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Abstract—Unmanned Aerial Vehicles (UAVs) are set to become
an integral part of 5G and beyond systems with the promise
of assisting cellular communications and enabling advanced
applications and services, such as public safety, caching, and
virtual/mixed reality-based remote inspection. However, safe and
secure navigation of UAVs is a key requisite for their integration
in the airspace. The GPS spoofing is one of the major security
threats to remotely and autonomously controlled UAVs. In this
paper, we propose a machine learning-based, mobile network-
assisted UAV monitoring and control system that allows live
monitoring of UAVs’ locations and intelligent detection of spoofed
positions. We introduce the Convolutional Neural Network (CNN)
in the edge UAV Flight Controller (UFC) to locate a UAV and
detect any GPS spoofing by comparing differences between the
theoretical path loss computed by UFC and the corresponding
path loss reported by the connected base station (BS). To reduce
the detection latency as well as to increase the detection accuracy,
transfer learning is leveraged to transfer the CNN knowledge
between edge servers when the UAV handovers from one BS to
another. The performance evaluation shows that the proposed
solution can successfully detect spoofed GPS positions with an
accuracy rate above 88% using only one BS.

Index Terms—Unmanned Aerial Vehicles (UAVs), GPS spoof-
ing, Convolutional Neural Network (CNN), Transfer Learning,
and Beyond 5G.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, are con-

sidered a crucial part of upcoming Internet of Things (IoT)

platforms, offering not only the potential of delivering IoT-

based services but also the capability of providing wireless

connections to IoT applications in dense and remote areas [1],

[2]. According to the report in [3], the UAV market is valued at

nearly 27.4B in 2021 and is expected to reach 58.4B dollars

by 2026. Nevertheless, the safety and security of remotely

and autonomously controllable UAVs are prime challenges that

hamper the envisaged growth in UAV-based applications and

services if they are not properly addressed.

In response, the Federal Aviation Administration devel-

ops Unmanned Aircraft Systems (UAS) Traffic Management

(UTM) systems to manage air traffic [4]. The UTM provides

drones’ mission-related services, including drone authenti-

cation, flight plan authorization, real-time location tracking,

and geofencing [4]. It is noteworthy that the UTM systems-

derived services are highly dependent on location information.

Specifically, the Global Navigation Satellite System (GNSS,

e.g., GPS) is officially used by UTM because of its global

coverage and accuracy. However, the civil GPS services are

unencrypted which makes it vulnerable to spoofing attacks [5].

In practice, commercial software-defined radio tools can be

used to generate fake GPS information and signals and deceive

the GPS receiver to compute false positions [6]. Indeed, fake

GPS positions can break through UTM regulations and lead

UAVs up to no-fly zones and/or give rise to collision risks.

Thus, appropriate measures must be incorporated into UTM

systems to verify UAV location information to defend against

GPS spoofing attacks.

There are two kinds of methods for GPS spoofing detection,

namely GPS navigation signal analysis methods (e.g., [7]–

[10]) and GPS navigation message encryption methods (e.g.

[11]–[15]). For instance, using multi-antenna techniques to

measure the GPS signals direction of arrival, the work in [7],

[8] presented methods that can filter out fake GPS signals

and mitigate spoofing attacks. Similarly, the work in [9], [10]

developed multiple GPS receivers-based spoofing detection

methods through the cross-correlation property between the

military and civil GPS signals. These methods need a secure

receiver which serves as a ground-truth source in the cross-

correlation process. Jansen et al. in [11] devised Crowd-

GPS-Sec; an approach that uses the automatic dependent

surveillance-broadcast messages and their time of arrival in-

formation to detect and localize the GPS spoofing attacks. The

author in [12] proposed signature-based navigation messages

authentication methods to prevent the GPS receiver from GPS

spoofing attacks. Subsequently, Liu et al. in [14] leveraged

a trusted hardware to generate cryptographic signatures for

GPS messages to prevent their spoofing. The author in [14]

developed SM cryptographic algorithms for BeiDou-II system

in order to encrypt navigation messages.

Although the aforementioned methods are effective, they re-

quire more antennas and computing load on the receiver, which

inhibits their adoption in UAV systems due to the limited

battery capacity and weight load of UAVs. Furthermore, UAVs

are considered as a victim in most existing work, while UAVs

can be also an attacker and may report fake GPS locations

to UTM in order to break through regulations. Fortunately,

3GPP has defined new standards that aim to enhance LTE

support for Unmanned Aerial Systems (UAS) [16]–[18]. The

new standards allow the UAS to access the Mobile Positioning

System (MPS) services to locate and track the UAVs. Rather



than replacing the GPS positioning and navigation system on

the UAV, the MPS service is used to assist in UTM for cross-

checking the validity of the GPS information [19].

