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Attention-based Reinforcement Learning for
Real-Time UAV Semantic Communication

Won Joon Yun, Byungju Lim, Soyi Jung, Young-Chai Ko, †Jihong Park, Joongheon Kim, and ‡Mehdi Bennis

Abstract—In this article, we study the problem of air-to-
ground ultra-reliable and low-latency communication (URLLC)
for a moving ground user. This is done by controlling multiple
unmanned aerial vehicles (UAVs) in real time while avoiding
inter-UAV collisions. To this end, we propose a novel multi-
agent deep reinforcement learning (MADRL) framework, coined
a graph attention exchange network (GAXNet). In GAXNet,
each UAV constructs an attention graph locally measuring the
level of attention to its neighboring UAVs, while exchanging the
attention weights with other UAVs so as to reduce the attention
mismatch between them. Simulation results corroborates that
GAXNet achieves up to 4.5x higher rewards during training.
At execution, without incurring inter-UAV collisions, GAXNet
achieves 6.5x lower latency with the target 0.0000001 error rate,
compared to a state-of-the-art baseline framework.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) can provision agile and
mobile network infrastructure [1], [2], and enable ultra-reliable
and low-latency communication (URLLC) even under time-
varying environments and tasks, such as moving target sites in
disaster scenes and transformable assembly lines in smart fac-
tories, to mention a few. As opposed to the stationary and fixed
nature of 5G URLLC, such non-terrestrial URLLC systems
in beyond 5G are time-varying and physically reconfigured,
mandating to co-design control and communication in real
time [3].

To this end, machine intelligence is envisaged to play
a crucial role. Without any central coordination, intelligent
agents can promptly react to local environmental changes,
thereby reducing latency while saving radio resources [4]. To
imbue the intelligence into multiple interactive agents, multi-
agent deep reinforcement learning (MADRL) is a promising
solution [5], [6], wherein each agent runs deep learning so
as to maximize its expected long-term reward by carrying
out actions for its given state observations, i.e., decision-
makings on state-action policies. Depending on how to train
and execute the deep learning models, MADRL is broadly
categorized into three types as elaborated next.

First, centralized MADRL is the case wherein all agents send
their observations to a central entity to build a global policy
determining the actions of the entire agents. MADDPG [5],
CommNet [7], and G2ANet [6] fall in this category. These
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algorithms presumably achieve the highest reward, albeit at
the cost of frequently exchanging a non-negligible amount
of information on the states, actions, and rewards, which
are thus far from meeting stringent latency constraints in
URLLC. Second, fully decentralized MADRL is the type in
which every agent trains and executes its policy without
exchanging any information with other entities. These include
IQL [8] and I-DQN [9], which however may not guarantee
reliability due to the lack of understanding the interactions
among agents. Lastly, centralized training and decentralized
execution (CTDE) MARL lies between the aforementioned
two extremes. Following the actor-critic architecture [10], an
actor model stored at each agent determines its policy for
both training and execution, while a centralized critic model
evaluates the reward of all agents only during training.

In this work we aspire to build a novel CTDE MADRL
framework for UAV aided beyond-5G URLLC, as visualized
in Fig. 1. To this end, we first delve into the opportunities
and limitations of the existing CTDE MARL frameworks. In
Differentiable Inter-Agent Learning (DIAL) [11], while tak-
ing actions, the agents exchange clean-slate messages passed
through their actor models. During training, these messages are
progressively turned into meaningful representations for better
inter-agent collaboration, hereafter referred to as semantic rep-
resentations (SRs), which is an analog of children’s developing
language-based cues as they grow. These emergent SRs are
effective in achieving higher rewards at execution, yet its
starting from clean-slate messages is too inefficient to outper-
form other state-of-the-art CTDE frameworks. Alternatively,
during training, the agents in QMIX [12] and CSGA [13]
exchange global states and local graph attention, respectively,
thereby achieving competitive performance. However, they do
not share any local information during execution, so cannot
reach the full potential of CTDE MADRL.

By integrating DIAL’s emergent SR learning into graph
attentive CSGA, in this work we propose a novel CTDE
MADRL framework, termed a graph attention exchange ne-
towrk (GAXNet). In CSGA, each agent n at every time t
locally constructs a star-topological graph as shown in Fig. 2a.
The edge weight wtn,m increases with the level of attention to
the agent m when the agent n takes its action. For mutually
symmetric agent interactions (e.g., collision, repulsion, etc.),
the rationale being what I attend to you should ideally be the
same as what you attend to me, i.e., wtn,m = wtm,n. This
condition is often violated in CSGA due to its local attention
graph construction. Inspired by DIAL, we overcome such
inter-agent attention mismatch via developing and exchanging
emergent SRs.

