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Abstract—At the millimeter wave and higher frequency bands
the radio channel can often be expressed as a linear combination
of a small number of scattering clusters. Hence, the number of
angles of arrivals with significant components is limited. Due to
severe path losses, the receiver must be equipped with an antenna
array capable of forming narrow beams. The channel estimation
with narrow beams is challenging. Algorithms developed for
sparse estimation problems can be utilized to overcome the
problem. In this paper, the performance and computational
complexity of channel estimation methods for millimeter and
terahertz frequency bands are compared. The methods consid-
ered are based on Bayesian learning with the relevance vector
machine, orthogonal matching pursuit and the least absolute
shrinkage and selection operator optimization. The conventional
least squares channel estimator is used as a reference method.
The complexity of the least squares estimator is found to be the
smallest. The estimation accuracy of the Bayesian learning based
estimator is the best but with increased computational complexity.

Index Terms—Millimeter wave communications, orthogonal
matching pursuit, LASSO, Bayesian learning.

I. INTRODUCTION

The abundant spectrum resources at the millimeter and
terahertz wave bands are considered to be one of the core
capacity increase enablers for the Fifth Generation (5G) and
beyond 5G wireless networks. The small wave lengths of
signals at the frequency bands from tens of gigahertz up to
terahertz region allows the realization of antenna arrays with
a large number of antenna elements making it feasible to
realize high beamforming gains. However, conventional fully
digital beamforming architectures cannot be directly applied
in millimeter wave communications due to the radio frequency
(RF) hardware constraints. Therefore, two-stage digital-analog
beamforming architectures (hybrid beamforming) have been
proposed [1]. They allow the use of large antenna arrays with
a limited number of RF chains.

The estimation of the channel state information (CSI) at
at the millimeter and terahertz wave bands is challenging
due to narrow beam widths. The least absolute shrinkage
and selection operator (LASSO) optimization based channel
estimator for millimeter wave hybrid receiver was proposed in
[2] and the usage of the orthogonal matching pursuit (OMP)
algorithm for the channel estimation was proposed in [3].
Bayesian learning methods has been described in [4] and
applied in channel estimation in [5].

In this paper, the performance and complexity of the sparse
channel estimation algorithms based on the LASSO, sparse
Bayesian learning with Relevance Vector Machine (RVM)
and OMP technique are compared. A least squares channel
estimator (LS) is used as a reference method.

In theoretical algorithm analysis, the computational com-
plexity is often given using the big O notation. The big O
notation is useful when comparing different algorithm classes
but it does not allow the feasibility study of the algorithms. At
the other extreme, computational complexity can be measured
with the number of logic ports and other hardware compo-
nents needed for the implementation. In order to have a fair
comparison in this case, the implementation technology needs
to be defined and the same technology must be used for all
the algorithms that are being compared. Between these two
extremes, the complexity of the algorithms can be measured
with the number of operations needed to complete the task
the algorithms are designed for. Quite often the complexity is
given as the number of elementary mathematical operations
(multiplications and additions) and the same metric is used
also in this paper. The performance metric for the channel
estimation accuracy is the averaged normalized squared error.

The rest of the paper is organized as follows. The system
model is described in Section II, algorithms are described
in Section III and procedure for the complexity estimation
is explained in Section IV. Numerical results are given in
Section V and finally, conclusions are presented in Section VI.

II. SYSTEM MODEL

The system model is the same as that in [5]. The channel
between the antenna arrays at the transmitter and receiver is
modeled as

L
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where sg(6;) and st(¢;) are the array propagation vectors for
transmit directions 6; and receive directions ¢;, respectively
and h; are the complex gains of paths .

The channel estimator input is

y= (V'S*(1) @ W/S(Or)h+n=Th+n (2

where V and W are the precoding and combining matrices,
respectively. The channel vector h is a vector form of the



channel matrix H. Matrices S(®r) and S(©r) consist of
steering vector used to scan the transmit and receive directions,
respectively.

