has 59 patterns, thus, the dimension of the
PRICoLBPs ; is 10 x 59 = 590. If ten templates are used, the
dimension for the PRICoLBP is 10 x 590 = 5, 900.

3) Multi-Resolution Texture Information: The PRI-
CoLBP is effective to capture the structures in the small
scales (such as co-occurrence of LBPg ; and co-occurrence of
LBPs 2). However, multi-resolution texture information is ig-
nored. According to prior knowledge on texture classification,
the multi-resolution texture information is highly effective.

To capture the multi-resolution texture information, this pa-
per proposes a novel pairwise rotation invariant co-occurrence
of local Gabor binary pattern (PRICoLGBP) descriptor. The
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Fig. 3: The framework of PRICoLGBP. First, the image
is filtered by Gabor filters with different scales. Then, the
PRICoLBP features are extracted from each filtered images.
Finally, the features extracted from each scale will be con-
catenated into the final feature.

original Gabor wavelet [29] [37] is proposed to capture multi-
resolution and multi-orientation information. In the HEp-2
cell classification, the multi-resolution texture information is
important. Meanwhile, we target an orientation-insensitive
image representation. Therefore, we only focus on the multi-
scale information and ignore the multi-orientation part of the
Gabor filters. In this paper, we use a variant of Gabor filters,
which can be denoted as:
1 -1, 22
exp( 5 (8x2

G(xa:% Sz Sy, f) =

278, 8
’ 3)
where s, and s, are the variances of the x-axis and the y-axis
respectively, f is the frequency of the sinusoidal function. We
remove the orientation factor of the original Gabor filters. The
filters of the used variants are radial symmetry instead of the
orientation-selectivity in the original Gabor filters.

We illustrate the framework of our PRICoLGBP in Fig. 3.
The original image is convolved with different filters, and then
the PRICoLBP is extracted from each filtered image. Finally
all PRICoLBPs are concatenate into the final feature. The
used filters are radially symmetry, and the used PRICoLBP
feature is rotation invariant. These two properties entitle the
PRICoLGBP good robustness to rotation.

The PRICoLGBP shares some similar properties with the
Local Gabor Binary Pattern (LGBP) [38] that is seen as a
powerful LBP variants in face recognition. But, different from
the LGBP, our PRICoLGBP is built on a more discriminative
co-occurrence of LBPs. Thus, we can expect that PRICOLGBP
can capture stronger multi-resolution texture information. Two
strong properties of the PRICOLGBP makes it effective for the
IIF HEp-2 cell classification. Firstly, the texture-based methods
prove to be effective in the IIF HEp-2 cell classification.
Secondly, the PRICOLGBP inherits the properties (illumination

y? 4
+5)) cos(2mf(2* +4%)*)
Yy
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Fig. 4: The framework of discriminative shape information description. First, we densely sample thousands of large patches
in multiple scales with a preset step (such as 2), then the RootSIFT feature is extracted for each patch. PCA is applied to
the RootSIFT. Finally, IFV encoding is applied to the PCA-after features with pre-learned GMM parameters. The obtained
aggregation from IFV encoding can be input into a linear SVM for the final classification.

and rotation robustness) from both Gabor and PRICoLBP. In
the IIF HEp-2 cells, the “Positive” and the “Intermediate” cells
from the same categories show extremely varying illumination.

B. Large Regional Shape Information

The proposed approach, to depict the richer shape infor-
mation, consists of three steps: a) patch sampling, b) feature
description with RootSIFT, and c) Improved Fisher Vector
(IFV) encoding. The flowchart is illustrated in Fig. 4.

1) Patch Sampling for Depicting Shape Information:
To increase the discriminativeness in shape information, we
propose to sample large patches, since that the large patches
preserve stronger shape structures. To be more specific, instead
of sampling patches of small size, e.g., 16 x 16, or 19 x 19 as
in object categorization tasks, we sample much larger patches,
e.g., 41 x41. We can observe in Fig. 4 that the sampled patches
cover more than % of the whole image.!