To be precise, the agent n runs an SR encoder whose
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Fig. 1. A schematic illustration of the proposed graph attention exchange network (GAXNet) and its application to a multi-UAV emergency network.

input is the agent n’s current attention to the agent m and
its counterpart attention to the agent n from the agent m
in the previous time slot, resulting in the output SR w̄tn,m,

i.e., w̄tn,m
SR← {wtn,m, w̄t−1

n,m} as illustrated in Fig. 2b. This
SR w̄tn,m is exchanged across agents for constructing SR
w̄t+1
n,m in the next time slot. In contrast to DIAL that ini-

tially exchanges meaningless messages, GAXNet exchanges
semantically meaningful attention weights from the beginning,
promoting better SR emergence. Consequently, the agent n
determines its action at time t based on the emergent SR w̄tn,m,
as opposed to wtn,m in CSGA, thereby reflecting the semantic
importance of the attention at both agent sides, aiming at
ensuring ŵtn,m ≈ ŵtm,n for all interacting agents.

To show the effectiveness of GAXNet in UAV aided
beyond-5G URLLC, we study a scenario where a moving
ground URLLC user is supported at least by one of the multi-
ple fixed-wing UAVs. These UAVs aim to hover within a range
guaranteeing URLLC requirements, referred to as URLLC
range, while avoiding inter-UAV collisions. Simulations val-
idate that compared to QMIX [12], the proposed GAXNet
significantly reduces inter-UAV collision occurrences, and
achieves by up to 4.5x higher reward for 5, 000 epochs during
training, where the reward is increased when the agent satisfies
the latency and reliability requirements, and is penalized when
an inter-UAV collision occurs. At execution, GAXNet achieves
up to 6.5x lower latency with the target 10−7 error rate,
compared to QMIX that fails to guarantee the target error rate.

II. PRELIMINARIES: MADRL AND SELF ATTENTION

GAXNet relies on two key principles, CTDE MADRL
and the self-attention mechanism, which are described in the
following subsections.

A. Self-Attention

Let’s denote the input as X = {x1, · · · ,xk, · · · ,xK}. The
input goes through the encoding process that converts into a
trainable form. The process appears in the form of a linear
combination, and the formula is summarized:

Henc = W enc · X + benc, (1)

where W enc and benc stand for the weight and bias of the
encoding layer, respectively. Self-attention is the process of
determining the coefficient between inputs using scale-dot
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(a) Local attention graph construction at the agent n.
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(b) SR encoding at the agents n and m.

Fig. 2. The operations of GAXNet: (a) local attention graph construction at
the agent n and (b) semantic representation (SR) encoding at the agents n
and m for 3 consecutive time slots.

production [14]. It consists of query layer, key layer and,
value layer. Note that query layer, key layer and, value layer
are denoted as lq , lk, lv . Self-attention converts the received
hidden variable into query, key, and value. This process can
be expressed as follows:

Q = lq(Henc) = {q1, · · · , qk, · · · , qK} , (2)

K = lk(Henc) = {k1, · · · ,kk, · · · ,kK} , (3)
V = lv(Henc) = {v1, · · · ,vk, · · · ,vK} , (4)

where qk,kk, and vk stand for transformer of query, key, and
value of the input xk. By taking dot product of query qk and
other input keys K−k , ∪Kk′ 6=k{kk′}, the key component of
other input information is obtained. After that, we multiply by
the k-th ’s value, and the weighted message matrix is obtained.
Formally, W is given as:

W = Attention(Q,K−1,V) =
Q ·K−1 · V√

K
, (5)

where W is K-by-(K − 1) matrix which represents the
weights of adjacency matrix,

√
K is a scaling factor that

prevents the attention value diverge and note that K− ,
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{K−1, · · · ,K−n, · · · ,K−N}.