III. CHANNEL ESTIMATION ALGORITHMS

A. Bayesian Learning with Relevance Vector Machine

The RVM algorithm is originally published in [6] and it
can be downloaded from http.//www.miketipping.com /sparse-
bayes.htm#software. It was applied for channel estimation in
[5]. The RVM based channel estimator is given as Algorithm 1.
At each iteration one column of the matrix is added to the
model, removed from the model or the model is used to
update the channel estimate. The selection is done based on
the squared absolute value on ¢; defined as

¢ = ¥,,CTLy, (3)
where U is the m™ column vector of the matrix ¥ and C_,,, =
01 (62 = noise variance).

The details of the RVM based channel estimation can be

found from [5].

Algorithm 1: RVM

~

Result: Channel estimate h
Initialize with the first column of ¥
1 = 0 while No convergence and i < i,,4, do
i=1+1
Select a candidate column vector 1; from ¥
if |q;|? > s; and v; already in model then
| re-estimate
end
if |q;|? > s; and 1; not in model then
| add
end
if |¢;|> < s; and 1; in model then
| delete
end

end

B. LASSO Algorithm

The LASSO based channel estimation algorithm (Algo-
rithm 2) is the same that was used in [5]. The vector v in
Algorithm 2 is

v= : , 4
|25 [24€

2F is the i element of the vector z at iteration k and p is the
inverse of the signal-to-noise ratio of the received signal. The
parameter ¢ is used to provide stability [7].

Algorithm 2: LASSO

Result: h = h*!

Initialize:

Ul = (o' 4 pI)!

d=woly

20 =

=1

for k=1 to K do
b+ = U~ (d + 0.5p2" + 0.5u)
ZFHl — R gk p—lv
uktl = uk 4zt — pht?

end

C. Orthogonal Matching Pursuit Algorithm

The OMP based channel estimators have been used to
estimate channels with sparse channel impulse response [8] as
well as to estimate sparse channels in hybrid MIMO systems
[3]. Different implementations of the OMP algorithms have
been described in [9]. The OMP algorithm used for channel
estimation is given as (Algorithm 3). It is used to sequentially
identify the rows of the matrix ¥ which correspond to the
directions of the received signal.

Algorithm 3: OMP
Result: Channel estimate

Initialize:
=0
S1 =Y

for j=1 to N do

i = argmax |\Ilej\
if i ¢ 7 then
T =[T;i]
W(:,i)"
& = SEHmenY
sjr1 =55 — W(:,7)g;(7)
end
end

Solve h from y =~ ¥(Z, :)h using, e.g., LS estimator.

D. Least Squares Estimation

The LS estimate is calculated using the matrix ¥ and vector
y as
his = (@) 1wy 5)

Since the matrix ¥ does not depend on the input signal and
its size is constant, it can be calculated off-line and stored in
the memory of the device. Hence, the LS estimation consists
only of a matrix-vector multiplication.

IV. ESTIMATION ACCURACY AND COMPLEXITY
ESTIMATION

The accuracy of the channel estimator is measured with the
averaged normalized estimation error in decibel scale as
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where h and h are the channel estimate and the true channel,
respectively.

The number of iterations and the time spent at add, re-
estimate and delete phases of RVM changes randomly. This
means that also the number of operations changes from one
estimation run to the other. The size of the set Z and hence
the size of the LS problem in OMP is also random. In order to
assess the computational complexity of these two algorithms,
the number of complex multiplications and additions are
counted during the simulations. Both algorithms use also other
operations than the complex multiplications and additions and
some of those operations are expensive from the complexity
point of view. However, since the number of those complex
operations is much smaller than the number of complex
multiplications and additions, the complexity assessment of
RVM is based only on the sum of the number of complex
multiplications and additions. The OMP algorithm requires
also the computation of a LS solution. The LS solution is
calculated using the singular value decomposition (SVD). The
complexity of SVD as the number of operations is given as
[10]

Csvp = 4m? + 8mn? + 9n?, (7)

where n and m are the number of columns and and rows of the
matrix in the LS problem, respectively. The total complexity
of the OMP algorithm is calculated as the sum of the number
of complex multiplications and additions and Cgyp.