In Fig. 5, we show some samples of all six categories in the
ICIP 2013 contest data set.

e The shape structures from different categories vary a lot.
Each category has its own characteristics. For instance,
the category “NuMum” has bright and thick bound-
aries, the category “Centermere” has many bright spots,
and the category “Golgi” does not have well-formed
boundary. When considering the texture and the shape
structures jointly, the difference between some categories
is large. For instance, the categories “Nucleolar” and
“Centromere” are easy to differentiate when jointly
considering the shape and the texture.

e The “Positive” and the “Intermediate” HEp-2 cells from
the same category have similar shape structures, al-
though the structures of the “Intermediate” cells are
hardly visible.

These observations are the rationales to explore the shape
information for the HEp-2 cell image classification.

'In general, a HEp-2 cell image is of 65 x 70 and hence preserve stronger
shape structure from the sampled patches.

2To visualize the shape structures, we enhance the images by using a
logarithmic operator loge(I) on the image and then normalize the image
to the range of [0, 255]. This preprocessing method was proposed in [15].

Fig. 5: Illustration of discriminative power of the shape in-
formation. Each column comes from one category. It is easy
to find that the shapes vary a lot among different categories.
(A) shows the “Intermediate” cell images from each category,
and (B) shows (A)’s corresponding enhanced images by a
logarithmic operator loge(I). (C) shows the “Positive” cell
images, and (D) is (C)’s corresponding enhanced images.

2) RootSIFT Feature Extraction on Large Patches: We
extract 128-dimensional SIFT features [33] from the sampled
large patches. For each feature f, we normalize it with L;-
norm and then take the componentwise square root operation,
ie.,

f
€l @

fi=+\/fi, j=1,---,128.

The obtained f is termed as “RootSIFT” [39], which was

proposed to enhance the discriminative power of the SIFT.
3) Improved Fisher Vector (IFV) Encoding: We encode

the RootSIFT features by an Improved Fisher Vector (IFV)

f:




approach [36] [40], which consists of three steps:

e Data decorrelation by Principal Component Analysis
(PCA).

e Training a Gaussian Mixture Model (GMM).

e Calculating the IFV by using the first and the second
order statistics with respect to the GMMs.

Denote the parameters in the GMMs as {7y, p, Sk},
where 7, is the membership probability, p is the mean of
the k-th component Gaussian, and X, is the covariance matrix
which is enforced to be diagonal. Let X = [x1,Xs,...,Xy]| €
R¥*N be a set of feature vectors of an image after the
decorrelation, where d is the reduced feature dimension of
using the PCA and N is the number of the RootSIFT features
in the image. The IFV captures the deviation of the features in
an image from the first and the second statistics of the GMM.
To be more specific, the IFV is defined as follows:

T T T T
F:[ul ;Viy,.., UK , VK ] 3 (5)
where

(25 — ), ©6)

N
Vi = N;\/ﬁ ZSM[(% — ) (S (@i — ) = 1], (D)

in which the sg; is defined as

(@i fre, 2n) Tk
K bl
D P(ilpe, X))

The parameter sg; is the responsibility of feature x; belonging
to the k-th GMM component.

Note that the dimension of F is 2 x d x K, where K
is the number of the mixture components in GMM. In our
experiments, we set d as 80, and K as 256. The final dimension
of the IFV representation is 2 x 80 x 256 = 41, 960. Note that
this is the first time that the IFV is used in the HEp-2 cell
classification task.

Ski = k=1,.., K.

C. Aggregation Normalization and Classification

Aggregation normalization is a key step before training a
SVM model. We normalize the aggregation componentwisely
as follows:

H; = sign(H;)\/| H; |,Vi=1,---,D, 8)

where D is the dimension of H, sign(-) is a sign function.
And then we further normalize the aggregation with Lo norm.