B. Centralized Training and Decentralized Execution MADRL

In this subsection, we introduces CTDE MADRL in briefly.
CTDE MADRL is mathematically modeled with Dec-POMDP.
Dec-POMDP is a stochastic decision making model that is to
consider the uncertainty between agents [15]. Dec-POMDP is
defined as a tuple G = 〈S,A, P, r, Z,O, n, γ〉. In environment,
the finite set of agents is denoted as U =

{
u1, u2, · · · , uN

}
,

where N ∈ N1, respectively. The global state of the environ-
ment is defined as s ∈ S. The action of n-th agent is defined as
an ∈ A. Since all agents can observe local information z ∈ Z,
the observation function is defined as O(s, u) : S × U → Z.

The policy of the agent πn takes the observation-action
history τn ∈ T and decides action as πn(an|τn) : T × A. In
addition, the joint action of all agents is a ∈ A. The state tran-
sition function is denoted as P (s′, s,a) : S ×A× S → [0, 1].
All agents obtain same reward r(s,a) : S×A→ R. The joint
action value function at time t is defined as follows:

Qπ(st,at) = E
[∑∞

i=t+1
γi−t−1ri | st,at

]
, (6)

where π and γ ∈ [0, 1) stand for joint policy and discount
factor, respectively.

The objective of MADRL system is to maximize the cumu-
lative reward. In order to maximize cumulative reward under
the consideration of centralized training and decentralized
execution and according to [12], the joint action value function
is decomposed by agent’s individual utility function. The
optimal joint action value function is as follows:

arg max
a

Qπ(τ ,a, s; θ) = [· · · , arg max
an

Qn(τn, an; θn), · · · ],
(7)

where θ and θn are the parameters of π and πn, respectively.
To summarize CTDE, the joint action value function leads
all agents’ optimal utility function, all agents determine their
actions via their policies.

III. UAV AUTOMATION FRAMEWORK FOR URLLC

A. Network and Channel Model

As illustrated in Fig. 1, the network under study consists of a
set U , {u1, · · · , un, · · · , uN} of N fixed-wing UAV agents
and a moving target location c. For simplicity, we hereafter
focus only on UAV-to-ground channels, while assuming the
inter-UAV communications are always successful with negligi-
ble delays. This is not a strong assumption in our experimental
settings with N = 4 (see Sec. IV) wherein the payload size
to be received during a unit time slot is only 576 bits.

According to [16], the air-to-ground mean path loss for xy-
direction distance d and z-direction distance h, is given as:

PL(d, h) =
ηLoS − ηNLoS

1 + α · exp
(
−β( 180

π tan−1
(
h
d

)
− α)

) (8)

+ 10log10(h2 + d2) + 20 ∗ log10

(
4πfc
c

)
+ ηNLoS ,

where ηLoS and ηNLoS stand for additional pathloss of LoS
and NLoS. Also, α and β represent environmental constant,

respectively. Then, Signal-to-noise ratio (SNR) can be calcu-
lated as follows:

SNR(d, h) =
Pt
Pn
∗ 10−PL/10, (9)

where Pt, Pn, and W stand for transmit power, noise power,
and bandwidth of A2G, respectively. According to [17], the
error rate is obtained as follows:

ε =
1√
2π

∫ ∞
f(SNR)

e−
t2

2 dt = Qf (f(SNR)), (10)

where Qf (·) is the Q-function and f(SNR) is given by
f(SNR) =

√
W ·Tmax

1−(1+SNR)−2

(
ln(1 + SNR)− Rs ln 2

W

)
, and

Tmax = LB/W and Rs represent the maximum transmission
time and achievable throughput, respectively. The achievable
throughput Rs can be calculated as follows:

Rs ' ln(1 + SNR)− 1− (1 + SNR)−2

LB
Qf (ε0), (11)

where ε0 is the required reliability.

B. MADRL Model

Next, we introduce the multi-agent reinforcement learning
formulation (e.g., state, action, and reward).

1) State space: The state space of our proposed UAV
automation framework of UAVs/target location information,
and relative position information with other UAVs/targets.
The position of un at time t is defined as lnt , where ∀ln =
(xnt , y

n
t ), n ∈ [1, N ]. In addition, ln,ct = (xn,ct , yn,ct ) and dn,ct

denote the relative positions and distance for the un with c,
respectively. The relative position and distance of un and um,
m ∈ [1, N ]\n is denoted as ln,mt and dn,mt . In addition,
when un is observable of um, en,mt = 1, and en,mt = 0
when unobservable. The observation of un at t consists of
position information, relative position information and distance
information about the target and other agents as follows:

ont =

1⋃
i=0

{lnt−i, l
n,c
t−i, d

n,c
t−i}︸ ︷︷ ︸

own

∪
N⋃

m 6=n

{ln,mt , dn,mt , en,mt }︸ ︷︷ ︸
other agents

,

Note that when un is not observable (i.e., en,mt = 0),
ln,mt , dn,mt , en,mt are zero. The true state information st in
the environment represents the observation information of all
agents and the absolute position information of the target in
time t and t− 1.