The complexity of the LASSO algorithm depends on the
sizes of the matrix ¥ and vector y and the number of iterations
K. When these are fixed, the number of operations is constant
from one estimation run to the other. The calculation of U™ is
the most computationally intensive part of the LASSO based
algorithm since the matrix size to be inverted is large. The
matrix inversion is implemented using SVD as in the OMP
case. If the SNR of the input signal is known before the
channel estimation, the matrix inversion can be calculated
before the estimation. In this case the the complexity of
the LASSO is reduced considerably. The complexity of the
LASSO with and without matrix inversion are counted during
simulations.

Since matrix W and hence its pseudo-inverse does not
change during the operation, only matrix-vector multiplication
is needed in the LS estimation (5).

V. NUMERICAL RESULTS

The simulated cases are listed in Table I. The N,, row
shows the number of antenna elements in the antenna array,
Clusters row shows the number of reflecting clusters in the
channel between the transmitter and receiver, the OMP row
gives the number of iterations N in Algorithm 3, the LASSO
row gives the number of iterations K used in the Algorithm 2
and RVM row gives the maximum number of iterations in

TABLE I
CASE DEFINITION.

Case 1 | Case 2 | Case 3 | Case 4
Nant 8 8 8 8
Clusters 12 6 2 2
OMP 20 20 20 6
LASSO 5 5 5 5
RVM 17 17 17 6

Algorithm 1. The size of the matrix ¥ and hence the compu-
tational complexity of the estimation depends on the number
of antennas. In a 8 antenna element case the size of the matrix
W is 64 x 256 and the length of the estimated channel vector
h is 64.

In the Case 1, the channel consists of relatively high
number of reflection clusters. The parameters in Table I are
chosen so that the accuracy of the estimators is maximized,
i.e., increasing the complexity from these values does not
improve the estimation accuracy. These values have been
found experimentally by simulations. The estimation accuracy
of the algorithms in Case 1 are shown in Fig 1. In Cases 2
and 3, the number of reflecting clusters in the channel model
is reduced to 6 and 2, respectively. The parameters controlling
the complexity of the algorithms are the same as in Case 1.
Estimation accuracy in Cases 2 and 3 are shown in Figs. 2
and 3. In Case 4, the number of clusters is kept the same as
in Case 3 but the parameters controlling the complexity of
OMP and RVM are minimized, i.e., if the parameter values
were smaller the estimation accuracy would be impaired or
the estimation would fail completely. The estimation accuracy
of the algorithms in Case 4 is shown in Fig. 4. The number
of iterations for the LASSO algorithm is 5 in all the cases.
Increasing the value from this did not improve the estimation
accuracy significantly in any of the cases.

When the estimator parameters (OMP, LASSO, RVM) in
Table I are kept the same (Cases 1-3), the estimation accuracy
of the algorithms does not change regardless the number of
reflecting clusters in the channel. Only exception is the OMP
algorithm whose performance at SNR values above 5 dB in
Case 1 is worse than in Cases 2 and 3. When the complexity
parameter values for the OMP and RVM algorithms are
selected based on the number of clusters in Case 4, their
performance is improving. Especially, the performance of the
OMP algorithm is approaching the performance of the RVM,
which has the best performance in all the cases. The average
complexities of the algorithms in Cases 1-4 are given in
Table II. The complexity of the LS estimator is fixed and
depends only on the size of matrix ¥ and the length of vector
y. The complexity of the LASSO algorithm depends also on
the number of iterations K. But since K is the same in all
the case, the complexity of LASSO is also constant. As can
be seen in Table II, the inversion of the matrix U is increases
the complexity of LASSO significantly. Since the number of
operations in the OMP and LASSO algorithms is random, the
mean and standard deviation (std) values in all the cases at
different SNR values are given in Table III. The std values 0



TABLE II
COMPUTATIONAL COMPLEXITY.

Case 1 Case 2 Case 3 Case 4

OMP 6.7-10° | 6.9-10° | 7.0-10° | 1.6-10°

LASSO 3.5-108 | 3.5-108 | 3.5-10% | 3.5-108

LASSO no SVD | 4.1-105 | 4.1-10% | 4.1-105 | 4.1-10°

RVM 48-105 | 4.8-10° | 4.7 -10° | 2.3-10°

LS 3.5-10* | 3.5-10% | 3.5-10% | 3.5-10%
TABLE 111

COMPUTATIONAL COMPLEXITY STATISTICS FOR OMP AND RVM.

