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Abstract—In this paper, we develop a collaborative positioning
mechanism which uses Bayesian probabilistic models to combine
multidimensional sensory data and localize target nodes over
the network deployment area. Herein, heterogeneous anchor
nodes with distinct radio access technologies and experiencing
various radio channel features implement a joint sensor fusion
and positioning system for industry verticals. The proposed
mechanism also relies on a modern network architecture whereby
devices offload high-demand computation to more capable edge
servers which then estimate the target node position after
gathering anchors measurements and prior history. Kernel
density estimation results are used to show that edge servers
implementing Bayesian-based sensor fusion and positioning
system effectively estimate the target node location when using
hybrid metrics and combining past and current sensory inputs.

I. INTRODUCTION

The next generation of wireless communications will not be
a straightforward evolution of current systems, but instead it
will disrupt traditional design principles and revolutionize the
way we live, interact and make business. Legacy networks
have been always designed as general purpose connecting
platforms with very limited variation of functionalities across
deployment scenarios and use cases. On the other hand,
the upcoming 5G New Radio (NR) will cope with specific
requirements from onset so as to integrate digital technologies
into vertical markets as well as our every day life. In fact, the
next generation will merge the physical and digital worlds and
by doing so realize the concept of a true networked society
[1]. To achieve that, four key technologies are converging:
5G and beyond cellular systems, Artificial Intelligence (Al),
Data analytic and Internet of Things (IoT). In fact, pundits
advocate this ongoing convergence process will revolutionize
the Information and Communications Technology (ICT)
ecosystem and drastically alter all major industry verticals [2].

5G NR will become a catalyst for this revolution by bringing
about new unique set of features and service capabilities:
1) enhanced broadband communication providing seamless
experience even at high mobility; %) massive deployment of
smart objects (internet of things); and ¢¢%) mission critical
services requiring very high reliability and/or very low latency.
Thus, it will allow for close inter-working between the
ICT industry and vertical sectors players and then enable
a wide range of innovative use cases. Equally important,
such new services will require advanced enablers such as
Sensing, imaging, environmental monitoring, security, trust,
and particularly accurate positioning [3].

Indeed, positioning is a key enabler for the new services
in the upcoming wireless communications, for example,
transportation, logistics, health care, animal husbandry,
environmental monitoring and even wearables [4]-[6]. Our
solution assumes a modern network infrastructure whereby
nodes offload their computation to Multi-Access Edge
Computing (MEC) servers that estimate the target node
position in a centralized manner. In this configuration, less
capable Location Measurement Unit (LMU) are connected
to the edge servers and forward measurements accordingly.
With this distributed configuration, any previous knowledge
about the network disposition is available and then used
to update (or improve) the “believe” about the target
location. Many industry vertical applications rely on low
capacity devices (either communication or computation), but
require or benefit from location, thus the proposed MEC
configuration allow for fast deployment of new applications
and timely execution of highly demanding tasks [7]. In
the scenarios under consideration, access (anchors) points,
supporting localization units and low computation power
terminals offload their computation to nearby interconnected
edge servers that estimate the target node position fusing
measurements from heterogeneous sources throughout the
proposed Bayesian graphical model.

In this contribution, probabilistic graphical models
(Bayesian Networks), whose underlying structure is
represented by Directed Acyclic Graphs (DAGs), are
used to model and solve localization problems. The
driving idea is to develop a robust mechanism by which
current measurements and previous knowledge (sequential
information) are combined so as to improve overall accuracy
while guaranteeing communication transactions. In [5],
Madigan et al. introduced a Bayesian hierarchical model
to carry out indoor localization estimation using Markov
Chain Monte Carlo (MCMC) and Gibbs sampler. They
also highlighted the relevance of the zero profiling concept
which uses prior knowledge about the nodes disposition
to eliminate the need for training data. Along the same
lines, Authors in [8] develop hybrid localization solutions
by combining Received Signal Strength (RSS) and Time of
Arrival (TOA) in a common framework that is more robust
to variable measurement precision. Equally important, the
device heterogeneity of modern applications (transmitter and
receiver with conditionally-related parameters) is addressed
in [9] using a hierarchical Bayesian probabilistic model.