For classification we use a linear SVM since it is widely
used in large scale problems. For the linear SVM, the training
is fast and the speed of classification in test phase is also fast.
We use the one-vs-the-rest strategy to handle the multi-class
classification problem.

- EE SR )
RAE (5@
LESEEET
& e

Hom. C_Spe. Nuc. Cen. F_Spe. Cyt. Mask

Fig. 6: Sample images from the ICPR 2012 contest dataset
with each column from one category. The first two rows show
the “Intermediate” samples, and the last two rows show the
“Positive” samples.

TABLE I: Details of the ICPR 2012 contest data set.

Homo | Coar | Fine | Nucl | Cent | Cyto | Total

Instances/train 3 2 2 2 3 2 14
Cells/train 150 | 109 | 94 | 102 | 208 | 60 | 723

Instances/test 2 3 2 2 3 2 14
Cells/test 180 | 101 | 114 | 139 | 149 | 51 | 734

IV. DATASETS AND EVALUATION METRICS
A. ICPR 2012 Contest Dataset

ICPR 2012 cell images were acquired by means of a
fluorescence microscope (40-fold magnification) coupled with
a 50W mercury vapor lamp and with a digital camera. The
images have a resolution of 1,388 x 1,038 pixels, a color
depth of 24 bits and they are stored in an uncompressed
format. Specialists manually segmented and annotated each
cell. In particular, a biomedical engineer manually segmented
the cells by the use of a tablet PC. Subsequently, each image
was verified and annotated by a medical doctor specialized in
immunology. The dataset contains 28 images almost equally
distributed with respect to the different patterns. In the contest,
the 28 images are divided into training and testing sets. The
information for the training and the testing sets is shown in
Tab. I. More detailed information can be found in [41]. Some
samples are shown in Fig. 6.

TABLE II: Details of the ICIP 2013 contest data set.

Ho Sp Nu Ce | NM | Go | Total

Specimens | 16 16 16 16 15 4 83
Cells 2,494 12,831(2,598 | 2,741 2,208 | 724 | 13,596

B. ICIP 2013 Contest Dataset

The ICIP 2013 data set used 419 patients positive sera with
screening dilution 1:80. The specimens were automatically



captured using a monochrome high dynamic range cooled
microscopy camera. For each patient serum, 100-200 cell
images were extracted. In total, there were 68,429 cell images
extracted. The whole 68,429 cell images were divided into
13,596 training samples and 54,833 testing samples.

The labeling process involved at least two scientists who
read each patient’s specimen under a microscope. A third
expert’s opinion was sought to adjudicate any discrepancy
between the two opinions. In this way, a ground-truth mask
can be extracted from each cell image.

The testing images are not released. The training set is big;
it contains 83 specimens which contains 13,596 cells in total.
Some basic information for the training data in the ICIP 2013
contest are shown in Tab. II. More detailed information can be
found in [31]. Some sample images are shown in Fig. 1.

It should be noted that in the ICPR 2014 contest, the Task-1
used the exactly same dataset as the ICIP 2013 contest.

C. Evaluation Metrics

The cells from the same specimen can only be used for
training or testing. As pointed out before, each specimen
always has 100-200 cells. The cells in the same specimen
always have higher similarity than the cells from different
specimens. Thus, to evaluate the generalization ability of
methods, the cells in one specimen should not be splited into
both training and testing. This is because, if part of the cells
in one specimen are used for training, and the rest cells in
the same specimen, that are used for testing, are too easily
correctly classified. In this way, whereas this strategy usually
obtains a high validation performance, it can not be generalized
to other unknown specimens.

In the previous ICPR 2012 and ICIP 2013 contests, accuracy
of maximum classification number was used as a performance
metric. For specimen, in the ICPR 2012 data set, the testing
number of images is 734, if the 500 images are classified
correctly, then the accuracy is %. In this paper, we followed
the metric of the previous ICPR 2012 and ICIP 2013 contest,
and used the maximum classification number as the metric.