st =

1⋃
i=0

{
N⋃
n=1

{
ont−i

}
∪ lct−i

}
, (12)

where lct stands for the absolute position of the target.
2) Action space: The action space of the UAV automation

framework consists of 8 discrete actions, which is defined as
A , {(x+ν, y), (x−ν, y), (x, y+ν), (x, y−ν), (x+ 1√

2
ν, y+

1√
2
ν), (x − ν, y + 1√

2
ν), (x + 1√

2
ν, y − 1√

2
ν), (x − 1√

2
ν, y −

1√
2
ν)}, where ν is the speed of UAV. At time t, the action

of un is denoted as ant ∈ A, where the joint action is at =
{a1
t , · · · , ant , · · · , aNt }.
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3) Reward space: The reward space is designed to make
UAV agent quickly reach the target area and prevent collision.
For un to guarantee the URLLC requirements, un should reach
to the target quickly, the URLLC reliability reward is

rn,ct =


1, if. dn,ct < dc,

0.05, if. dc ≤ dn,ct < dn,ct−1

−0.01, otherwise.
(13)

where dc represents the URLLC range for URLLC reliability,
respectively. If dn,ct is less than dc, the error rate of un is
less than the required error rate for URLLC and vice versa. In
addition, the collision reward for minimizing collision between
agents is presented as follows:

ri,n,mt =

{
−0.5, if. dn,mt < di,

0, otherwise.
(14)

When the distance between un and um is less than di, collision
occurs and vice versa.

According to (13) and (14), the final reward at time t is as
follows:

rt =
∑N

n=1
rn,ct︸ ︷︷ ︸

UAV-to-ground URLLC

+
∑N

n=1

∑N

m 6=n
ri,n,mt︸ ︷︷ ︸

Inter-UAV collision

(15)

Note that all agents have a common reward.

C. Policy Updates Using Graph Attention and SR Encoding

In this section, we introduce how to configure policies to
generate and transfer semantic messages. Since the agent’s
observation consists of its own unique information and par-
tial information of other agents in Dec-POMDP, the agent
information can be operated by categorization of the agent’s
observation into the agent’s unique information and the other
agent’s information.
ont is encoded by taking input in the form taken by the

flatten on the out characteristic encoding layer, while partial
information about other agents is stacked to encode in the
other agents encoding layer as follows:

hon = fenc,nown (Flatten(ot)), (16)

Ha
n = fenc,noth (Stack(ooth,n,m)),∀m ∈ [1, N ]\n, (17)

where, ooth,n,mt , {lnt , l
n,d
t , ln,mt , dn,ct , dn,mt , en,mt },

and fenc,nown , fenc,noth and ooth,n,mt stand for n-th agent’s own
characteristics encoding layer, other agent’s characteristics
encoding layer, and observation about um of un, respectively.
In addition, Ha

n is a set of vector, which represents to
Ha
n = ∪Nm6=n{ham, }. hon, and ham have a vector size of 1×J1,

and Ha
n has a size of N − 1 × J1, where J1 stands for the

output dimension of encoding layer.
Fig. 2(a) illustrates the method that utilizes self-attention

using hon and Ha
n which are provided via (16)–(17).

For Henc in Sec. II-A, Henc is redefined as Henc =
{ha1 , · · · , han−1, h

o
n, h

a
n+1, · · · , haN}. In (2)–(4), lq , lk, lv are

replaced by the query layer lqn, key layer lkn, and value layer
lvn of the un. Therefore the query, key, and value can be
obtained through qn = lqn(hon), kn = lkn(Ha

n), vn = lvn(Ha
n).

The size of each query, key, and value represents 1 × J2,
N − 1 × J2, and N − 1 × J2. J2 represents the attention
dimension, respectively. The weight of semantic representation
for other agents can be obtained by taking (5), which is
denoted as Wn = {wn,1, · · ·wn,n−1, wn,n+1, · · · , wn,N}.