Herein, we also consider such Bayesian formulation to
estimate the position of the target node and use that as service
enabler for future network deployments that benefit from
higher computational power of the MEC servers [10].

Our main contributions are summarized as follows:

o« A Bayesian formulation for positioning in indoor
Machine Type Communication (MTC) deployments
wherein nodes have limited computational and depend
on edge servers to carry out the localization procedures.

« Different from previous works, the Hamiltonian Monte
Carlo algorithm is used to sample the posterior
distributions of the target node coordinates.

The reminder of this paper is organized as follows.
Section III presents the channel propagation and network
deployment models, as well as establishes the evaluation
scenario under investigation. Afterwards, we introduce the
collaborative localization framework based on Bayesian
probabilistic models in Section II, while discussing its
implementation details and pointing out (dis)advantages of the
proposed formulation. In Section IV, we catry out extensive
simulation campaign using the MCMC approach so as to
assess the performance of the Bayesian-based framework in
terms of the Kernel Density Estimation (KDE) and Root Mean
Square Error (RMSE) for distinct configuration parameters and
decision metrics, namely RSS, TOA and combinations thereof.
Conclusions and final remarks are drawn in Section V.

II. PROBABILISTIC GRAPHICAL MODELS

Bayesian graphical models allow to pictorially represent a
joint distribution f(z1,xs,...,2,) relating a set of random
variables {X7, Xo,...,X,,} throughout the conditional
independence assumptions underlying the statistical model. As
Authors in [11] point out, a DAG representation provides a
general-purpose modeling language for exploiting this type
of probabilistic structure. The relationships between Random
Variables (RVs) are then given by a DAG G = (V, E) with V'
vertices and E edges representing RVs and their corresponding
inter-dependencies, respectively. Let X = (Xy) be a set
of RVs indexed by V. From [11], X represents a Bayesian
Network with respect to G if its joint probability density
function (with respect to a product measure) can be written as
a product of the individual density functions, conditional on
their parent variables,

fO) =] £ wlpalv)), (1)
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where pa[v] is the set of parents nodes of v (i.e. those vertices
pointing directly to v via a single edge). As highlighted by
Spiegelhalter in [12], by simply interpreting RVs as vertices
and representing their intrinsic statistical relations through
the graph edges, one can connect the underlying DAG and
Bayesian networks as given in (1) — any node is conditionally
independent of all non-descendants given the parents.

As a result, the conditional distribution for any such vertex
(representing a random variate) v € G is given by,

f[VAv) oc f (v, V\v)
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where ch[v] yields the set of children of the node v.

Thus, DAGs are employed here to capture the qualitative
relationships between the random quantities. Aiming to
obtain valid posterior estimates for the unknown variates
of interest, we first need to specify an suitable statistical
model describing the interdependence between the relevant
parameters. Thereafter, MCMC method (a powerful generic
computational approach) is employed to approximately sample
from arbitrary distributions [13]. We resort to Bayesian
probabilistic models to develop our collaborative localization
procedure [11], [14]. In particular, the Hamiltonian Monte
Carlo approach is employed to carry out the MCMC method
in a computationally efficient manner — which is elegantly
formalized throughout the Hamiltonian dynamics [15], [16].
Succinctly, MCMC method is a generic approach for sampling
from an arbitrary distribution. The main idea is to generate
a Markov chain whose limiting distribution is equal to the
desired distribution [17].

III. EVALUATION SCENARIO AND LOCALIZATION
MECHANISM

In this section, we initially detail the propagation and
deployment models used to build the evaluation scenario,
and thereafter describe our Bayesian-based collaborative
positioning system — which combines current and past
measurements to accurately estimate the target node location.