When comparing our method to the ICPR 2014 winner
[16], we strictly followed the winner’s protocol, and used the
leave-one-specimen-out protocol. The averaged Mean Class
Accuracy (MCA) was reported.

V. EXPERIMENTS

A. Implementation Details

PRICoLGBP. For multi-resolution PRICoLGBP feature, we
use the original image and seven Gabor-filtered images under
seven different scales {1,2,3,4,5,6,7}. For each filtered im-
age, we can extract one PRICoLBP feature. In each PRICoLBP
feature, we use ten templates. As we described before, the
dimension of PRICoLBP using one template is 590. Thus, the
final dimension for PRICoOLGBP is 8 x 10 x 590 = 47, 200.

RootSIFT(IFV). We densely sample the RootSIFT feature
at six scales with grid step 2. The sampled patch size is 41 x41.
If the image size (height or width) is less 64, we will resize it
to the image with minimum size 64 and keep the height/width

ratio. Six scales are achieved by filtering the images with
Gaussians with different scales of different standard deviates
{1.5,1.5%,1.5%,1.5%,1.5°,1.5%}. For specimen, for an image
with image size 70 x 70, we can sample 225 points for
each scale. Thus, for six scales, we can get 1,350 sampled
patches. For a larger image, such as 70 x 80, we will sample
more points. In the IFV, we firstly sample 100,000 RootSIFT
features from the training samples, then the 100,000 RootSIFT
features are used to learn the PCA components, and 80
principal components are preserved as the basis for dimension
reduction. As pointed out by [40], the PCA is a key step in the
IFV framework. After the PCA step, we learn a GMM with
256 components. For the GMM, we use the Vlfeat to learn
the parameters 0 = {mg, pg, Xk, k=1,---,K}. The final
dimension using the IFV encoding is 2 x 80 x 256 = 41, 960.

Experimental Setups. The Vlfeat toolbox [42] is used for
fast RootSIFT extraction and IFV encoding, and the Liblinear
[43] is used for the linear SVM training and classification. For
the parameter C, we cross-validated it in {0.001, 0.01, 0.1,
1, 100, 1,000}. As for the method of the ICIP winner (Shen
et al., the ICIP 2013 winner), we use the same code that had
been submitted into the ICIP 2013 contest and achieved the 1st
place. All experimental comparisons are conducted in the same
framework. Take the ICIP 2013 contest data set as an example,
first, we create ten splits for ten repeated experiments. For
each split, the whole ICIP contest 2013 data set are randomly
divided into the training and testing sets. Meanwhile, to truly
show the generalization performance of approaches, the images
from the same cell are only divided into training or testing set.
Thus, all comparisons are fair in this paper. We have provided
the matlab code® to reproduce the experimental results.

TABLE III: Four experimental setups for the ICIP 2013 data
set. For example, “1” means all images from one specimen are
used for training, and the remaining specimens for testing.

Ho | Sp | Nu | Ce | NM | Go | total
Setup A 1 1 1 1 1 1 6
Setup B | 2 2 2 2 2 2 12
Setup C | 4 4 4 4 4 2 22
Setup D | 8 8 8 8 8 2 42

TABLE IV: Comparison between the single-resolution and the
multi-resolution texture feature on the ICIP 2013 data set.