Let’s assume the exchange of the semantic weights wn,m
and wm,n of two agents un and um for semantic commu-
nication. Fig. 2(b) shows the overall process of semantic
communication between un and um.

The weight information wn,m which is generated by un, is
the semantic weight created from the complete information of
the un and the partial information of the um and vice versa.
At time t, un receives the wt−1

m,n which is created by the um in
the previous step t−1, through the semantic channel. The syn-
thesized weight information is created by aggregating wn,m,
and wm,n through the SR encoder. The synthesized weight is
denoted as w̄tn,m. The process of semantic communication is
as follows:

w̄tn,m =

{
RNNn(wtn,m, w̄

t−1
m,n), if. en,mt = 1

RNNn(wtn,m,~0), otherwise.
(18)

where RNNn and ~0 stand for SR encoder, and N − 1 × 1
size zero vector, respectively. GRUCell is used for SR en-
coder [18]. Note that un obtains the semantic weight wm,n
from all observable agents excluding itself (i.e., en,mt = 1).
Finally, πn determines Qn(τnt , a

n
t ; θn) which indicates the

utility function of un, utilizing ho,nt and W̄n
t .

D. Centralized Training and Decentralized Execution

In this subsection, we introduce a CTDE method for UAV
aided URLLC systems, consisting of N decentralized actors
and one centralized critic denoted as Φ(θ). QMIX architecture
is adopted as the centralized critic [12]. The utility function of
all agents, and environment true state are the input of Φ(θ). In
addition, the observation and action of all agents, current state,
reward, the next observation of all agents, and the next state are
stored as tuple b = 〈O,S,A, R,O′, S′〉 to the replay buffer.
In training phase, B = {b1, · · · , bi, · · · , bI} are sampled from
the replay buffer. B is training data to train the parameters
of actors and critic. Temporal difference error is used as loss
function [19], i.e.,

L(θ) =
∑
b∈B

[
r + γmax

a
QΨ(τ ′,a′, s′; θ−)−QΦ(τ ,a, s; θ)

]2
,

(19)
where Φ(θ−) stands for target network. The agent is trained
with the direction to maximize the joint-action value function,
and if the agent can communicate with others, it can reinforce
cooperation through semantic communications.

IV. PERFORMANCE EVALUATION

In order to verify the potential of the proposed approach, the
environment is configured as shown in Fig. 3. The environment
has a 2D 3, 750m × 3, 750m grid. 4 UAV agents are located in
the grid (i.e., N = 4), a server is also located in the center of
the grid, and users are also configured for moving around the
server. The experiment is devised by comparing the GAXNet
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TABLE I
THE PARAMETERS OF ENVIRONMENT AND TRAINING.

Simulation Parameter Value

UAV speed (ν) 45 km/h
Target speed 36 km/h
URLLC range (dc) 938m
Collision distance (di) 563m
Carrier frequency (fgc ) 2GHz
Bandwidth (W ) 20MHz
Payload size (LB) 576 bits
Transmit Power (Pt) 46 dBm
Noise Power (Pn) −99 dBm
Time step per episode 20

Training Parameter Value

Default number of nodes (J1) 64
Number of node in attention layers (J2) 32
epsilon-greedy constant (δ) 0.3
Annealing step 1, 000
Training iterations 5, 000
Batch size (I) 64
Learning rate of GAXNet 8× 10−4

Learning rate of QMIX 1× 10−4

with QMIX where the QMIX is the state of the art of CTDE.
The experiment was conducted using Python 3.6 and Pytorch.
In addition, Table I presented for specific experimental param-
eters. Moreover we set α = 9.61, β = 0.16, ηLoS = 1 [dB],
and ηNLoS = 20 [dB]. For fixed LB , the transmission time is
given as Tmax and it can be assumed that Tmax is less than
the latency requirements. Actually, Tmax can be calculated
as 28.8 µs given LB = 576 bits and W = 20MHz and
it is within the 5G NR transmit latency [20]. To meet the
reliability requirements, ε ≤ ε0 needs to be satisfied. By (10)
and the property of monotonic increasing function f(SNR),
the required SNR is

SNR ≥ f−1(Q−1
f (ε0)), (20)

where f−1(·) and Q−1
f (·) is the inverse function of f(·) and

Qf (·), respectively. Due to (9), (20) can be rewritten as

PL(d, h) ≤ −10 log10

(
Pn
Pt
f−1

(
Q−1
f (ε0)

))
. (21)

If the equality holds in (21) when d = d∗, the reliability
requirement is always satisfied with d ≤ d∗ because the
path loss in (8) monotonically increases with d. Therefore,
we can obtain the URLLC range dc to satisfy the reliability
requirements, ε0, using (21). Fig. 4 shows the relationship
between reward distance, required latency, and required error
rate for URLLC via (20)–(21). For simulation, we adopt the
required error rate as 10−7, the required latency as 39µs, and
the URLLC range as 938m for URLLC reliability.