A. Channel Propagation Model

The radio links between communicating nodes are degraded
by a log-distance shadowed path loss model which is assumed
to be independent over distinct network entities and positions.
Thus, the RSS follows a decay function given by,

pi = po — nlog(D;) + X, 3)

where p; is the RSS at the target node relative to the :th
anchor, pg is the received power at an arbitrary reference
distance (assumed to be 1m), 7 is the path loss exponent, x is
shadowing with zero mean normal distribution and standard
deviation o; in the logarithmic scale, and D; is the Euclidean
distance between the ith anchor and the target node given by,

D= (X =) + (Y — ), )

where (X, Y) is a bidimensional variate representing the target
node position, while (x;, y;) corresponds to the predefined ith
anchor node location.



Network Deployment

1004 W O ]

80 o

60

y(m)
O
O

Type 1 Anchors

pe 2 Anchors
Target Node

204

BR | O |

T T T T T
0 20 10 60 80 100
z(m)

Fig. 1: Illustration of the network deployment model. Filled
and hollowed squares represent type 1 and 2 anchor nodes,
respectively, while the circle at (20, 80)m represents the actual
target position.

B. Network Deployment Model

Fig. 1 illustrates the evaluation scenario with dimensions L
and W. Without lack of generality, short internode distances
and predominantly Line-of-Sight (LoS) operation are assumed.
From this figure, n reference nodes at known positions
(zi,y;) collaborate to locate a target node with arbitrary
position (X,Y’). Following our problem formulation, each
such anchor node independently gets measurements from the
target with the purpose of estimating its location. Two types
of anchor nodes (regarding how target node measurements
are acquired) are considered throughout these investigations:
filled squares are more capable Access Points (APs) with
more advanced radio access technology which, in addition
to RSS measurements, are also capable of collecting more
elaborated metrics such as TOA and Direction of Arrival
(DOA). Differently, hollowed squares are simpler LMU that
can acquire just one positioning metric type. The positioning
solution is evaluated considering two distinct test scenarios:
1) a squared warehouse with four anchors (known locations)
positioned at the respective corners collecting one metric only
(either RSS or TOA); and %) anchors collecting two distinct
metrics in a hybrid solution.

C. Localization mechanism

The proposed collaborative positioning systems accounts
for the distributed nature of scenarios under investigation
and the corresponding heterogeneity of the communicating
devices. An edge-based approach whereby current and past
measurements from all localization agents are aggregated and
then used to localize the target node [18]. Next, we make
use of the DAG representation to formulate the localization
problem as a Bayesian probabilistic model.

In the following we present the plate notation (which shows
the conditional interdependence between RVs) and respective
formulation for the metrics considered here.

1) RSS-based localization mechanism: Fig. 2 presents
the plate notation [5], [19] for the RSS-based mechanism
described in (5). In this diagram, circular vertices represent
RVs, arrow edges represent dependencies between RVs and
symbols inside rectangles correspond to constant values. The
underlying assumptions and respective prior distributions used
to build the model and sample the posterior distribution are
given in (5). Similarly, Section III-C2 shows the TOA-based
probabilistic graphical models.

The specification of the DAG model vertices conditional
densities given their corresponding parent nodes.

X ~ Uniform(0, L),
Y ~ Uniform(0, W),

Di~ (X = 2) + (Y — )2,

i ~ poi + nilog(D;),

poi ~ Normal(0, 100),

n; ~ Normal(0, 100),

o? ~ HalfNormal(10), )

where (X,Y) is a bidimensional variate representing the target
node position, D; is the separation distance between the target
node and the ith anchor, pg; is the power received at an
arbitrary reference position (assumed to be 1m), 7; is the path
loss exponent and o; is the corresponding standard deviation
associated to the ith anchor measurements.
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Fig. 2: Illustrative Bayesian probabilistic model using
plate notation for the collaborative RSS-based localization
mechanism.
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Fig. 3: KDE for the positioning system employing (a) 50 and (b) 150 RSS measurements, (c) 50 TOA measurements. The

black dot represents the actual target position at (20, 80)m

2) TOA-based localization procedure: Similarly, the

TOA-based Bayesian network is described in (6).