Setup A Setup B Setup C Setup D
PRICOLBP [ 43.1 £6.8|55.2+5.4[67.6+4.0|73.9£2.9
PRICOLGBP| 50.4 £ 6.2 |61.4£5.1[72.2+3.8|784+£2.7

B. Evaluation of Features

In this subsection, we will mainly evaluate some aspects of
the proposed texture and shape features. The ICPR 2012 data

3https://www.dropbox.com/s/eoifdhgjs107vky/HEp2Cell.zip?d1=0



set is too small to fully evaluate the properties of the proposed
methods. Thus, we will use the ICIP 2013 data set in this
subsection. To fully evaluate the properties, we use four sets
of different experimental setups, as shown in Tab. III. Take the
setup “D” as an example, in the experimental setup “D”, 42
specimens (including eight specimens from “Homogeneous”,
eight specimens from “Speckled”, eight specimens from “Nu-
cleolar”, eight specimens from “Centromere”, eight specimens
from “NuMem” and two specimens from “Golgi”) are used for
training, and the rest 41 specimens are used for testing. We
pre-create ten training and testing splits randomly, and report
the averaged results.

Evaluation of Multi-Resolution Texture Extraction Strat-
egy. Here, we conduct experiments to compare the PRICoLBP
and PRICoLGBP using the above-mentioned four experimental
setups. The results are shown in Tab. IV.

We can observe that from Tab. IV, multi-resolution texture
feature significantly improves the single-resolution texture fea-
ture. For specimen, the multi-resolution PRICOLGBP improves
the PRICoLBP by 7.3% and 4.5% for the experimental setup
“A” and “D”. We believe the performance gain monotonically
decreasing from 7.3% to 4.5% is reasonable. From the setup
A to the setup D, more and more samples are used for the
training, the performance for both the proposed and the com-
pared approaches will increase. When the training samples are
limited, the PRICoLGBP shows better discriminative power,
the performance gain thus is high. With the increase of the
training samples, the performance gain decreases, whereas the
PRICoLGBP will consistently outperform the PRICoLBP.

Evaluation of Improved Fisher Vector Encoding. To
evaluate the effectiveness of the Improved Fisher Vector, we
compare it with the traditional Vector Quantization (VQ) and
Vector of Locally Aggregated Descriptors (VLAD) encodings.
The VQ statistics the occurrences of visual words, but the
VLAD and the IFV calculate the differences between the
pooled features and the words. For the VLAD and the IFV,
the former encodes the first order moment of the descriptors
assigned to a word, and the latter depicts both the first order
and the second order moments. The K-means is usually used
in the VLAD, but the GMM is typically used in the IFV. The
dictionary size of the VQ used in this paper is 4,096. In the
VLAD, we use the K-means to cluster 256 words. For the IFV,
we used 256 GMMs. For all VQ, VLAD and IFV, the feature
is normalized according to Eq. 8. A linear SVM is used for
training and classification. The results are shown in Tab. V.

TABLE V: Comparison between the Vector Quantization and
the Improved Fisher Vector on the ICIP 2013 data set.

Setup A Setup B Setup C Setup D

RootSIFT(VQ) |54.9+6.862.2+4.5|683£2.4|71.2+2.3

RootSIFT(VLAD) | 57.9 £ 6.8 | 65.6 £4.6 | 73.5 £2.5 | 77.2+£ 2.5

RootSIFT(IFV) | 58.7 £6.7|66.7 £ 5.1 |74.7+2.7|784£2.7

From Tab. V, we can find that the IFV encoding method
sharply improves the performance of the VQ encoding method,

and slightly outperforms the VLAD as shown in [42]*. For
instance, under the experimental configuration “D”, the IFV
improves the VQ from 71.2% to 78.4%, and improves the
performance of the VLAD by 1.2%. This observation validates
that, to encode the differences between the pooled features
and the words is more effective than to simply encode the
occurrences of visual words. Meanwhile, it also demonstrates
that to depict both the first order and the second order moments
at that same time performs better than to only capture the first
order information although the VLAD encoding is faster than
the IFV encoding. However, in the current system, the speed
of the IFV is acceptable; it only takes around 0.1s to encode
the features of an image.

Evaluation of Large-Patch Sampling Strategy. In order
to evaluate the RootSIFT(IFV) under different patch sampling
strategy, we conduct experiments under two configurations:
the patch size 41 x 41 and the patch size 17 x 17. For fair
comparison, we keep the numbers of samples points for both
settings are approximately same. The results are shown in Tab.
VI. According to the Tab. VI, the large patch sampling strategy

TABLE VI: Comparison between two different patch sampling
strategy on the ICIP 2013 data set.