In reinforcement learning, we observe reward convergences,
collisions, and target arrivals for two algorithm, i.e., GAXNet
and QMIX-based algorithms. Fig. 5 shows the sum of total
reward. As shown in Fig. 5, the reward of GAXNet converges
around to 26 at 3, 100 iterations. However, the reward of
QMIX fluctuates between −3 and 11. Fig. 6 represents the
visual trajectory dynamics of UAV agents. Fig. 6(a) illustrates
the UAV trajectory path planning with QMIX-based algorithm
whereas Fig. 6(b) visually presents the UAV trajectory dy-

Moving 
Direction

UAV Agent

User Trajectory

3
,7
5
0
m

3,750m

Fig. 3. The simulation environment

Fig. 4. A2G network specification for URLLC: The relationship between
three components; reward distance, error rate, and latency.

namics with GAXNet. As shown in Fig. 6(a), all agents do
not trace the target, and there are collisions between agents.
However, all agents using our purposed algorithm chase the
target with out any collision as shown in Fig. 6(b). In addition,
collision between agents with GAXNet does not occur.

In terms of URLLC, Fig. 7 shows the reliability of both
latency and error rate. The GAXNet always satisfy the latency
reliability (39µs) and error rate reliability (10−7). However,
QMIX only satisfy at the time slots [3; 4]. During the rest of
time slots, the QMIX-based UAV agents communicate under
high latencies and error rates. This implies that QMIX-based
UAV agents may not be able to guarantee URLLC reliability.

Therefore GAXNet outperforms the baseline regarding the
objectives of the system.

We investigate the differences between untrained GAXNet
without exchanging semantic weights, and trained GAXNet
with exchanging. Fig. 8 represents the weighted adjacency
matrix of 4 agents. In the case of GAXNet without exchanging
semantic weights, the agents which have the maximum differ-
ence between w̄tn,m and wt−1

m,n are u2 and u4. The maximum
difference is 0.18. Calculating the mean squared error (MSE)
of all anti-diagonal elements (i.e., w̄tn,m and wt−1

m,n), the result
is 0.043. On the other hand, in the case of GAXNet with
exchange, the maximum difference of two weights is 0.07, and
MSE is 0.014. There is correlation of ooth,n,m with ooth,m,n,
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Fig. 5. The learning curve of two algorithms.
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(a) QMIX. (b) GAXNet.

Fig. 6. The trajectory of UAV agents in 10 time slots. The dotted circle, star
marker, bold line represent the target area, collision area, the trajectory of
UAV agents, respectively.

(a) Latency. (b) Error rate.

Fig. 7. Comparison of two algorithms in respect to URLLC reliability in 10
time slots.

(a) GAXNet without exchange. (b) GAXNet with exchange.

Fig. 8. Semantic attention weights.

because the relative position of (un, um) has a relationship
(e.g., ln,mt = −lm,nt ) and the distance and connectivity
information between un and um are mutually same (e.g.,
dn,mt = dm,nt and en,mt = em,nt ). For these reason, the atten-
tion weight between two agents (e.g., wtn,m and wtm,n should
be similar. In other words, the weighted adjacency matrix as
shown in Fig. 8 should be diagonal. As shown in Fig. 8(a)/(b),
GAXNet with exchange makes weighted adjacency matrix
more symmetric than GAXNet without exchange. Because the
SR encoder constructs symmetric matrix, we conclude that SR
encoder is able to build semantic representation, successfully.

V. CONCLUSION

In this paper, we developed a novel CTDE MADRL
framework for UAV aided URLLC. The proposed solution,
GAXNet, was shown to achieve lower latency with higher re-
liability compared to a state-of-the-art CTDE method, QMIX.
To generalize and improve and extend GAXNet, incorporating
realistic inter-UAV channels as well as considering a continu-
ous UAV control action space could be interesting topics for
future research.
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