The authors in [20] introduced the Adaptive Trustable

Residence Area (ATRA) to locate and track UAVs for GPS

spoofing detection in UTM by leveraging the up-link Received

Signal Strength Indication (RSSI) provided by the MPS ser-

vice. Despite the advantages in GPS spoofing detection per-

formance that ATRA offers, it requires at least three BSs, and

its performance dramatically drops when the communication

links between BSs and UAVs are less than three [20]. To

overcome these weaknesses, the authors in [21] leveraged

deep learning models, particularly Multi Layer Perceptron

(MLP), to independently detect GPS spoofing at an edge server

that is associated with three, two, or one BS, whereby the

inputs of the deep learning model is the statistical difference

between the theoretical path losses for the planned path and

the real-time path losses obtained from each BS. Regardless

of the performance brought by the deep learning model, its

performance heavily depends on the volume of the training

data; that is, the more the data are available, the more accurate

the model will be [22]. Nevertheless, the transmission of a

large amount of data takes too much time as well as consumes

a lot of bandwidth, which may lead to network congestion

and degradation in network performance. Furthermore, the

statistical results are inadequate that may drop some of the

original features from the inputs and bring a higher miss

detection or false alarming. Therefore, this paper aims to

leverage the efficient and economic Convolutional Neural

Network (CNN) method to extract the deep trajectory features

from the original data combing with the MLP models for GPS

spoofing detection. The use of convolution layers in the CNN

network allows the integration of the possessive features of

the inputs and further enhances the detection accuracy.

In this paper, we introduce the CNN and transfer learning

method into the edge servers for checking the authenticity

of the GPS position reported to UTM by a UAV. The pro-

posed method leverages the theoretical path losses difference

computed by the edge servers to indicate the integrity and

authenticity of the planned and real-time UAV’s trajectory,

enabling UTM to verify the UAV GPS information through

the edge UAV Flight Controller (UFC). Compared with the

aforementioned approaches, the proposed method migrates

the GPS spoofing detection to the edge server, above all

without any more requirements at the UAVs. In addition, using

the transfer learning method, the edge servers can share the

features knowledge of the UAV trajectory through CNN Con-

volution layers in order to increase detection accuracy as well

as to shorten the detection latency. The major contributions of

this paper are listed as follows:

• We investigate the 5G-assisted UAS system built on

the Multi-access Edge Computing (MEC) architecture

(see Fig. 1) that allows UTM to push UFC control and

monitoring services to the network edges (e.g., base

stations). It shall be noted that placing the UFC at the

network edges can reduce the communication latency and

enhance the communication reliability [23]. In addition to

the reliable and low-latency communication, UTM can

also track and verify the UAV GPS position through the

MPS service at the edge server.

• To improve the GPS spoofing detection accuracy, we

introduce CNN in UFC at the edge to monitor and verify

UAV locations as well as to detect GPS spoofing. The

CNN inputs are the differences between the theoretical

path loss computed by the network edge BS and the

corresponding path loss reported by the UAV, where the

CNN Convolutional layers are used to extract the features

of path losses and the dense layers are used to classify

the test positions into spoofed and non-spoofed.

• With regard to reducing the detection latency as well

as increasing the detection accuracy, we use the trans-

fer learning technique to transfer the CNN knowledge

between edge servers when the UAV handovers from

one BS to another. It is worth mentioning that transfer

learning allows sharing the neural network knowledge

rather than the raw path losses data, which helps to

reduce the amount of data transmission over network and

mitigate network congestion.

The remainder of this paper is organized as follows. Sec-

tion II presents the framework of 5G-assisted Unmanned

Aerial Systems. Section III introduces the system model

and formulates the target problem. Section IV presents the

CNN-based GPS spoofing detector and the transfer learning

approach for the improvement of multi-edge servers GPS

spoofing detection efficiency. The performance evaluation of

the CNN and transfer learning is discussed in Section V.

Concluding remarks and some future work are presented in

Section VI.

II. 5G-ASSISTED UNMANNED AERIAL SYSTEMS

The envisioned 5G and beyond wireless communication

system is connected with UTM to support the ultra-reliable

and low-latency communication for beyond the visual line-

of-sight control of UAVs [23], [24]. In this vein, UTM can

access all services provided by the mobile network, such as

Mobile Positioning System (MPS) services [18]. With the aid

of MPS services, UTM can track the UAV through rough

position locations as well as check the validity of the position

information and telemetry data [16].