Setup A Setup B Setup C Setup D
[RootSIFT(small) 56.9 + 7.4 [65.1 £5.6 | 73.2£ 3.0 | 77.2+ 2.8
RootSIFT(large)| 58.7 £ 6.7 | 66.7 £ 5.1 | 74.7 £ 2.7 | 78.4 + 2.7

is more effective than the small patch sampling strategy. For
instance, the former outperforms the latter 1.2% under the
experimental setup “D”.

Evaluation of Normalization Method. Here, we evalu-
ate the importance of the normalization method. For both
PRICoLGBP feature and RootSIFT(IFV), we normalized the
aggregations according to Eq. 8. We compare them with
the direct Ly normalized aggregations under the linear SVM
framework. The results are shown in Tab. VII.

TABLE VII: Evaluation of the Normalization Methods on
RootSIFT(IFV) and PRICoLGBP on the ICIP 2013 data set.
In the table, “PRICoLGBP” and “RootSIFT(IFV)” denote the
feature under the direct Lo normalization, “PRICoLGBP*” and
“RootSIFT(IFV*)” denote the features normalized by Eq. 8
and then by Ly normalization.

Setup A Setup B Setup C Setup D
PRICoLGBP [48.4+6.2(59.4+4.6|70.3£3.2[77.5+3.2
PRICoLGBP* [50.4+£6.2|61.44+5.1[722+£3.8|78.4+2.7
RootSIFT(IFV) |57.8 £7.065.7+5.4|73.6£29|77.4+£2.7

RootSIFT(IFV*) | 58.7 £ 6.7 | 66.7 £ 5.1 | 74.7 £ 2.7 | 78.4 £ 2.7

From Tab. VII, it is easy to find that the PRICOLGBP with
normalization according to Eq. 8 consistently outperforms the

“http://www.vlfeat.org/applications/apps.htm]
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Fig. 7: Classification confusion matrices and averaged accuracies on the ICPR 2012 contest data set.

PRICoLGBP without normalization, and the RootSIFT(IFV) minimal size of the image is less than 50, we will resize the
using normalization also consistently outperforms the non- image to the minimal size 64 while keeping the ratio between
normalized feature. All these two observations validate the the height and the width. Since the dataset is very small, we

effectiveness of the normalization.

TABLE VIII: Comparison with the state-of-the-art methods on

the ICPR 2012 contest dataset.

directly use SVM with x? kernel for the PRICOLBP and the
PRICoLGBP. For the RootSIFT(IFV), and the combination
of the PRICoLGBP and the RootSIFT(IFV), we used linear
SVM. We used the official training/testing evaluation in the
ICPR 2012 contest as shown in Table I. The classification

confusion matrix and averaged accuracies using the provided

experimental setup by the ICPR 2012 contest organizers are
shown in Fig. 7. In Table VIII, we compare our method with
some state-of-the-art approaches.

We observe that from Fig. 7 and Table VIII:
e The PRICoLGBP and the RootSIFT(IFV) work well

on this dataset, and both outperform the winner of the

Methods Accuracy (%)
Li et al. [44] 64.2
Kong et al. [8] 65.8
Nokasa et al. [6] 68.7
GoC-LBPs [7] 69.2
Distribution of SIFT [7] 71.3
Combined Features (SRC classifier) [7] 75.1
SIFT (VLAD) [13] 70.57
Shape Index Histograms [15] 71.5
Human Expert 73.33
Gabor-PRICoLBP + RootSIFT(IFV) 75.6

ICPR 2012 contest. The PRICoLGBP also outperforms

C. Comparison with the State-of-the-art Methods

the RootSIFT(IFV) significantly. The combination of the
PRICoLGBP and the RootSIFT(IFV) further improves
each of them. Specifically, we want to emphasize that
the combination improves the PRICOLGBP by 25.7% on