OMP SNR Case 1 Case 2 Case 3 Case 4
mean | —5dB | 7.0-10° | 6.9-10° | 7.0-10° | 1.6-10°
0dB | 6.8-10° | 6.9-105 | 7.0-10° | 1.6-10°
5dB | 6.5-10° | 6.9-10°% | 7.0-10° | 1.6-10°
10dB | 6.6-10% | 6.9-10° | 7.0-10° | 1.6-10°
15dB | 6.7-10% | 7.0-10° | 7.0-10° | 1.6-10°
20dB | 6.7-10° | 6.9-105 | 7.0-10° | 1.6-10°

std —5dB | 0.4-10° | 7.3-10% 0 0
0dB | 0.8-10° | 5.3-10% 0 0
5dB | 1.1-10° | 6.5-10% | 3.5-10% 0
10dB | 1.1-10% | 6.0-10% | 0.5-10% 0
15dB | 0.9-10° | 5.4-10% 0 0
20dB | 0.9-105 | 8.0-10% 0 0

RVM SNR Case 1 Case 2 Case 3 Case 4
mean | —5dB | 4.8-10° | 4.8-10° | 4.8-10° | 2.3-10°
0dB | 4.8-10% | 4.8-105 | 4.7-10° | 2.3-10°
5dB | 4.8-10° | 4.8-105 | 4.7-10° | 2.3-10°
10dB | 4.8-10% | 4.8.10% | 4.7-10° | 2.3-10°
15dB | 4.8-10% | 4.8-10% | 4.7-10° | 2.3-10°
20dB | 4.8-10° | 4.8-105 | 4.7-10° | 2.3-10°
std —5dB | 1.3-10% | 1.2-10* | 1.2-10% | 1.0-10%
0 dB 1.2-10* | 1.4-10* | 1.3-10* | 1.0-10*
5 dB 1.5-10* | 1.3-10* | 1.3-10* | 1.0-10*
10dB | 1.5-10* | 1.4-10* | 1.3-10* | 1.0-10*
15dB | 1.4-10* | 1.3-10* | 1.4-10* | 1.0-10%
20dB | 1.9-10* | 1.2-10* | 1.5-10% | 1.0-10*

for the OMP algorithm means that with the chosen parameter
values the size of the set Z the algorithm has produced is the
same for all the channel realizations.

VI. CONCLUSION

Four different methods for the channel estimation with
hybrid antenna arrays were compared. The RVM based es-
timator gives the best estimation accuracy in all the tested
cases. When the number of iterations in the OMP algorithm
is selected based on the number of reflecting clusters in the
channel, its performance approaches the performance of the
RVM, especially when the number of clusters is small. When
the number of iterations in OMP increases its performance
approaches the performance of the LS estimator. If the number
of iterations in OMP were the same as the number of rows
of matrix ¥, it would be identical with the LS algorithm.
The performance of the LASSO based algorithm is always
the worst.

Since matrix ¥ does not depend on the received signal, the
calculation of the LS estimation consists of only matrix-vector
multiplication. Despite the large matrix size, the computational
complexity of the LS estimator is the smallest. The RVM based
channel estimator has lower complexity than the OMP when

Normalized averaged estimation error [dB] Normalized averaged estimation error [dB]
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Fig. 1. Channel estimation accuracy in Case 1.

SNR [dB]

Fig. 2. Channel estimation accuracy in Case 2.
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Fig. 3. Channel estimation accuracy in Case 3.
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Fig. 4. Channel estimation accuracy in Case 4.

only complex multiplications and additions and the calculation
of the SVD in OMP are taken into account. The RVM requires
also some more complex functions, such as logarithms, to
be calculated. Their portion is, however, small. Therefore,
the overall complexity of the RVM is not increased by them
significantly. One issue with the RVM is the computation time
which can vary from one estimation to the other depending on
how much time is spent in add, delete or re-estimate branches
of the algorithm.

Based on the results from Cases 1-4, the practical choice
is between the LS estimator or RVM based estimator. The
LS estimate is the best for low power implementations if its
accuracy is good enough for the application, RVM is the best
choice when the computational complexity is not as important.
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