Fig. 1 shows the MEC-based 5G-assisted UAS high-level

architecture, which consists of the remote operator, the cloud

services, the core and transport networks, the edge servers, and

the cellular networks [23]. The remote operator can monitor

and interact with UAVs through the Operator Command and

Control Service (OCCS) provided by the cloud interfaces.

Other cloud services include the Supplementary Data Provider

Service (SDPS) to provide the meteorological data and other

information that are necessary for UAV flight planning, and

the UAS Traffic Management services (UTMS) to govern

all UAVs data and UAV related services including UAVs’

registrations and identification, UAVs’ flight plan and location,

airspace restrictions and rules [4]. Note that all the data are
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Fig. 1. A MEC-based 5G-assisted Unmanned Aerial System (UAS).

transmitted over the core and transport networks. In this work,

the edge servers, collocated with the cellular network’s BS, are

used to host the UFC services that are in charge of executing

the UAV mission, for examples monitoring and controlling

the UAV flight. The MEC-based 5G-assisted UAS aims at

leveraging 5G’s promised features in terms of ultra reliability

and low latency for the control and monitoring of UAV

flights, but it lacks network security considerations. GPS is the

main navigation and positioning system used in this system.

Although UTM can use the 3GPP’s MPS services to cross-

check the validity of UAVs’ GPS positions, it is not enough

to protect the system from GPS spoofing attacks because of

the low accuracy of the 3GPP MPS. Indeed, MPS provides

location verification services that can make sure that the UAV

is within the BS radius coverage area of about 30 meters to 80
meters [19]. As Fig. 1 shows, the MPS’s low accuracy gives

a chance to attackers that can design the spoofed trajectory

in order to lead UAVs into no-fly areas or trap them into

wrong destinations. It is worth noting that MPS can provide

better positioning services with higher accuracy using either

the trilateration methods requiring at least three BSs or the

radar techniques demanding multi-antennas [25].

In order to detect a well-designed spoofing trajectory with-

out additional hardware and with even one BS, we introduce

the CNN and transfer learning methods to the edge UFC for

GPS spoofing detection. In the next section, we describe our

proposed methods.

III. SYSTEM MODEL AND PROBLEM FORMULATION.

This section describes the network and communication

models considered in this study. It also mathematically defines

how the UFC detects GPS spoofing using the differences

between the theoretical path losses and the BS measured path

losses.

A. System Model

1) Network Model: As shown in Fig.1, we consider an edge

network scenario consisting of two base stations, BS i and BS

i+1, a victim UAV u, and a GPS spoofer. The GPS spoofer can

send fake GPS signals to the victim UAV. Let (xi, yi, hi) and

(xi+1, yi+1, hi+1) denote the location of the ith and (i+1)th

BS, respectively. Leaving out the GPS spoofing and GPS error,

u should be at time t at the planned way point pj . In the

presence of a GPS error, the reported location at time t is at

p
′

j , that is far away from pj with an error ǫ. If the GPS is

spoofed at time t, the UAV locates at p̃j that deviates from pj
with δ, where ǫ ≤ dE < δ and dE is the system’s tolerable

GPS margin error. However, the current MPS service may not

notice this because the UAV is in the planned BSs radius.

2) Communication Model: In this paper, we consider that

the channel model between UAV u and BS i or (i + 1)
consists of both Line-of-Sight (LoS) links and Non-Line-of-

Sight (NLoS) links. The theoretical path loss Liu between BS

i and UAV u is defined by 3GPP as in [17].

B. Problem Formulation

As Fig.1 shows, the GPS attacker can mislead the UAV to

deviate from its planned path without being detected by the

remote operator, and this is due to the wrong GSP positions

received by the UAV GPS receiver. In this vein, it is necessary

to use the properties of wireless communication links to cross-

check whether the UAV GPS position is spoofed or not.

According to [17], the UFC computes the theoretical path

loss Liu using the BS and UAV locations and obtains the

corresponding path loss Liu from the BS. Since the path loss

is theoretically affected by the distance between the BS and

UAV, the absolute difference ∆Liu, (∆Liu =
∣

∣Liu − Liu

∣

∣),

can indicate the deviation between p
′

j and p̃j . Hence, the

GPS spoofing detection problem is formulated as a hypothesis

testing in Eq. (1).