Experiments on the ICPR 2012 contest. To extract the the category “Coarse Speckled”, and improves the Root-
PRICoLBP and the PRICoLGBP features, we only use the SIFT(IFV) by 21.9% on the category “Fine Speckled’;
green channel. For the RootSIFT(IFV), we use the gray image. e Our approach significantly improves the top three meth-

In the IFV, since the sampled patch is 41 x 41, when the ods in the ICPR 2012 contest, and also outperforms two
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Fig. 8: Classification confusion matrices and averaged accuracies on the ICIP 2013 contest data set.

other well-performing works [5], [13]. It should be noted
that the task is even challenging for the human expert. As
you can see from Table VIII, human expert only achieves
73.33% on this task. From this perspective, an accurate
HEp-2 cell classification system is very valuable;

The most confusing pairs are “Fine Speckled” and
“Centromere”, “Nucleolar” and “Centromere”, and “Ho-
mogeneous” and “Fine Speckled”. For instance, in all
six algorithms, the category “Homogeneous” is easily
misclassified into the category “Fine Speckled”.

In the ICPR 2012 contest data set, the texture based methods
work better than the shape based methods. This observation is
consistent with the analysis in [2]. This may account for the
small scale of this data set. Texture property is more stable than
the shape property when the number of the data set is small.
Meanwhile, along with increase of the data set, the statistics
of shape property will become more stable. This argument is
partly validated by the following experiment on the ICIP 2013
contest data set. We also want to point out another issue that
when the scale of the data set is small, the classifier will be
more sensitive to the parameter C. We used the training set to
conduct cross-validation to determine the parameter C.

Experiments on the ICIP 2013 contest. We evaluate
and compare six methods including the RootSIFT(VQ), the
PRICoLBP, a combination of RootSIFT with VQ and the
PRICoLBP, the PRICoLGBP, the RootSIFT(IFV), and a com-

bination of the PRICoOLGBP and the RootSIFT(IFV). Here, we
use the experimental setup “D”. The classification confusion
matrix and averaged accuracies over ten trials are shown in
Fig. 8. We observe that from Fig. 8:

1). The PRICoLGBP greatly outperforms the PRICoLBP,
and the RootSIFT(IFV) significantly outperforms the Root-
SIFT(VQ). This fully demonstrates the effectiveness of the
proposed approaches (PRICoLGBP and RootSIFT(IFV)). The
effectiveness of the PRICoLGBP verifies that the multi-
resolution information is important in the HEp-2 cell clas-
sification. The IFV has proved to be more effective than
the VQ on many applications, including object recognition,
texture classification, and face verification. This point also
explains why the RootSIFT(IFV) significantly outperforms the
RootSIFT(VQ) on this task.

2). Compared to the RootSIFT(VQ), the RootSIFT(IFV)
shows obvious improvement on all categories. This fully illus-
trates the high effectiveness of the IFV encoding. Compared
to the PRICoLBP, the PRICoOLGBP achieves improvement on
four categories (“Homogeneous”, “Speckled”, “NuMem”, and
“Golgi). This may reflect that the multi-resolution texture in-
formation on these four categories is discriminative, especially
on the “Golgi”. On the other two categories, the performances
of the PRICoLBP and PRICoLGBP are comparable.

3). The combination between the texture and the shape fea-
tures outperforms each of them, and improves the performance



78.4% for the single feature to 79.5%. We repeat experiments
ten trials and perform a one-tailed statistical significance test.
The statistical significance test shows that the feature combina-
tion is significantly better than the single feature. Meanwhile,
we would like to point out that, in [16], the combination
of four features with performance 80.25% only improves the
best descriptor (the performances of four features are 78.00%,
78.63%, 61.26% and 79.60% individually) for 0.65%. In this
perspective, the 1.1% improvement is significant.