X ~ Uniform(0, L),

Y ~ Uniform(0, W),

Di /(X =20 + (V — ),
D;

fq ~ —

C
o? ~ HalfNormal(10),

(6)

where ¢ corresponds to the speed of light.

In these investigations, we also consider hybrid solutions
by combining distinct metrics, namely RSS and TOA into
the Bayesian network framework. Aiming at saving space, the
DAG hybrid approach is not explicitly shown, though it merges
elements from (5) and (6) constructions.

IV. PERFORMANCE ANALYSIS

In this section, we carry out an extensive simulation
campaign to assess the collaborative Bayesian-based
positioning system using the KDE of the posterior distribution
of the target location coordinates and the respective RMSE.
Monte Carlo simulations are used to generate measurements
according to the propagation and deployment models from
Section III. The Hamiltonian Monte Carlo algorithm [20]
is then used to sample the posterior distribution of the
bidimensional RV representing the target position (X,Y).

Fig. 3 summarizes the KDE for the collaborative positioning
system using distinct metrics, namely RSS and TOA, as well
as variable number of measurements per anchor node. As
can be seen from Figs. 3(a) and (b), the RSS is inherently
less accurate and needs much more valid measurements to
provide reasonable positioning estimates. On the other hand,
the TOA-based approach provides comparable results by using
much less measurements as shown in 3(c).

When combing RSS measurements from distinct anchors
at the edge server, Fig. 4 presents the violin plot
for the x coordinate of the target node position and
respective RMSE. The RSS metric is more susceptible
to channel impairments and intrinsically less precise thus
requiring more measurements to provide reasonable estimates.
The collaborative mechanism provides increasingly better
estimates with the number of measurements (which can be
combined at the Bayesian module even if they are not collected
simultaneously). The measurements are collected by anchors
located at the corners of the test scenario shown in 1. The
number of measurements are shown in the vertical axis, while
the = coordinate estimate is shown in the horizontal one.
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Fig. 4: Violin plot and RMSE for the collaborative positioning
system using RSS measurements only.
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Fig. 5: Violin plot and RMSE for the collaborative positioning
system using RSS and TOA measurements.

Similarly, Fig. 5 compares the resulting posterior
distributions for distinct metrics and combinations thereof.
It is worth mentioning that the collaborative localization
system does not need to assume beforehand the availability
of any specific metric, but instead makes use of the available
measurements as they become available. Here, RSS- and
TOA-based positioning framework collect measurements
from all anchors located at the corners of the test scenario.
On the other hand, the RSS- plus TOA-based approach
collects signal strength from the bottom anchors, and time
of flight measurements from the top anchors as illustrate
in Fig. 1. In fact, by combining both metrics, namely
signal strength and time of flight, the RSS- plus TOA-based
approach need less measurements so as to provide comparable
results. In this test scenario, each anchor node collects and
forwards 25 measurements of the respective metrics. It is
also worth mentioning that this framework allows combining
heterogeneous devices with distinct radio access technologies
into a common localization framework.

V. CONCLUSIONS

Herein, we assess the feasibility of Bayesian networks to
combine current and past measurements from distinct anchors
at edge servers. Then, the MCMC method is used to compute
the Bayesian statistics and evaluate how the collaborative
localization solution perform in the heterogeneous deployment
scenarios. Particularly, the Hamiltonian Monte Carlo algorithm
is used to sample from the posterior distribution and
estimate the target node position. Our results show that
Bayesian probabilistic models can effectively combine hybrid
positioning metrics from various heterogeneous sources
with distinct radio access technologies and computational
capabilities.
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