{

H0 : ∆Liu > T,

H1 : ∆Liu ≤ T,
(1)

where H0 represents that the GPS position is spoofed when

∆Liu is above the threshold T , while H1 means that there is

no GPS spoofing. It is worth noting that the path loss Liu is

varying with the environment changes, such as temperature,

humidity, cloud, and fog. Thus, the hypothesis testing in Eq.

(1) may not represent the real distance deviation between the

BS and the UAV. Besides, appropriate thresholds are important

to the hypothesis testing performance; a smaller threshold may

lead to a higher probability of false alarms, while a bigger
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Fig. 2. Convolution neural network for GPS spoofing detection.

threshold may result in missed detection. To overcome these

challenges, our previous work [21] uses statistical methods to

mitigate the environmental variance on path losses computa-

tion and introduces deep neural network based model to find

the apposite threshold for improving the detection accuracy.

However, statistical analysis and neural network training can

induced additional latency that may hinder the timely detection

of GPS spoofing attack in an UAV environment.

In the following part, we introduce a novel solution based on

Convolutional Neural Networks (CNN) and Transfer Learning

to enable an effective UAV position monitoring and GPS

spoofing detection on UFC. The CNN uses the convolution

layer to extract the deep features of the path losses and remove

environment impacts, and its fully-connected layers are used

to deal with the thresholds issues. Meanwhile, the transfer

learning method is leveraged to reduce the training time.

IV. TRANSFER LEARNING BASED GPS SPOOFING

DETECTION APPROACH.

A. Convolutional Neural Network

CNN has attracted a lot of attention in the past ten years,

especially in pattern recognition such as image classification

and voice recognition [26]. Fig.2 shows the structure of CNN

designed for GPS spoofing detection. It consists of four kinds

of layers, including convolution layer, max pooling layer,

flatten layer, and fully-connected layers. The convolution layer

is the core layer of CNN and contains a set of kernels and

learnable parameters for the training process. Note that the

size of kernels should be smaller than that of the input data.

The pooling layer is used to down sample the number of

parameters and reduce computation in the network, hence

controlling overfitting. The pooling layer is used together with

2 × 2 filters that curtail its inputs by 2 on each width and

height. The flatten layer is used to flatten the max pooling

layer and bridge to fully-connected layers. The fully-connected

layers carry out the final GPS spoofing decision based on the

difference between the theoretical path loss computed by UFC

and the corresponding path loss reported by the connected BS.

In Fig.2, the data processing is responsible for the grouping

of the path losses data and the reshaping of each group into

a grid pattern as required by the CNN model. Let L1
iu denote

the first grouped path losses differences computed by BS i; it

is given by

L1
iu =

{

∆L1
iu, ...,∆L

g
iu, ...,∆LG

iu

}

, (2)

where G is the length of each group, G > 0 and
√
G ∈

{1, 2, 3, ...}. It is noteworthy that the problems solved by

CNN should have spatially independent features [26]. In other

terms, CNN can only give the spoofing decision on each group

regardless of the spoofed positions in the group. In this vein,

we use a step s when choosing a new group, as shown in Fig.2.

Thus, the rth (r > 1) group starts at ∆L
1+(r−1)×s

iu and ends

at ∆L
G+(r−1)×s

iu . Furthermore, the size of group is reshaped

from (1×G) to (
√
G×

√
G) before inputs to the CNN.

Edge servers

UFCs

BS Edge servers

UFCs

BS + 1

UF Cs

Transfer

Train all Layers 

Update 

fully-connected layers 

Feature knowledge

Fig. 3. Transfer learning based GPS spoofing detection.

B. Transfer learning

The CNN is built on deep neural networks and requires a

lot of data to train the model parameters. To overcome this

limitation, transfer learning comes into play [27]. Transfer

learning is a representative and valid machine learning ap-

proach that allows training the new model with fewer data

by using the pre-trained model. Moreover, transfer learning

can help reducing the training time, thanks to the use of the

pre-trained model.

Fig.3 presents the transfer learning based GPS spoofing

detection for edge servers. BS i uses the path losses differences

data to train the model Mi on its edge server and then share

the knowledge of the model with the next edge server instead

of transmitting the raw data over the network. On one hand,

transfer learning can avoid network congestion by sharing the

knowledge of the data between the deep learning models. On

the other hand, the time required by BS i+ 1 for training the

new model Mi+1 can be greatly reduced because of the use

of the same convolution layers as Mi for feature extraction.