4). The category “Golgi” obtains the lowest performance
among all six categories, this is due to the less training samples
in this category. The most confusing pairs are “Golgi” and
“Nucleolar”, and “Speckled” and ‘“Homogeneous”. This is
mainly due to that the shape and the texture structures between
the pairs are similar.

Comparison with the winner of the ICPR 2014 contest.
In this part, we compare our method with the rank first
approach [16] of the ICPR 2014 contest. We strictly follow
their experimental protocol, and use the leave-one-specimen-
out strategy. According to the specimen IDs, we can split
the data into training and validation sets. Since we have 83
different specimens, in each test, we use 82 specimens for
training and the rest one for testing. The result of [16] is shown
in Table IX(a), and our result based on the combination of the
PRIGCoLBP and the RootSIFT(IFV) is shown in Table IX(b).

According to Table IX, the Mean Class Accuracy (MCA)
for [16] is 80.25%, and our method achieves a comparable
performance 80.04%. Compared to their method, our method
performs better on “Nucleolar” and “Golgi”’, and performs
worse on “Homogeneous”, “Speckled” and “Centromere”.

There are two key differences between our method and
[16]. 1). Our method is built on the proposed two features
(PRICoLGBP and RootSIFT (IFV)), but their method [16] is
based on the combination of four features. 2). Our method
only uses a linear SVM classifier, but their method combines
sixteen classifiers. In [16], Manivannan et al. combined four
types of features. They rotated the images to 0°, 90°, 180°and
270°, and for each direction, they trained one model. Thus, for
each feature, they trained four models. The final classification
result is based on the summation of the probability of sixteen
classifiers. However, we only trained one model using the
combination of the RootSIFT (IFV) and the PRICoLGBP
features. Usually, a model combination will work better than a
single model. In this manner, the proposed approaches can be
further improved if we use multiple models for the proposed
approaches. Meanwhile, we also expect that the combination
of the proposed two features and [16] will lead to an even
better performance.

VI. CONCLUSION

This paper proposed an effective method for automatic
classification of the HEp-2 cell via using multi-resolution co-
occurrence texture and richer shape information. Specifically,
we proposed to capture the multi-resolution co-occurrence
texture information by a novel Pairwise Rotation Invariant
Co-occurrence of Local Gabor Binary Pattern (PRICoLGBP)
descriptor, and depict the richer shape information by using an

TABLE IX: Classification confusion matrices of (a). the ICPR
2014 rank first approach, and (b). Our method under the leave-
one-specimen-out experiments on the I3A Task-1 dataset.

(a). The ICPR 2014 rank first approach [16].

Homo. Spec. Nucl. Cent. NuMe. Golgi
Homo. 81.8 15.00 0.76 0.20 2.04 0.20
Spec. 8.87 7736  3.67 9.18 0.74 0.18
Nucl. 1.12 389  90.65 2.08 1.27 1.00
Cent. 0.47 10.87 2.85 85.66 0.04 0.11
NuMe. 6.30 2.04 1.40 0.27 88.04 1.95
Colgi. 5.66 373 2072 235 9.53 58.01
(b). Our method.

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 81.32 1556 0.80 0.12 1.96 0.24
Spec. 12.19 73.86 3.74 9.29 0.78 0.14
Nucl. 1.58 223 9249 219 0.92 0.58
Cent. 0.15 1098 343 8541 0 0.04

NuMe. 6.52 1.54 1.27 0.05
Colgi. 8.56 4770 1934 331 4.97

88.04 2.58
59.12

Improved Fisher Vector (IFV) model with RootSIFT features
which are sampled from large image patches in multiple
scales. We systematically evaluated the proposed approach on
the ICPR 2012, the ICIP 2013, and the ICPR 2014 HEp-2
cell classification contest data sets. The proposed approach
demonstrated superior performance on all three data sets.
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