It is worth mentioning that the transfer learning procedure is

triggered at the same time as the UFC service migration [28],

[29].
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V. PERFORMANCE EVALUATION

A. Simulation Setup
The performance evaluation is conducted using a simulator

built with python 3.7 and Tensorflow 2.7. Python constructs

the simulation platform while Tensorflow builds the CNN and

transfer learning models. We consider two BSs located at

the 3D points (150, 0, 35) and (150, 300, 35) (all in meters),

respectively. A UAV starts at (150, 150, 150) and moves

towards a destination 100 meters away from the start point.

We consider a spoofing attacker who can lead the UAV to

the spoofed destination with 100 meters away from the start

point. A total of 16 potential destinations are evenly distributed

over a 3D space, including one real destination and 15 spoofed

destinations [21]. The communication models between the BSs

and the UAV are defined in [17] and the channel frequency is

set to 2.0 GHz.

The structure of the used CNN model is given in Fig.2,

including the input layer, hidden layers, and output layer. The

inputs fed into the CNN is a tensor with size
√
G×

√
G× 1,

where G is the number of elements in each group and
√
G is

between 5 and 30. The hidden layers comprise two identical

convolution layers for feature extraction having a 3×3 kernel,

one pooling layer for dimensionality reduction using a 2 × 2
kernel, followed by a flatten layer and 3 fully-connected layers

for GPS spoofing detection. To prevent overfitting, the dropout

layers with a dropout rate set to 0.1 are inserted after each layer

and early stopping with a patience of 20 is used. Moreover, all

layers use the optimizer RMSprop and the activation function

ReLU except the output layer which uses the softmax as

its activation function. We consider that the UAV’s GPS is

spoofed when δ is bigger than the tolerated GPS margin error

dE.

B. Performance Results

To assess the performance of the proposed CNN and transfer

learning models for GPS spoofing detection, we use accuracy

and the sparse categorical crossentropy as performance met-

rics. The evaluation of CNN-based GPS spoofing detector is

performed by varying the data processing step from 0.1 to

0.9 in G, the tolerated GPS margin error dE from 10 meters

to 45 meters and the reshaped group size
√
G from 5 to 30.

The performance measures illustrated in Fig. 4 and Fig. 5 are

obtained using 1.5 million data points with a validation split

of 0.3.

Fig. 4 shows the performance of the CNN for GPS spoofing

detection. The obtained results in Fig. 4(a) show that the

proposed CNN performs well with different steps for both

training and validation data, which demonstrates that the step

size has no impact on the detection accuracy. It is worth noting

that the higher accuracy and lower loss on the validation set

compared to the training set is due to the fact that dropout

layers are activated during the training but deactivated when

evaluating on the validation set [30]. It is observed from

Fig. 4(b) that the detection error increases as the tolerated

GPS margin error increases, because a bigger dE makes it

difficult to distinguish the trajectory deviation δ caused by the

GPS spoofing attack from the GPS error ǫ. Fig. 4(c) shows

that the more elements are in the group, the higher accuracy

and the lower loss are achieved. In fact, increasing the size

of the group allows providing more path losses data to the

CNN model, which helps in better extracting the deep features.

The training history and performance recording in Fig. 5 show

that transfer learning can effectively leverage the knowledge of

the pre-trained model to improve the detection accuracy while

greatly reducing the time spent on training the new model



by almost 60%. Indeed, the results depicted in Fig. 5(a) and

Fig. 5(b) show that the use of transfer learning has increased

the detection accuracy of the CNN model to above 88%,

achieving a gain of 5% compared to CNN. It is also observed

from Fig. 5(b) that transfer learning delivers better precision

and F1 score with a slight decrease in recall metric. Thus,

considering the cost-performance trade-off, transfer learning

has the upper hand compared to CNN, making it a promising

solution to effectively detect GPS spoofing at the edge.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the CNN and transfer learning meth-

ods for the detection of GPS spoofing on unmanned aerial

systems. The CNN model deployed on the edge server allows

verifying UAV locations by using the difference between the

base station theoretical and real-time path losses, where the

convolutional layers can extract the deep features from path

loss differences that are then used by fully-connected multi-

layers to detect GPS spoofing. In addition, the transfer learning

method is used to further decrease the CNN training time as

well as to increase the CNN detection accuracy. The simulation

results show the high effectiveness of our proposed method in

detecting spoofed GPS positions with a rate of above 88%
using transfer learning. In the future, we are planning to

evaluate the effectiveness of the proposed solution in a real-

world experimentation testbed comprising a UAV and several

5G BSs.
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